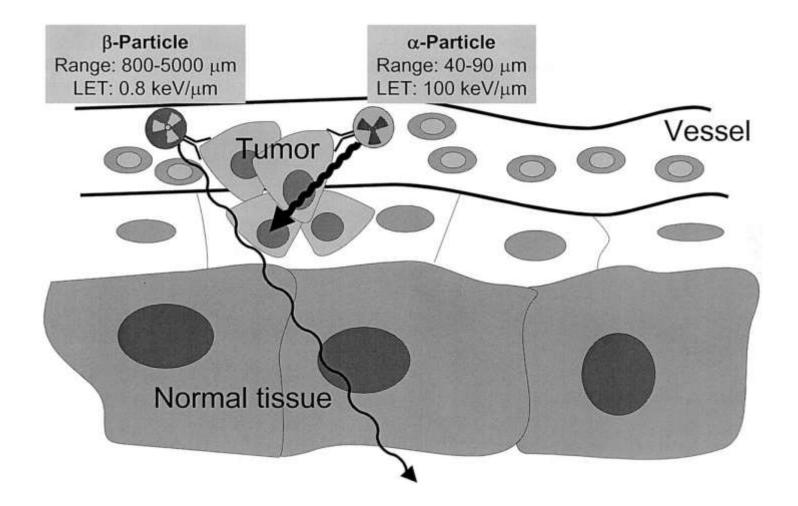
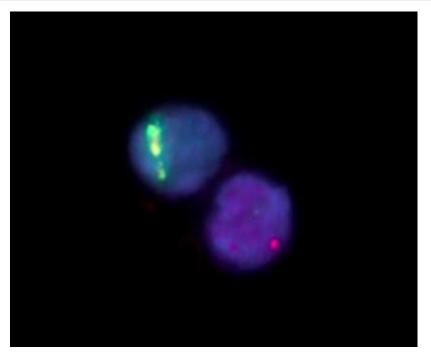


Targeted Alpha Particle Therapy: Imaging, Dosimetry and Radiation Protection


Michael Lassmann

Targeted Therapy – Basic Principles

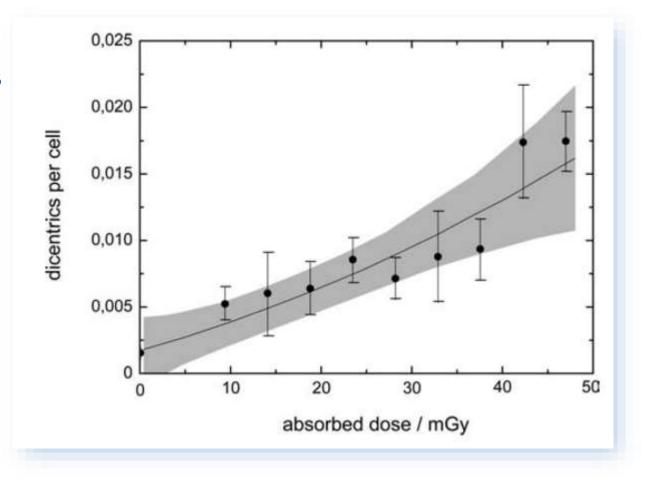

Influence of the particle type

0.01 Gy gamma photons 50 ± 7 electron tracks per cell (on average)

0.01 Gy alpha dose spectrum, from 0 to 0.30 Gy mean hit number: 0.1 90% of cells are spared !

(Goodhead in Dosimetry of ionizing radiations, Kaze, Bjarngard and Attix ed., Orlando1987)

DNA Damage by Alpha Particles


DNA damage caused by the track of an alpha particle through a human lymphocyte visualized by the γ -H2AX assay

(Image courtesy of H. Scherthan, Bundeswehr Institute of Radiobiology, Munich, Germany)

Chromosome Aberrations after ²²⁴Ra Therapy

Treatment for Ankylosing Spondilytis

Total administered actvity: 10 MBq

Stephan et al. Radiat Environ Biophys (2005) 44: 23–28

Alpha emitting isotopes for therapeutic applications in nuclear medicine

Radionuclide	Half-Life	Max. Particle Energy
At-211	7.2 hrs	6.0 MeV
Bi-213	46 min	6.0 MeV
Ra-223	11.4 days	5.8 MeV
Ac-225	10.0 days	5.9 MeV

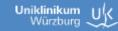
Therapy Modalities (Generic Use)

