3. INTERVENTIONAL AND OTHER FLUOROSCOPIC PROCEDURES

3.1. The evolution of fluoroscopic techniques
3.2. Design features of modern fluoroscopy systems relevant to patient dose and image quality
3.3. Exposure configuration and optimisation during commissioning
3.4. Establishing equipment performance and QC programme
3.5. Patient dose monitoring and dose audits
3.6. Skin dose monitoring and alert levels
3.7. Practical advice for optimal performance of fluoroscopy procedures and patient management
3.8. Dose management QA programme
Evolution of fluoroscopic techniques

Early ages:
- Direct fluoroscopy screens
- Dark adaptation of radiologists' eyes
- High radiation exposure to radiologists
Evolution of fluoroscopic techniques

1950-s to 2000-s
• X-ray image intensifier (II)
 - ZnCdS phosphor
 - CsI phosphor (mid 1970-s)
• TV camera:
 - Analog (orthicon or vidicon camera tubes)
 - Digital CCD TV camera (1980-s)
 - TV monitor
• Image recording (through tandem optics):
 - Film-screen
 - Spot cameras (cut or roll films)
 - Cine cameras
• Automatic control circuit
 - Automatic Brightness Control (ABC)
 - Automatic Dose Rate Control (ADRC)
Since 2000-s

- Solid-state (flat panel, FP) detectors
 - indirect conversion
 - direct conversion
- Digital image processing
Diagnostic procedures

Fluoroscopy guided interventional (FGI) procedures for navigation of instruments to perform surgical, minimally invasive and interventional procedures
Global trends in medical exposure

Number of procedures (millions)

<table>
<thead>
<tr>
<th>Procedure</th>
<th>2008</th>
<th>2022</th>
<th>6-fold increase</th>
<th>8-fold increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional radiology</td>
<td>2900</td>
<td>2626</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dental radiology</td>
<td>480</td>
<td>1100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computed tomography</td>
<td>220</td>
<td>403</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interventional radiology</td>
<td>3.6</td>
<td>23.6</td>
<td>6-fold increase</td>
<td>8-fold increase</td>
</tr>
<tr>
<td>Diagnostic nuclear medicine</td>
<td>33</td>
<td>39.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radionuclide therapy</td>
<td>0.88</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiation therapy</td>
<td>5.1</td>
<td>6.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Collective dose, 100 person-Sv

<table>
<thead>
<tr>
<th>Procedure</th>
<th>2008</th>
<th>2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional radiology</td>
<td></td>
<td>955</td>
</tr>
<tr>
<td>Dental radiology</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Computed tomography</td>
<td>1540</td>
<td>2556</td>
</tr>
<tr>
<td>Interventional radiology</td>
<td>41</td>
<td>334</td>
</tr>
<tr>
<td>Diagnostic nuclear medicine</td>
<td>202</td>
<td>297</td>
</tr>
</tbody>
</table>

UNSCEAR 2020/2021 Report to the General Assembly, with Scientific Annexes
Increase of type and frequency of FGI procedures:
- Less invasive; less risky for patient; cost saving
- Growth of embolization procedures for trauma, tumors, other oncologic procedures;
- Increase in biopsies and vascular therapies due to the aging of the population and resultant increased prevalence of cancer and vascular disease.

Increase of complexity: Requires extensive use of x-ray imaging

Various professional groups: Radiologists; cardiologists, vascular surgeons, neurosurgeons, orthopaedic surgeons, urologists, gastroenterologists, ...

Variety of settings: dedicated labs; operating theatres, hybrid rooms, ...

Other staff in the room: radiological technologists, anaesthesiologists, nurses

Increased importance of radiation protection training!
1) **Selection of a fluoroscopy system** with design features consistent with the intended clinical uses: multi-disciplinary team: medical physicist, radiographer and radiologist/ interventionalist).

2) **Configuration and exposure setting optimisation:** at the time of commissioning, tailored to the clinical tasks and required image quality.

3) **Comprehensive QA programme:** equipment maintenance and QC tests; reviews of common fluoroscopic procedures.

