Optimizing Radiation Protection for Patients in Cerebral Angiography: the possibility of establishing diagnostic reference levels by imaging objectives/ disease groups

Go Hitomi^a, Shunji Matsubara^b, Takashi Moritake^c, Masakatsu Mura^a, Hiroki Matsumoto^a, Fumiko Kusachi^a

^aDepartment of Radiological Technology, Kawasaki Medical School Hospital, Japan

^bDepartment of Neurosurgery, Kawasaki Medical School, Japan

^cDepartment of Radiological Health Science, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan

Introduction

Japan Network for Research and Information on Medical Exposures (J-RIME) proposed the introduction of diagnostic reference levels (Japan DRLs) in June, 2015. In this Japan DRLs, the radiation dose rate of 20 mGy/min at the patient entrance reference point (PERP) determined in the phantom experiment was defined as the DRL for the quality control on the modality side.

Optimization of protection for patients is progressing by using the imaging apparatus according to the Japan DRLs.

DDI ~ 2015 (IVD)

Four years have passed since Japan DRL was introduced. The time for revision has come.

Purpose

ICRP Publication 135 states that the DRL needs considering the complexity of the interventional radiology (IVR) procedure. We set air kerma area product (P_{KA}) and air kerma at PERP (**K**_{a,r}) displayed on cerebral angiography devices as the DRL quantities in this study for the next revision of the Japan DRL. In addition, to include factors that complicate the procedures, categorization by imaging objectives of cerebral angiography and by disease names was attempted.

2. Each group was categorized into nine disorder subgroups: cerebral aneurysm, arteriovenous malformation, dural arteriovenous fistula, carotid artery stenosis/obstruction, acute cerebral infarction, brain tumor, cerebral vasospasm, other hemorrhagic disease, and other ischemic disease. Significant differences between each disease group were compared using the Kruskal-Wallis test.

Japan DRLs 2015 (IVR)				
Flat Panel Detector				
	Fluoro dose rate at the PERP (mean)			
15cm	2008 (n = 176)	16.6mGy/ min		
Patient entrance reference point		$\downarrow 24\%$ down		
 polymethyl-methacrylate: PMMA 20cm Fluoro dose rate: 20mGy/ min 	2016 (n = 449)	12.6mGy/ min		
• Focal spot				

Methods

1.A total of 997 patients who underwent cerebral angiography at our hospital was divided into a neuro IVR group (n = 288) and a diagnostic cerebral angiography group (n = 709) (Table 1). Both P_{KA} and $K_{a,r}$ recorded during the operation were collected and compared by using the Mann-Whitney test.

3. Steel-Dwass multiple comparison test was used among each group for the statistical study.

Table 1 Characteristics of 997 cerebral angiography cases (February 2012-March 2016)

	\bullet	
	Neuro IVR	Diagnostic cerebral angiography
Number of cases	288	709
Man/Woman	135 (47 %)/153 (53 %)	422 (60 %)/287 (40 %)
Age	$67 \pm 16^*$ [range: 16—95]	$62 \pm 15^*$ [range: 5—95]
Disease group		
Cerebral aneurysm	125	191
Arteriovenous malformation	18	26
Dural arteriovenous fistula	24	22
Carotid artery stenosis	32	109
Cerebral infarction (acute stage)	51	203
Brain tumor	13	42
Cerebral vasospasm	21	0
Others (hemorrhagic disease)**	4	62
Others (ischemic disease)***	0	54

Table 2 P_{KA} in neuro interventional radiology (n = 288)

Disease	Therapeutic	12	(0/)	$P_{KA} (Gy \cdot cm^2)$	
	technique	n	(%)	mean \pm S.D.	median [range]
Cerebral aneurysm	Coil embolization	125	43	239 ± 77	235 [86—408]
Arteriovenous malformation	TAE	18	6	498 ± 345	367 [179—1361]
Dural arteriovenous fistula	TAE, TVE	24	8	349 ± 165	293 [177—702]
Carotid artery stenosis	CAS	32	11	139 ± 39	125 [95—282]
Cerebral infarction (acute stage)	Thrombectomy	51	18	325 ± 135	299 [58—625]
Brain tumor	TAE	13	5	330 ± 161	305 [36—653]
Cerebral vasospasm	Intra arterial injection	21	7	187 ± 81	192 [35—409]
Others (hemorrhagic disease)	TAE	4	1	181 ± 46	170 [143—244]
Others (ischemic disease)	(-)	0	0	(-)	(-)
Total		288	100	268 ± 155	234 [35—1361]