Metabolic active radiopharmaceuticals

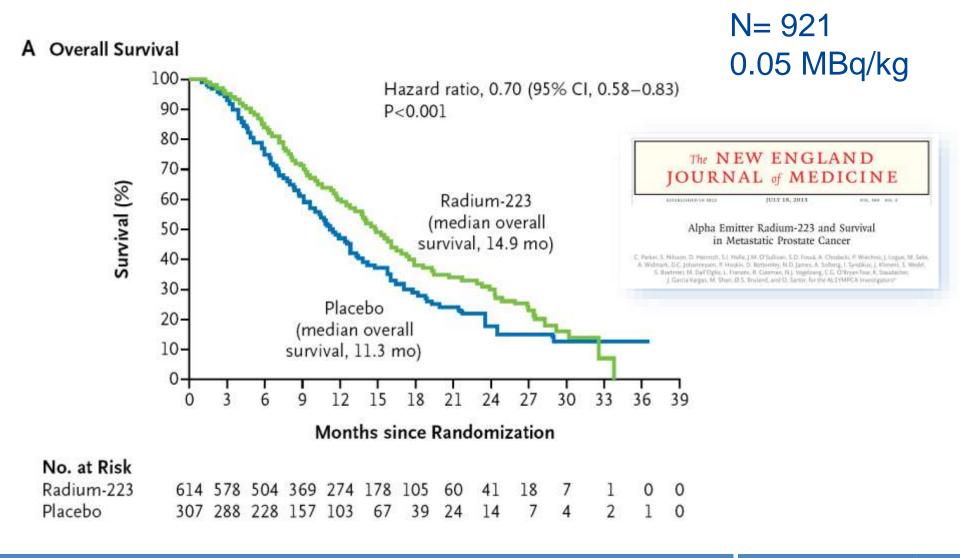
- Radioiodine Therapy of Thyroid Diseases (benign/malignant) (²¹¹At in-vitro studies)
- Bone Pain Palliative Treatment of Bone Metastases (²²³Ra)

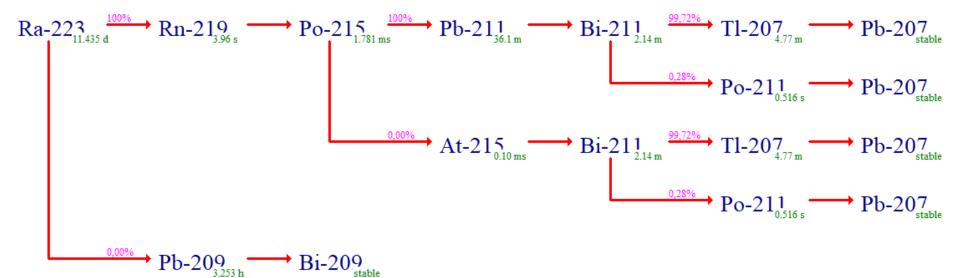
Specifically binding radiopharmaceuticals

- Radiopeptide therapy (addressing specific antigens or receptors) (²¹³Bi, ²²⁵Ac)
- Treatment of lymphoma using antibodies (²¹²Pb)

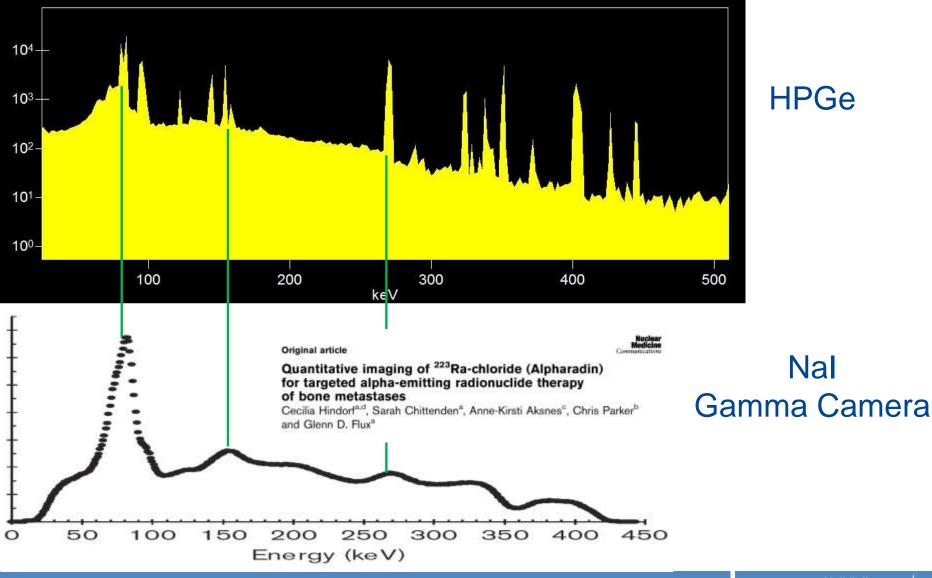

Locoregional therapies

Selective Internal radiotherapy (Alpha Emitter: possible option?)