4) **Appropriate use of the equipment features and settings** by the operators, to perform the clinical task with minimum possible exposure to the patient and to the clinical team members.
Appropriate selection of the design features of a fluoroscopy system consistent with the intended clinical uses is imperative if the Dose Management QA programme is to function as intended.
Fluoroscopy system components

- X-ray tube
- Image detector
- Anti-scatter grid
- Collimator
- Filters
- Patient table
- Exposure switch
- Monitors
- Program selection
- Control panel

- High-power generator (80-100 kW)
- High heat capacity x-ray tube
- 2-3 focal spots (0.3; 0.6; 0.9 mm)
- High filtration (0.2 mm - 0.9 mm)
- Image receptor (from 10-15 cm up to 40 cm)
- Automatic Dose Rate Control (ADRC)
• **Pulsed fluoroscopy**
 - from 3 pps to 30 pps
 - variable pulse width
 - sharper images;
 - reduced temporal resolution
 - reduced ESAK rate

Pulse rate selection depends on imaging task:
higher for rapidly moving organs (e.g. heart, especially in children)
Fluoroscopy system features

- **Fluoroscopy and radiography modes**
 - **Fluoroscopy**: pulsed (7.5-30 pps); low mA (0.5-2 mA)
 - **Digital radiography**: higher SNR and recording/archiving capability:
 - single (spot) images; number of images (acquisition); serial images (“cine”)
 - 1-5 f/s vascular, 7.5-15 f/s cardiac, higher f/s for paediatric protocols;
 - High mA (>400 mA)

Dose saving features:
- Last Image Hold (LIH)
- Last Series Hold (LSH)
- Store and replay the most recent fluoroscopic-imaging sequence (at least 300 frames in modern systems)
Fluoroscopy system features

- **Beam spectrum shaping filters**
 - Al+Cu (also Au, Ta)
 - Reduce absorbed dose to skin and superficial tissues (by >70%)
 - Increase image contrast by shaping the x-ray spectrum to match the k-absorption edge of barium (33.44 keV) or iodine (33.17 keV).

- **“Wedge” filters**
 - semi-transparent to compensate for the lower object attenuation in FOV
 - maintain image brightness and IQ
Fluoroscopy system features

- **Collimator device:**
 - Automatic collimator system to align beam to the image receptor & FOV
 - Dual-shape collimators (circular or rectangular) to modify field to the ROI
 - Limit dose to patient, reduce scatter ⇒ improve contrast, reduce staff dose
Fluoroscopy system features

- **Automatic positioning**
- **Virtual collimator** - capacity to position the collimation blades or the wedge filter in the desired position using LIH and without extra radiation for the patient ⇒ *dose saving*
Fluoroscopy system features

- **Anti-scatter grid**
 - remove the scatter radiation and improve image contrast (*at increased dose*)
 - should be easily removable (e.g. for children and objects <20 cm)
Fluoroscopy system features

- **Automatic dose rate control (ADRC):** automatically adjusts exposure parameters and IAK rate to the image receptor, to deliver a constant signal intensity at the image receptor, resulting in constant image brightness and SNR at the display despite body habitus.
Fluoroscopy system features

- Electronic magnification ("zoom"; "mag")

The actual relationship of IAK rate and FOV is vendor dependent and should be checked at commissioning.
Fluoroscopy system features

- **Digital subtraction angiography (DSA):** improve visualization of fine vessels by removing of the background tissue

- **Road mapping:** facilitates placement of catheters and wires in small vessels and complex vasculature

- **Rotational angiography (CBCT):** to map vascular anatomy, plan complex interventions; Increasingly used to guide surgical interventions
Fluoroscopy system features

- **Image processing algorithms:**
 fast image enhancement and increased perceptibility of clinically important information: Automatic and operator-controlled

 - Spatial noise reduction (averaging with neighboring pixels);
 - Temporal noise reduction (averaging with previous frames);
 - Edge enhancement,
 - Contrast enhancement

Courtesy A. Trianni
Fluoroscopy system features

- **Image display monitors:**
 - Important role in the visual perception of the images
 - Indirect impact on the patient and consequently staff dose

