Sensitivity Analysis of detriment calculation

Introducing Publication 152

Webinar December 9, 2022

Wei Zhang

Detriment Calculation in Pub 103

D = R (k + q (1-k)) I

Where: R is the lifetime risk k is the lethality fraction q is the adjusted lethality $q=q_{min} + k(1-q_{min})$ l is the relative life lost

Risk of expose-induced cancer incidence: lifetime risk of cancer 'c' that has been caused by exposure 'D' at age 'e'.

$$REID_{\mathcal{C}}(e,D) = \int_{a=e+L}^{\infty} \left[\mu_{\mathcal{C}}(a \mid e, D) - \mu_{\mathcal{C}}(a) \right] S(a \mid e, D) da$$

$$= \sum_{a=e+L}^{\infty} \left[\mu_{c}(a \mid e, D) - \mu_{c}(a) \right] S(a \mid e, D)$$

Variables involved in the lifetime risk calculation

- µ_c(a) : cancer incidence rate
 at age 'a'
- µ_c(a|e,D): cancer incidence rate which is conditional on exposure to dose 'D' at age 'e'
- S(a|e, D) : the survival function gives the probability of surviving to age 'a', given a dose 'D' at age 'e'.

Detriment calculation for whole population in ICRP Publication 103

For each combination of geographical region (Asian and Euro-American), Sex (male and female)

- Lifetime risk was calculated at a single exposure of 0.1 Gy, then multiplied by 10.
- 5 years of latency were assumed as latency period for all cancers.
- For each age-at-exposure 0-89, lifetime risk was cumulated up to attained age of 94, then averaged over age-at-exposure.
- The averaged lifetime risk was averaged across models, with ERR:EAR of 0:100% for breast, 100:0% for thyroid, 30:70% for lung, and 50:50% for all other cancer sites.
- Lifetime risk was adjusted downward by a DDREF of 2, except for leukaemia.
- Adjustment for lethality, quality of life, relative life lost.

How much does detriment vary if the Calculation parameters change?

- 1. Average over different age-at-exposure group (0-14, 18-64, 0-89yrs)
- 2. Male and female separately.
- 3. Euro-America, Asia population separately
- 4. 100%ERR and 100%EAR model separately
- 5. Different attained age (94 or 99 years)
- 6. Different latency period (5 or 10 years for solid cancer, 2 or 5 years for leukaemia.
- 7. Different DDREF
- 8. REIC versus LAR
- 9. Different exposure level (0.1 Gy versus 1 Gy)
- 10. Different lethality
- 11. Different minimum quality of life value
- 12. Different relative cancer-free life lost

Effect of age-at-exposure group

Sex effect

Population effect

Modelling effect

Effect of attained age

Latency effect

Effect of DDREF

Sensitivity analysis

- Detriment increased by a factor of 2, with a DDREF of 1.
- For breast and ovary cancers, detriment increased by 2 if calculated for female only.
- For lung cancer, detriment for females appears to be higher than that for male, but the inverse is observed for liver, colon, and other solid cancers.
- For most cancer types, the detriment for the young age-at-exposure population (0-14) is higher than that of a whole population (0-89). For breast cancer, thyroid cancer and other solid cancer, the detriment for age-at-exposure 0-14 years is about 2-3 times higher compared with that of 0-89 years.

REIC and LAR

$$REIC_c(e,D) = \int_{a=e+L}^{\infty} [\mu_c(a|e,D) - \mu_c(a)] S(a|e,D) da$$

$$LAR_{c}(e,D) = \int_{a=e+L}^{\infty} \left[\mu_{c}(a|e,D) - \mu_{c}(a)\right] S(a)da$$

S(a) versus S(ale,D) at 0.1 Gy

Difference between REIC and LAR

Calculations at different exposure levels

Lethality effect

Effect of minimum quality of life

Effect of relative cancer-free life lost

Sensitivity analysis

- There is very little difference between REIC and LAR if calculations are done at 0.1 Gy, and linearly extrapolate to risk at 1 Gy.
- In comparison to above mentioned method, REIC calculated at 1 Gy decreases for solid cancers, but increases for leukaemia by a factor of > 2, due to the effect of linear-quadratic dose response.
- For breast cancer and other solid cancers, detriment increases as lethality k increases.
- For lung and stomach cancers, the detriment increases as relative life lost increases.

Severity of impact

- Minimal impact (*): a factor of change of < 1.5
- Moderate impact (**): a factor change of ≥ 1.5, and < 2
- Substantial impact (***): a factor change of ≥ 2

Impact of parameters

 Reference population 	Impact severity
sex	***
population	**
age-at-exposure	***
 Parameter for risk calculation 	
lifetime risk metric:	*
Dose (0.1 Gy Vs. 1 Gy):	***
latency:	*
Maximum attained age:	*
Model transfer:	**
DDREF:	***
 Severity adjustment 	
Lethality fraction:	***
Min. QOL factor:	*
Relative cancer-free life lost:	**

Summary of sensitivity analysis

- Slight variation of detriment to latency, attained age, lifetime risk calculation method (calculated at low dose) or min. quality of life
- Noticeable variation of detriment with population, transfer model (100%ERR or 100%EAR Model) and relative life lost.
- Sex has a major impact for certain cancer types. Need to think about whether lifetime risk for breast cancer and ovary cancer should be averaged over sex.
- The age-at-exposure has a major impact on detriment, with much smaller detriment for 0-89 years group than 0-14 years group for some cancer types.
- DDREF and lethality also have major impact on cancer detriment.

www.icrp.org