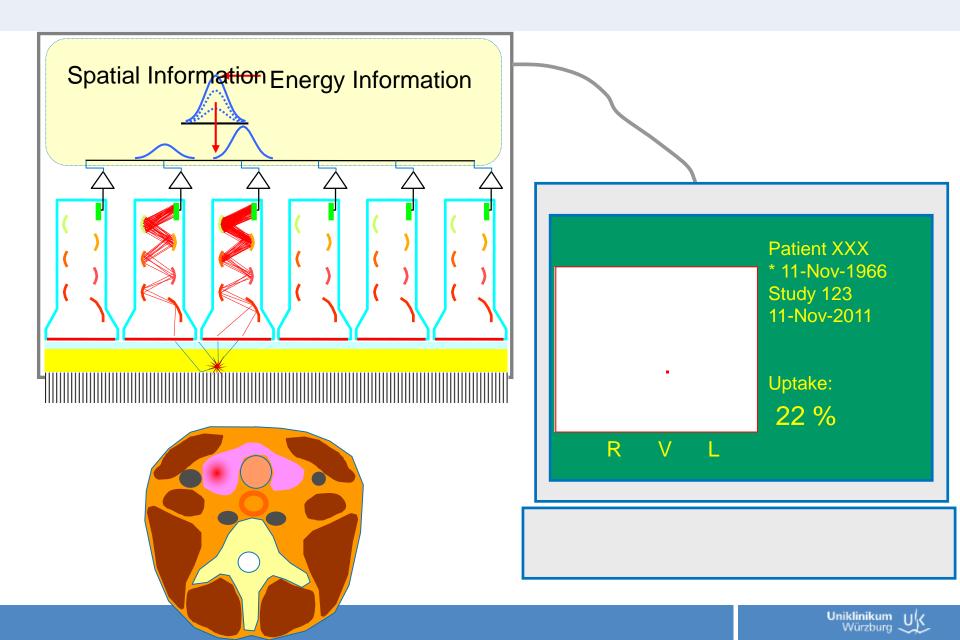

Radium


http://www.rsc.org/chemistryworld/Issues/2011/January/ElementsOfInspiration.asp

²²³Ra - Phase III Randomised Trial (ALSYMPCA)


Decay of Ra-223

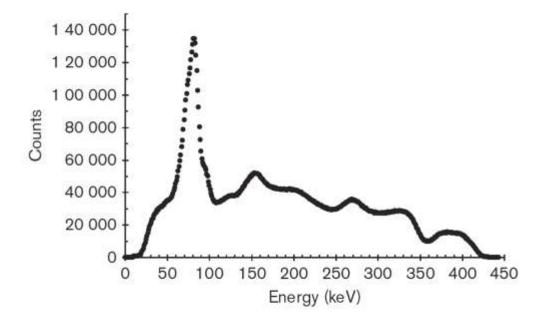
Decay of Ra-223

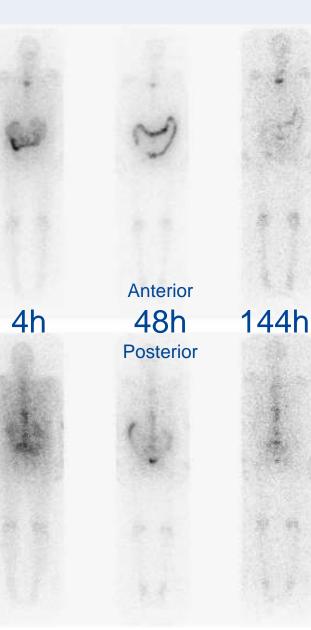

Decay Chain	Branching Ratio	Half-life	Alpha and Recoil Nuclei (MeV)	Beta and Auger Electrons (MeV)	Gamma and X- Rays (MeV)
Ra-223		11.43 days	5.77	0.078	0.141
Rn-219	100%	3.96 s	6.88	0.007	0.059
Po-215	100%	1.78 ms	7.49	0.000	0.000
Pb-211	100%	36.10 min	-	0.454	0.064
Bi-211	100%	2.14 min	6.66	0.010	0.047
TI-207	99.7%	4.77 min	-	0.494	0.002
Po-211	0.3%	0.52 s	7.61	0.000	0.008

Imaging: gamma spectroscopy of Ra-223

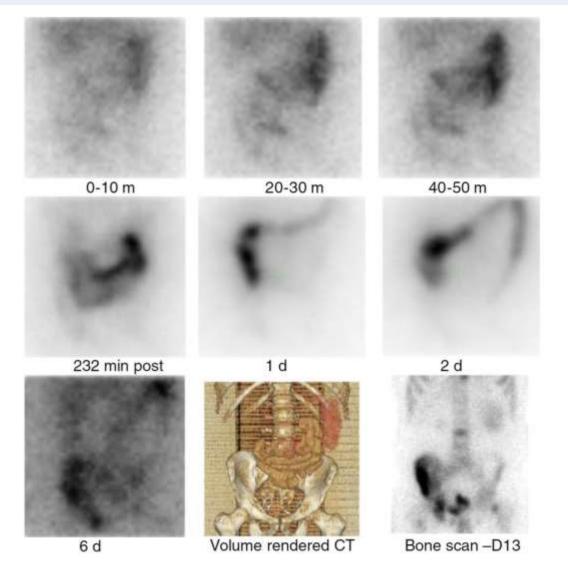
Uniklinikum Würzburg

Gamma Camera




Biodistribution of Ra-223

Original article


Quantitative imaging of ²²³Ra-chloride (Alpharadin) for targeted alpha-emitting radionuclide therapy of bone metastases