TAE: transarterial embolization, TVE: transvenous embolization, CAS: carotid artery stenting

Table 3 P_{KA} in diagnostic cerebral angiography (n = 709)

Disease	n	(%)	$P_{KA} (Gy \cdot cm^2)$	
			mean \pm S.D.	median [range]
Cerebral aneurysm	191	27	123 ± 53	116 [25—385]
Arteriovenous malformation	26	4	201 ± 98	187 [76—469]
Dural arteriovenous fistula	22	3	202 ± 109	176 [83—485]
Carotid artery stenosis	109	15	162 ± 57	158 [38—321]
Cerebral infarction (acute stage)	203	29	179 ± 74	173 [43—436]
Brain tumor	42	6	163 ± 68	147 [48—344]
Cerebral vasospasm	0	0	(-)	(-)
Others (hemorrhagic disease)	62	9	163 ± 55	169 [41—300]
Others (ischemic disease)	54	8	182 ± 61	177 [44—358]
Total	709	100	161 ± 70	155 [25—485]

The Mann-Whitney test shows a significant higher values when the imaging objective was neuro IVR compared to diagnostic cerebral angiography (P < 0.01).

* mean \pm standard deviation

** Intracerebral hemorrhage, Subarachnoid hemorrhage, Cerebellar hemorrhage, Intraventricular hemorrhage, Subcortical hemorrhage, Subdural hemorrhage, Putaminal hemorrhage, Pontine hemorrhage

*** Cerebral infarction, Cerebellar infarction, Sinus thrombosis, Amaurosis fugax, Moyamoya disease

(n) 234[35 – 1361] (125)Cerebral aneurysm

Disease	Therapeutic	Therapeutic		$K_{a,r}$ (mGy)	
	technique		(%) -	mean \pm S.D.	median [range]
Cerebral aneurysm	Coil embolization	125	43	2347 ± 831	2280 [681—4693]
Arteriovenous malformation	TAE	18	6	4928 ± 3098	3993 [1111—13176]
Dural arteriovenous fistula	TAE, TVE	24	8	3473 ± 1485	3149 [1798—6766]
Carotid artery stenosis	CAS	32	11	935 ± 267	883 [567—2027]
Cerebral infarction (acute stage)	Thrombectomy	51	18	2510 ± 1032	2440 [710—4999]
Brain tumor	TAE	13	5	2909 ± 1062	3001 [1332—5267]
Cerebral vasospasm	Intra arterial injection	21	7	1458 ± 517	1400 [720—2544]
Others (hemorrhagic disease)	TAE	4	1	1278 ± 389	1211 [883—1806]
Others (ischemic disease)	(-)	0	0	(-)	(-)
Total		288	100	2420 ± 1462	2179 [567—13176]

TAE: transarterial embolization, TVE: transvenous embolization, CAS: carotid artery stenting

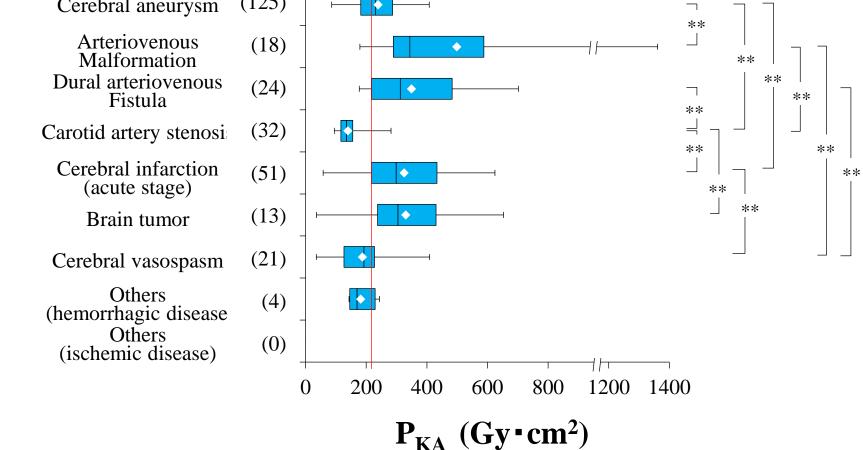
Table 5 $K_{a,r}$ in diagnostic cerebral angiography (n = 709)						
Disease	n	(%) -	$K_{a,r}$ (mGy)			
			mean±S.D.	median [range]		
Cerebral aneurysm	191	27	875 ± 379	838 [153—2777]		
Arteriovenous malformation	26	4	1408 ± 774	1236 [446—3319]		
Dural arteriovenous fistula	22	3	1403 ± 833	1268 [474—3598]		
Carotid artery stenosis	109	15	1091 ± 385	1061 [289—2447]		
Cerebral infarction (acute stage)	203	29	1251 ± 501	1230 [255—2892]		
Brain tumor	42	6	1118 ± 418	1061 [360—2061]		
Cerebral vasospasm	0	0	(-)	(-)		
Others (hemorrhagic disease)	62	9	1078 ± 358	1136 [258—1958]		