Large (e.g. 60”) monitor: reduced need for magnification mode ⇒ **lower patient/staff dose**

Images from S. Balter, Medical Physics International, 2019
System configuration

• **Vendor pre-configured examination and patient specific technical sets**
 - Set of exposure technique factors:
 beam filters for fluoroscopy and radiography; focal spot size, pulse rate for fluoroscopy mode; frame rate for radiography mode, DSA and CBCT modes, maximum pulse width, dose to the image receptor, ADRC algorithm and parameters to be changed by AEC
 - Set of image processing parameters:
 spatial noise reduction; temporal noise reduction; automatic live motion compensation; edge enhancement, contrast enhancement, and other vendor-specific parameters.

• **Adjustable to the local practice and user preferences**
 - vendor representative (application specialist) or a local super user,
 - in collaboration with the hospital medical physicists and experienced representatives of the clinical staff
System configuration

- **Protocol configuration and optimisation**
 - Includes proper adjustment of settings customised to the required image quality and dose saving needs for the clinical task.
 - cardiac, neuro, vascular, pediatric,
 - fluoroscopy, cine, DSA, Road mapping, CBCT

Example: Nephrostomy exam pre-sets (Siemens interface)

Jones et al., Medical imaging using ionizing radiation: Optimization of dose and image quality in fluoroscopy, Med Phys 2014
System configuration

- **Protocol configuration and optimisation**
 - Includes proper adjustment of settings customised to the required image quality and dose saving needs for the clinical task.

Requires clear understanding of the system features, functions, programme architecture, as well as the clinical requirements and operators’ preferences.
System commissioning

- **Equipment commissioning**
 - Confirmation of equipment function,
 - Checking acceptable values have been set for the default acquisition programmes
 - Establishing baseline values of equipment performance in terms of image quality and dose parameters, using standard phantoms and test objects, and representing a range of patient sizes

Performed by medical physicists

Necessary adjustments made in collaboration with the equipment vendor representative and clinical staff.
System commissioning

- Testing and adjustment of ADRC settings for different modes and anatomical/clinical programmes
 - Setting baseline values of the IAK rate at the image receptor in fluoroscopy and radiography
 - for different dose modes,
 - for different pulse rates
 - for different FOVs
• Testing and adjustment of ADRC settings for different modes and anatomical/clinical programmes
 - Setting baseline values of the patient’s ESAK rate
 - Compliance with regulatory limits
 Examples:
 U.S. FDA: nominal limits:
 88 mGy/min for normal fluoroscopy mode
 176 mGy/min high-dose control mode

 Europe, EC RP 162: suspension level
 100 mGy/min for normal fluoroscopy mode
 2 mGy/frame for normal digital fluorographic acquisition mode
 0.2 mGy/frame for the cardiac mode
QC programme

- To evaluate performance of all exposure modes relating to selection of options that are optimal for specific imaging tasks

<table>
<thead>
<tr>
<th>Elements of QC programme</th>
<th>Parameters to be measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-ray source assembly</td>
<td>Accuracy and reproducibility of the tube voltage Half-value-layer (HVL)</td>
</tr>
<tr>
<td></td>
<td>Reproducibility and linearity of the tube output</td>
</tr>
<tr>
<td></td>
<td>Tube leakage</td>
</tr>
<tr>
<td>Collimation and radiation field alignment</td>
<td>Alignment and collimation of the radiation field to the image receptor</td>
</tr>
<tr>
<td>ADRC settings and performance</td>
<td>IAK rate at the image receptor and patient ESAK rate for most commonly used modes and programmes</td>
</tr>
<tr>
<td>Integrated radiation dose displays</td>
<td>Verification of calibration of KAP meter</td>
</tr>
<tr>
<td></td>
<td>Verification of displayed KAP and reference air kerma</td>
</tr>
<tr>
<td></td>
<td>Correction factors for use with RDSR when function is available</td>
</tr>
<tr>
<td>Image quality</td>
<td>Noise level</td>
</tr>
<tr>
<td></td>
<td>Low contrast detectability</td>
</tr>
<tr>
<td></td>
<td>High contrast detectability</td>
</tr>
<tr>
<td></td>
<td>Image distortion and artefacts</td>
</tr>
<tr>
<td>Cone Beam CT (CBCT) mode if available</td>
<td>Dose parameters</td>
</tr>
<tr>
<td></td>
<td>Geometry characteristics</td>
</tr>
<tr>
<td></td>
<td>Image quality</td>
</tr>
</tbody>
</table>
QC programme