Cecilia Hindorf^{a,d}, Sarah Chittenden^a, Anne-Kirsti Aksnes^c, Chris Parker^b and Glenn D. Flux^a

Biodistribution of Ra-223

Eur J Null Med Mel Imaging (2013) 40:1394-1395 (DOI 10.3007)/481259-013-3427-6

ORIGINAL ARTICLE

Phase I pharmacokinetic and biodistribution study with escalating doses of ²²³Ra-dichloride in men with castration-resistant metastatic prostate cancer

Jorge A. Carrasquillo - Joseph A. O'Donoghue -Neeta Pandio Taskar - John L. Humm - Duna E. Rathkopf -Susan F. Slovin - Matthew J. Williamson - Kristine Lacuna -Anne-Kirsii Aksues - Steven M. Larson - Howard L. Scher -Michael J. Morris

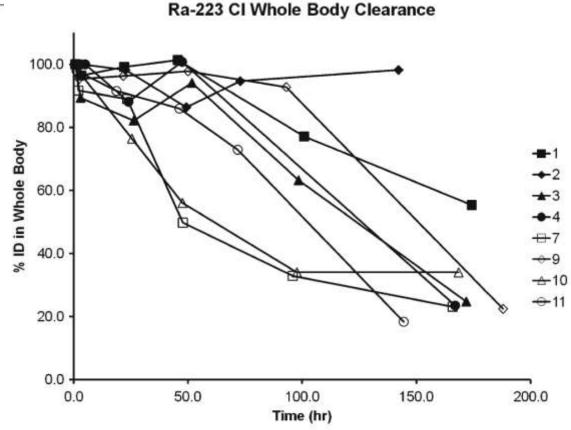
Biodistribution of Ra-223

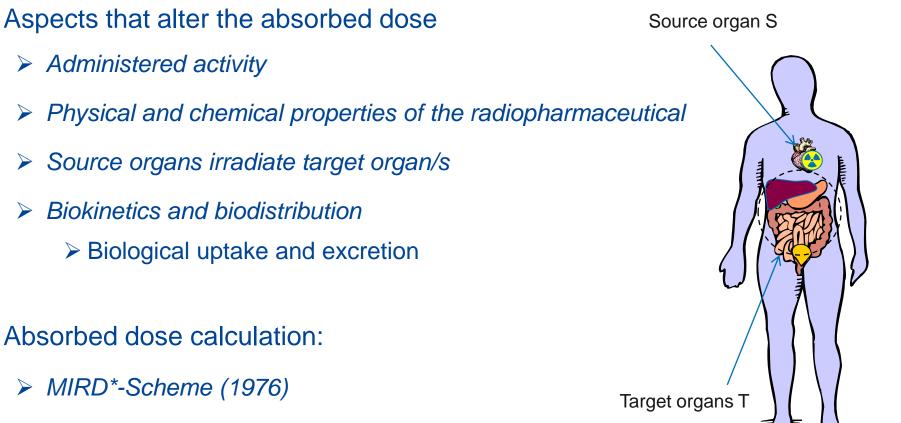
Loc J Nucl Med Mol Integrag (2013) 40:1384-1395 DOI: 10.1007/a00298-013-3427-6

ORIGINAL ARTICLE

Phase I pharmacokinetic and biodistribution study with escalating doses of ²²³Ra-dichloride in men with castration-resistant metastatic prostate cancer

Jorge A. Carranquillo - Joseph A. O'Distoghue -Neeta Pandia-Tankor - John L. Humm - Dima E. Rathkopf -Susan F. Slovin - Matthew J. Williamon - Kristine Lacona -Anne-Kirist AAnne - Sleven M. Larson - Howard I. Scher -Michael J. Morris