The Mann-Whitney test shows a significant higher values when the imaging objective was neuro IVR compared to diagnostic cerebral angiography (P < 0.01).

8

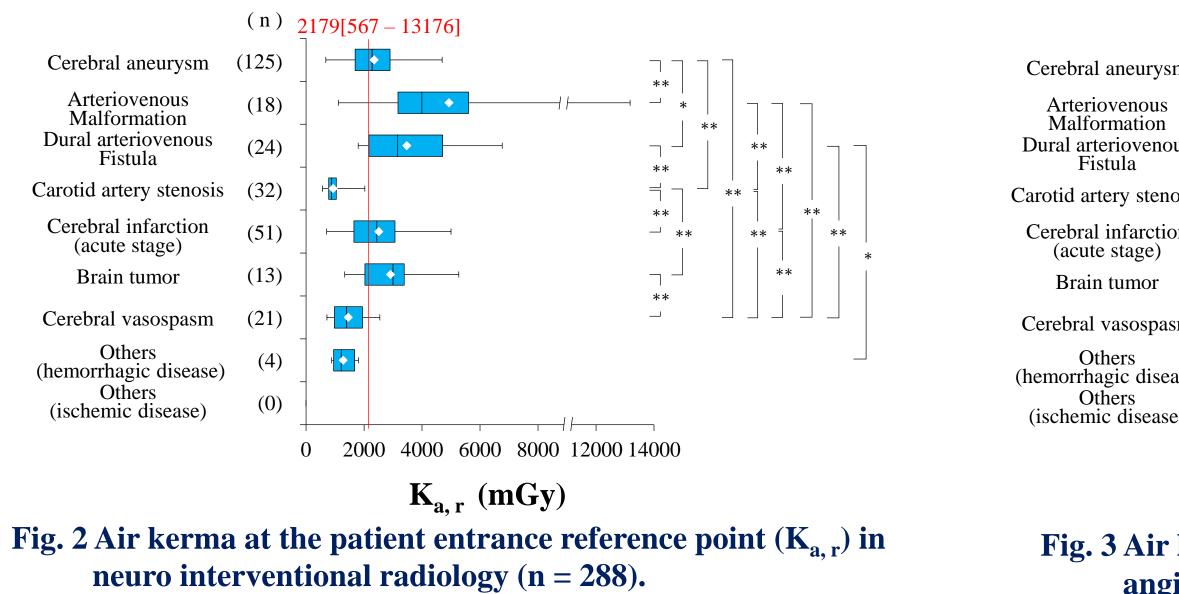
100

 1242 ± 385


 1112 ± 485

1179 [398-2482]

1055 [153-3598]