• QC developments
 - More realistic test objects (task-based model observer evaluations of system imaging performance)
 - User Quality Control Mode (UQCM) for interventional procedures

 more comprehensive physical tests in routine QC
Dose monitoring

- **Dose index display** (IEC 60601-2-43)
 - Reference air kerma $K_{a,r}$ rate and cumulated reference air kerma $CK_{a,r}$;
 - Air kerma area product $P_{KA}(\text{KAP})$ rate and cumulated KAP

- **Dose index export**
 - Export of their cumulated values at the end of procedure in a proper digital format to the procedure report: DICOM RDSR; PRDSR

DICOM 2005, DICOM 2009, IEC 60601-2-43; IEC 61910-1
DRLs and patient dose audits

- Setting and using Diagnostic Reference Levels for optimization

Challenges for FGI procedures:
- Therapeutic, not diagnostic procedures
- Vary by severity, complexity and site
- Wide distribution of doses for a given procedure

ICRP Publication 135 recommends:
- Keeping the term DRL for FGI procedures
- KAP, reference air kerma, fluoroscopy time and number of radiographic images
- At least 30 patients for diagnostic fluoroscopy and more (all) patients for FGI procedures
- Determine DRLs based on procedure complexity (Balter et al., 2008; IAEA, 2009) or utilise the concept of Advisory Data sets (Miller et al, 2012).
Skin dose monitoring and alert levels

- Dose monitoring for management of tissue reactions
 - Skin dose distribution and Peak skin dose (PSD)
 - Measured
 - Calculated (color-coded skin dose maps): post-procedure or real time

\[\text{Skin dose} = K_{ar} \times CF \times Att \times BSF \times \left(\frac{d_{ref}}{d_{perp}}\right)^2 \times f_{skin} \]

Jones AK and Pasciak A; Calculating the peak skin dose resulting from fluoroscopically guided interventions. Part I: Methods; 2011

Courtesy A. Trianni
Skin dose monitoring and alert levels

- **Dose monitoring throughout a complex FGI procedure:**
 - Automatic alerts, or notification by a designated staff member

<table>
<thead>
<tr>
<th>Dose parameter</th>
<th>First notification level</th>
<th>Subsequent notification level (increments)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak skin dose</td>
<td>2 Gy</td>
<td>0.5 Gy</td>
</tr>
<tr>
<td>Cumulated incident air kerma at the interventional reference point</td>
<td>3 Gy</td>
<td>1 Gy</td>
</tr>
<tr>
<td>Cumulated air kerma area product</td>
<td>300 Gy cm(^2)*</td>
<td>100 Gy cm(^2)*</td>
</tr>
<tr>
<td>Fluoroscopy time</td>
<td>30 min</td>
<td>15 min</td>
</tr>
</tbody>
</table>

Skin dose monitoring and alert levels

- **After a complex procedure: dose recording and patient follow-up**

IAEA trigger levels to detect clinically relevant tissue reactions (2022)

Dose indicators listed in order of their value for the likelihood of tissue reactions

<table>
<thead>
<tr>
<th>Dose Indicator</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak skin dose ($D_{\text{skin, max}}$)</td>
<td>3 Gy</td>
</tr>
<tr>
<td>Reference air kerma (Cumulative dose) ($K_{a,r}$)</td>
<td>5 Gy</td>
</tr>
<tr>
<td>Air kerma-area product (dose-area product) (P_{KA})</td>
<td>500 Gy.cm2</td>
</tr>
<tr>
<td>Fluoroscopy time</td>
<td>60 min</td>
</tr>
<tr>
<td>Multiple fluoroscopy-guided interventional procedures within 1 month</td>
<td></td>
</tr>
</tbody>
</table>

https://www.iaea.org/resources/rpop/resources/safety-in-fgi-procedures
Optimal procedure performance
Before the procedure (especially a complex FGI)
- Review patient medical and radiation history, including previous images
- Standard policy for assessing pregnancy
- Standard checklist to identify patient at higher risk for skin injury (BMI > 30, sensitive skin; patient with recent FGI procedure)
- Guidelines on methods for reducing risk of skin injury
- Guidelines for performing FGI procedures during pregnancy
- Written form to educate patient and obtain consent
Optimal procedure performance