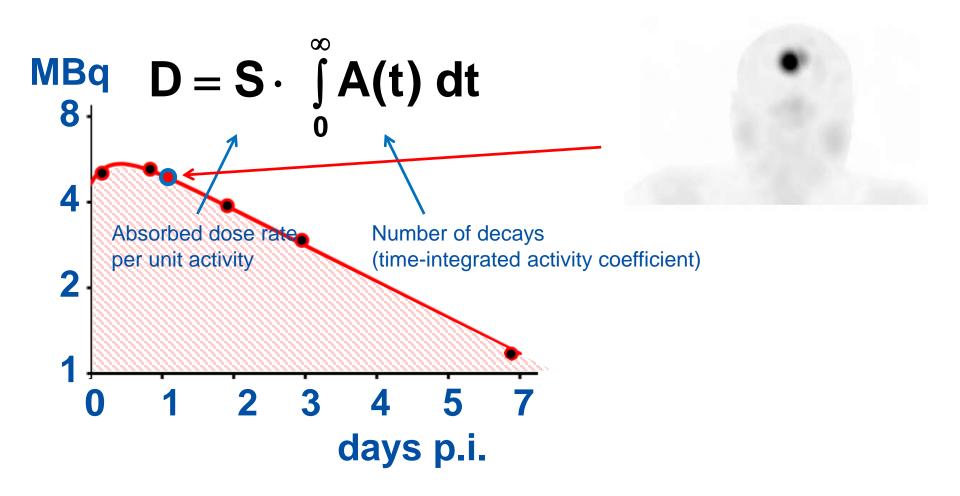

Fig. 1 Decay-corrected percentage of 223 Ra retained in the whole body (initial pre-void counts taken as 100 %) in patients (n=8) over a period of approximately 1 week post-administration

Nuclear Medicine Dosimetry

Diagnostics	Therapy
Low activities ~<1GBq, short-lived nuclides, γ/β^+ emitters	High activities ~>1GBq for beta emitters, > 10MBq for alpha emitters long-lived nuclides, α/β^- emitters
Stochastic risk	Deterministic damage and stochastic risk
Model-based dosimetry in a representative group of volunteers or patients	Patient-specific dosimetry
Optimize image quality	Maximize tumor absorbed doses
Minimizing radiation-associated risk	Minimize the absorbed doses to the organs-at-risk

18

Internal Dosimetry in Nuclear Medicine Therapy



Summing over all organ contributions

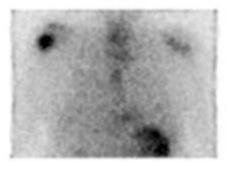
$$> D_T = A_0 \cdot \sum_s \int_0^\infty A_s(t') dt' \cdot S_{T \leftarrow S} = A_0 \cdot \sum_s \tau_S \cdot S_{T \leftarrow S}$$

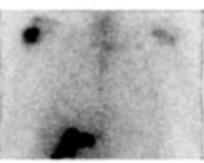
Dosimetry in Nuclear Medicine

Uniklinikum Würzburg

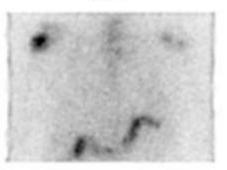
Dosimetry of Metastases

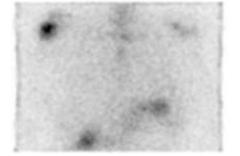
Ear & Nucl Mid Mol Istaging (2005) 43:21-33 DCK 10:1007/08/259-415-5150-2


ORIGINAL ARTICLE.

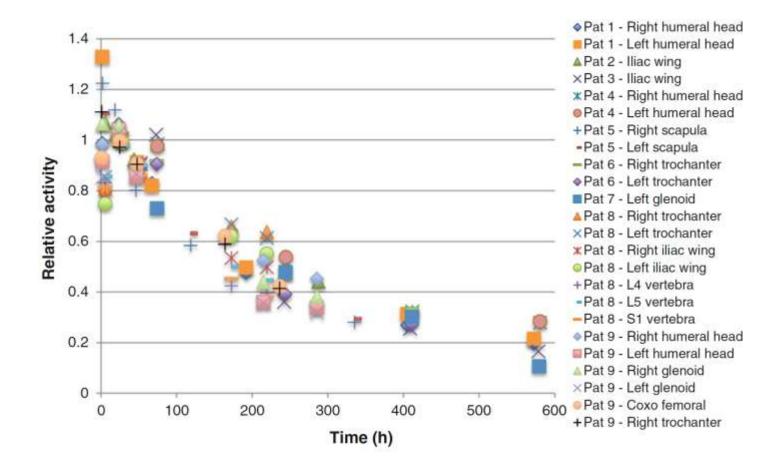

Dosimetry of bone metastases in targeted radionuclide the rapy with alpha-emitting $^{\rm 223}{\rm Ra}\mbox{-dichloride}$

Massimiliano Pacilio² - Gaido Ventrani² - Giaseppe De Vincentis¹ -Bartelonea Casano² - Romana Pollogriai² - Elicoletto Di Costro² -Visiana Frantalizat² - Gaida Aara Follocchia³ - Tatiana Garkovaya² -Loin Lorenzani⁴ - Pangade Inforga⁴ - Roberto³ Paria - Incei Manga²


1.5 h



67 h

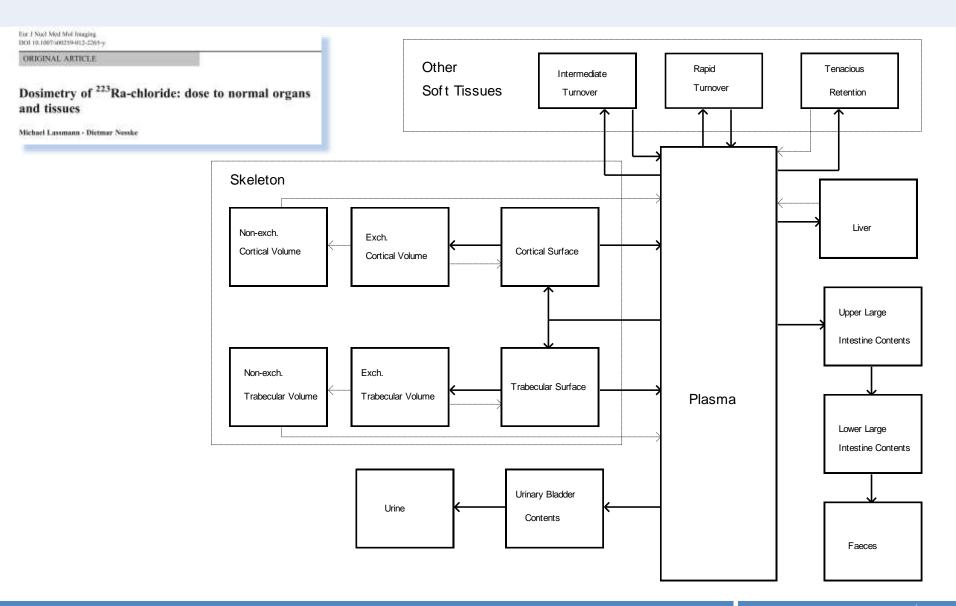

Dosimetry of Metastases

Ear J Nucl Mod Mol Integring (2005) 43:21-33 DCK 10:1007/480239-415-5150-2

ORREPARAL ARTICLE.

Dosimetry of bone metastases in targeted radionuclide therapy with alpha-emitting ²²³Ra-dichloride

Massimilians Pacilis¹ - Gaide Ventruni⁴ - Giaseppe De Vincentis¹ -Bartelonea Cassano⁴ - Rozanna Pellegrini⁷ - Elicoletta Di Castro² -Visiana Frantellisti⁴ - Gidia Anna Felleschin³ - Yatians Garkavaya⁴ -Lodo Lorenzon⁴ - Pongade Inforga⁴ - Roberto Pini⁴ - Lacio Manga⁵



Mean absorbed dose after 1^{st} injection:0.7 (0.2-1.9) GyTotal RBE weighted dose (D_{RBE5}):18.9 Gy

Uniklinikum

Würzbura

Biokinetic Modelling for Radium – ICRP 67

Uniklinikum Würzburg

Doimetry of Ra-223

Table 1 Organ dose estimates after intravenous administration of ²²³Ra-chloride

Organ	Absorbed dose for alpha particles	Absorbed beta/gamm, dose (low LET)	Dose co	efficients
	(high LET) Gy/Bq	Gy/Bq	Gy/Bq ^a	Sv/Bq ^b
Adrenals	3.2E-09	2.4E-10	1.6E-08	6.5E-08
Bladder wall	3.3E-69	4.1E-10	1.7E-08	6.6E-08
Bone endosteum	7.5E-07	1.1E-08	3.8E-06	1.5E-05
Brain	3.2E-89	1.8E-10	1.6E-08	6.5E-08
Breast	3.2E-09	1.6E-10	1.6E-08	6.5E-08
GI tract				
Oesophagus	3.2E-09	1.7E-10	1.6E-08	6.5E-08
St wall	3.2E-09	2.1E-10	1.6E-08	6.5E-08
SI wall	3.2E-09	3.9E-10	1.7E-08	6.5E-08
ULI wall	68E-09	1.4E-08	4.8E-08	1.5E-0
LLI wall	1.3E-08	4.0E-08	1.1E-07	3.0E-0
Colon	9.5E-00	2.5E-08	7.3E-08	2.2E-0
Kidneys	3.4E-09	2.4E-10	1.7E-08	6.8E-0
Liver	3.6E-08	1.5E-09	1.8E-07	7.2E-03
Muscle	3.2E-09	2.0E-10	1.6E-08	6.5E-08
Ovaries	3.2E-09	4.3E-10	1.7E-08	6.5E-08
Pancreas	3.2E-09	2.2E-10	1.6E-08	6.5E-08
Red marrow	7.2E-08	5.5E-09	3.7E-07	1.5E-00
Respiratory tract				
ET airways	3.2E-09	1.7E-10	1.6E-08	6.5E-08
Lungs	3.2E-09	1.9E-10	1.6E-08	6.5E-08
Skin	3.2E-09	1.6E-10	1.6E-08	6.5E-08
Spleen	3.2E-09	1.9E-10	1.6E-08	6.5E-08
Testes	3.2E-09	1.8E-10	1.6E-08	6.5E-08
Thymus	3.2E-09	1.7E-10	1.6E-08	6.5E-08
Thyroid	3.2E-09	1.7E-10	1.6E-08	6.5E-08
Uterus	3.2E-09	2.8E-10	1.6E-08	6.5E-08