During the procedure

- Clearly pre-defined responsibilities of all team members
 - Main operator – primary responsibility for the procedure outcome and for the patient and staff safety
 - Operation of equipment control: dedicated or a physician (operator or other)
 - Proper positioning of the protection screens: nurse or radiographer
 - Monitoring dose factors and notifying the operator if alerts are reached.
 - All other functions....
- Patient cooperation/immobilisation
- Pre-procedure time-out

Well trained team on methods for dose reduction for patient and staff
Optimal procedure performance

• **After the procedure**
 - Produce radiation dose report and archive in the departmental and patient medical records
 - Dose monitoring software facilitates the process
 - **Patient follow-up procedure for high dose procedures**
 - Standard form to record information
 - Patient discharge instructions
 - Follow up approximately 30 days post procedure

Box 3.8 Example of post-procedure patient discharge instructions for high dose interventional procedures (adapted from Stecker et al. (2009))

X-Ray usage - one of these two boxes is checked as part of the discharge instruction process:

- Your procedure was completed without the use of substantial amounts of x-rays. No special follow-up is needed because radiation side effects are highly unlikely.
- Your procedure required the use of substantial amounts of x-rays. Radiation side-effects are unlikely but possible. Please have a family member or carer inspect your (back/neck/scalp/…..) 30 days from today, for signs of skin redness or rash. Please call ####### and tell us whether or not anything is seen.
IAEA resources

Safety in Radiological Procedures (SAFRAD)

SAFRAD (SAFe in RADiological procedures) is a voluntary reporting system aiming to sustain a database of comprehensive data such as patients' dose report and other relevant data when these patients are submitted to defined trigger levels or events in fluoroscopically-guided diagnostic and interventional procedures. The primary objective of the system is educational. It is believed that going through the process of SAFRAD itself results in safety and quality of service.

All data furnished by participants (hospitals, regulators) will remain accessible to the participant. The participant will have access periodically to analysed results. The IAEA will publish overall summary reports of SAFRAD data from time to time. SAFRAD will not supply identifiable data to any governmental authority or other third party.

Guidelines and forms

- Guidelines for the interventionalist
- Guidelines for the treating physician
- Instructions for the coordinator
- Patient information leaflet
- Patient data collection form

https://www.iaea.org/resources/rpop/resources/databases-and-learning-systems/safrad
IAEA resources

- IAEA training material

https://www.iaea.org/resources/rpop/resources/training-material
• **E-learning**

 13 short practical tutorials, 4-8 minutes each with interactive videos
 To learn effect of various factors on patient and staff dose

 Based on 6 webinars prior 2019

 13 modules
 Module on fluoroscopy & FGI procedures

 https://www.iaea.org/resources/rpop/resources/online-training
IAEA resources

- Posters

“Ten pearls” posters to remind staff on approaches to optimize procedures

Available in 30 languages

https://www.iaea.org/resources/rpop/resources/posters-and-leaflets
Summary: QA programme

The complexity of the Dose Management QA programme and the level of performance and optimisation will depend on the arrangements that are in place for each of the aspects:

- professional skills and collaboration;
- methodology and technology,
- organisational processes and documentation.
Summary: QA programme

- Equipment selection
- Facility design
- Equipment maintenance
- QC tests
- Image quality and procedure evaluation
- Availability of radiological protection tools, dosimeters and their use
- Availability of adequate personnel and their responsibilities
- Patient and staff dose monitoring and dose audit
- Clinical follow-up for high patient radiation doses
- Reporting and QA for unintended or accidental exposures
- Training in radiological protection (initial and continuing), including training in ethics, teamwork, safety culture, communication