6 treatments for a 70 kg person with an administered activity of 0.05 MBq/kg ²²³Ra-chloride each (overall: 21 MBq ²²³Rachloride):

absorbed alpha dose to the bone endosteum: ~ **16 Gy**

absorbed alpha dose to the red bone marrow: ~ **1.5 Gy**

Michael Lammann - Dietsear Nesslie

"Radiation weighting factor of 5 for α radiation, unit Gy as proposed by the ICRP in ICRP Publication 103 as the unit for an RBE-weighted absorbed dose for deterministic biological effects [16]

^bRadiation weighting factor of 20 for α radiation

Dosimetry – ²²³Ra

GI tract	Gy/Bq Alpha	Gy/Bq Beta/Gamma	Relative Beta/Gamma Contribution [%]	
Oesophagus	3.2E-09	1.7E-10	5	
St wall	3.2E-09	2.1E-10	6	
SI wall	3.2E-09	3.9E-10	11	
ULI wall	6.8E-09	1.4E-08	67	
LLI wall	1.3E-08	4.0E-08	75	
Colon	9.5E-09	2.5E-08	72	
Kidneys	3.4E-09	2.4E-10	7	
Liver	3.6E-08	1.5E-09	4	
Muscle	3.2E-09	2.0E-10	6	
Ovaries	3.2E-09	4.3E-10	12	
Pancreas	3.2E-09	2.2E-10	6	
Red marrow	7.2E-08	5.5E-09	7 Ter J Niel Met Mel Neugen; (2013) 40.205-212 100 to 100 to 1000-00228-012-2205-y	
Respiratory tra	act		Dosimetry of ²²³ Ra-chloride: dose to	normal organs
ET airways	3.2E-09	1.7E-10	5 and tissues	in organiz
Lungs	3.2E-09	1.9E-10	Michael Lawmann - Dictioner Newske	

Uniklinikum Würzburg

Radiation Protection

Measured removable contamination detection efficiencies and minimum detectable activities (MDA) of various 1 min integrated survey modalities for ²²³Ra wipe tests.

			Minimum detectable activity	
Instrument	Background (cpm)	Efficiency (cpm/dpm)	(dpm)	(Bq)
Alpha Probe (Zinc Sulfide) ^a	0	0.08	71	1.2
Thin Window Beta/Gamma Probe (GM) ^a	28	0.13	350	5.8
Low Energy Gamma Probe (Sodium Iodide) ^a	94	0.29	1296	21.6
Liquid Scintillation Counter	49	0.97	64	1.1
Gamma Counter	210	0.40	333	5.6

^aFor wipe test evaluations in a fixed geometry at a distance of 0.32 cm.

Health Phys. 2014 April ; 106(4): 494-504. doi:10.1097/HP.0b013e3182a82b37.

RADIATION SAFETY CONSIDERATIONS FOR THE USE OF ²²³RaCl₂ DE IN MEN WITH CASTRATION-RESISTANT PROSTATE CANCER

Lawrence T. Dauer^{*,†}, Matthew J. Williamson^{*}, John Humm^{*,†}, Joseph O'Donoghue^{*}, Rashid Ghani[†], Robert Awadallah[†], Jorge Carrasquillo^{†,‡}, Neeta Pandit-Taskar^{†,‡}, Anne-Kirsti Aksnes[§], Colin Biggin[§], Vigdis Reinton[§], Michael Morris^{**,††}, and Jean St Germain^{*}

Radiation Protection – Dose Rate (µSv h⁻¹ MBq⁻¹)

	50 kBq kg ⁻¹ Group			
Time post administration (h)	0.0 m	0.3 m	1.0 m	
0	0.58 (0.77)	0.12 (0.32)	0.03 (0.18)	
24	0.91 (0.95)	0.12 (0.16)	0.03 (0.06)	
48	0.19 (0.24)	0.01 (0.06)	0.01 (0.02)	
144	0.05 (0.11)	0.01 (0.05)	0.01 (0.03)	

Health Phys. 2014 April ; 106(4): 494-504. doi:10.1097/HP.0b013e3182a82b37.

RADIATION SAFETY CONSIDERATIONS FOR THE USE OF ²²³RaCl₂ DE IN MEN WITH CASTRATION-RESISTANT PROSTATE CANCER

Lawrence T, Dauer^{*,†}, Matthew J. Williamson^{*}, John Humm^{*,†}, Joseph O'Donoghue^{*}, Rashid Ghani[†], Robert Awadallah[†], Jorge Carrasquillo^{†,‡}, Neeta Pandit-Taskar^{†,‡}, Anne-Kirsti Aksnes[§], Colin Biggin[§], Vigdis Reinton[§], Michael Morris^{**,††}, and Jean St Germain^{*}

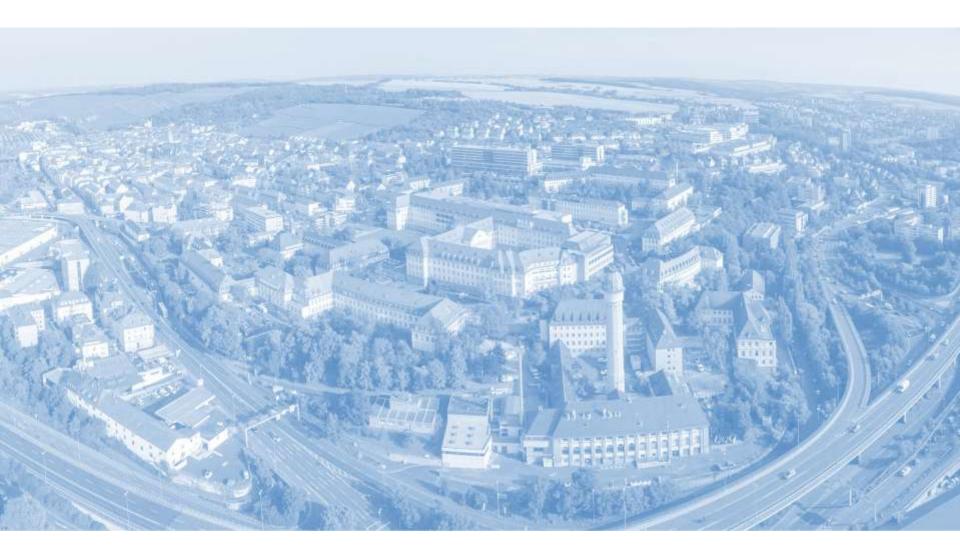
Radiation Protection – Excretion and Contamination

- Ra-223 was found in saliva (median: 22 Bq/g, range: 5.9-124 Bq/g) and excreted with sweat (median: 0.12 Bq/cm², range: 0.01 - 0.6 Bq/cm²) in the first 24 hours p.i.
- Contaminations in restrooms and kitchens were low (median: 0.021 Bq/cm², range: < DL - 0.35 Bq/cm²)
- The exposure due to inhalation of Rn-219 and its progeny for relatives staying in a room with the patient is expected to be of no concern

Radiation Protection – Extremity Surveillance

Recommended by the German BfS if more than 28 patients per year are handled by a single individual

https://www.bfs.de/SharedDocs/Downloads/BfS/DE/broschueren/ion/fachinfo/strahlenschutz-umgang-mit-betastrahlern.pdf?__blob=publicationFile&v=8


Conclusions I

- Administering alpha emitters opens a promising path to a new treatment option for molecular targeted radiotherapy
- Ra-223-dichloride shows a benefit in survival in CRPC patients; it is administered on a per kg basis
- Measuring the biodistribution in patients is challenging due to the low activities administered and low emission probabilities of suitable photon energies
- For Ra-223 absorbed dose assessments still mostly rely on compartment modelling based on ICRP model

Conclusions II

- The RBE of treating systemically with alpha emitters is yet to be determined
- Normally, no radiation protection measures are needed beyond those needed for high-activity treatment with beta/gamma emitters. Further measures are to be considered only if the patient numbers handled by a single person exceed 25 -30

Thank you!

Data Sources for Risk Assessments for Alpha Emitters

Major Number of Treatments:

- a) Spiess Cohort, "high dose" treatment with ²²⁴Ra (n=899)
- b) Wick Cohort, "low dose" treatment with ²²⁴Ra (n=1588)
- c) ALSYMPCA Trial with ²²³Ra (n=614/921)

Other isotopes used for treatments were applied to few patients and without long-term follow-up

Cancer Induction – Spiess Cohort

RADIATION RESEARCH **174**, 377–386 (2010) 0033-7587/10 \$15:00 © 2010 by Radiation Research Society. All rights of reproduction in any form reserved. DOI: 10.1667/RR1955.1

Incidence of Malignant Diseases in Humans Injected with Radium-224

Elke Anna Nekolla,". Linda Walsh" and Heinz Spiessb

* BfS Federal Office for Radiation Protection, 85764 Neuherberg, Germany; and * Children's Hospital, University of Munich, 80336 Munich, Germany

- Cohort of 899 patients with several injections of ²²⁴Ra between 1945 and 1955
- Patients were treated with high doses (mean bone surface dose: 30 Gy, mean specific activity: 0.66 MBq/kg)
- Almost all of those exposed during childhood or adolescence
- Treatment mainly for either TB (455 patients including 214 children and juveniles), especially bone TB, or AS (393 patients who were mostly male adults)
- The AS patients continued were treated in the late 1950s and in the 1960s with ²²⁴Ra.