54

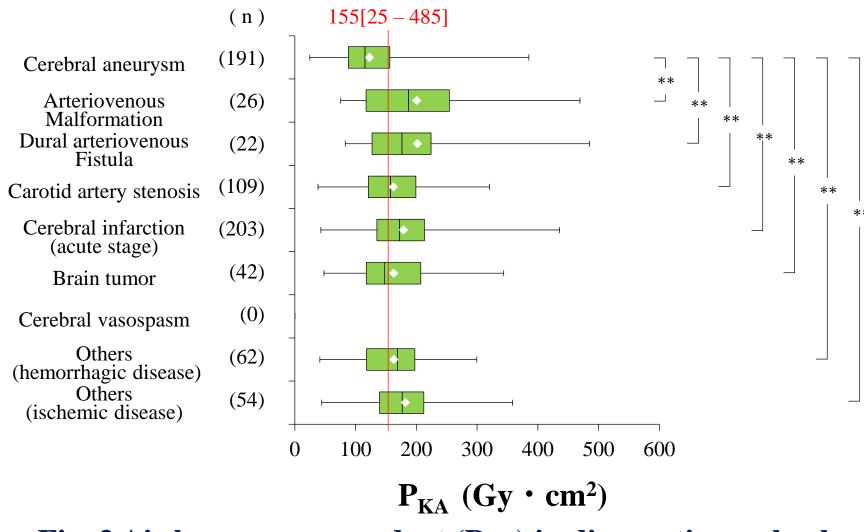

709

Fig. 1 Air kerma area product (**P**_{KA}) in neuro interventional radiology (n = 288).

* P < 0.01, and ** P < 0.05 on the Steel-Dwass test.

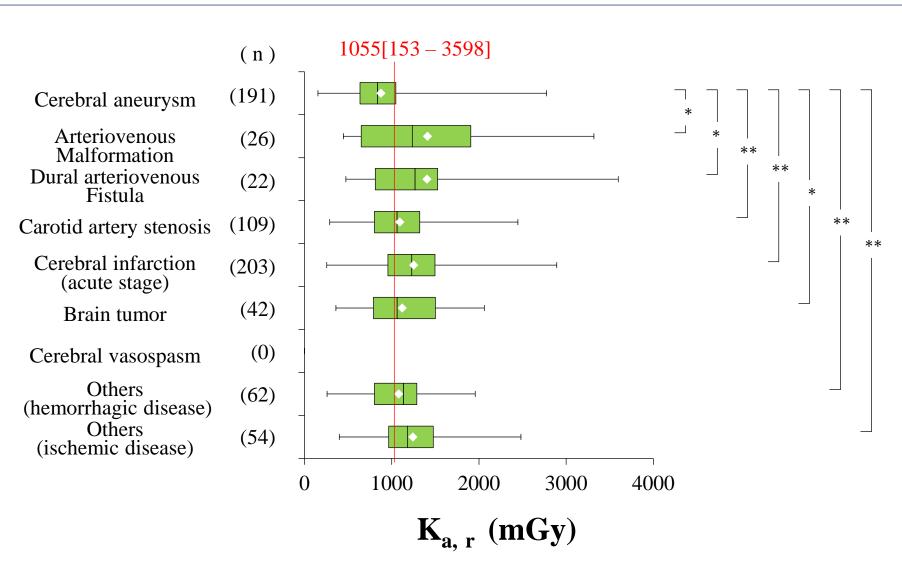


Fig. 4 Air kerma at the patient entrance reference point $(K_{a,r})$ in diagnostic cerebral angiography (n = 709).

* P < 0.01, and ** P < 0.05 on the Steel-Dwass test.

* P < 0.01, and ** P < 0.05 on the Steel-Dwass test.

* P < 0.01, and ** P < 0.05 on the Steel-Dwass test.

Results

- 1. The P_{KA} and K_{ar} of neuro IVR was significantly higher than that of diagnostic cerebral angiography (Mann-Whitney test, *P*<0.01) (Table 2, 3, 4, 5).
- 2. The Kruskal-Wallis test showed significant differences between the each disease group in neuro IVR and diagnostic cerebral angiography (Fig.1, 2, 3, 4).
- 3. Of the 28 pairwise disease combinations in neuro IVR, significant differences were found in 10 combinations for P_{KA} , and 15 combinations for $K_{a,r}$ (Fig. 1, 2). Of the 28 disease combinations in diagnostic angiography, significant differences were found in7 combinations for both P_{KA} and $K_{a,r}$. All of them were associated with cerebral aneurysms (Fig. 3, 4).

Discussion

Others (ischemic disease)

Total

- 1. Since there was a significant difference in exposure dose, depending on the imaging objectives (diagnostic angiography or neuro IVR), it is necessary to establish DRL for each objective.
- 2. In cerebral angiography, there was a significant difference for both P_{KA} and $K_{a,r}$, depending on the each disease group, and it is necessary to establish DRL for each disease group.
- 3. In neuro IVR, there was a significant difference for both P_{KA} and K_{a,r} among the diseases by using the Steel-Dwass multiple comparison test. In diagnostic angiography, there was a significant difference between cerebral aneurysms and other diseases. It may be needed to study separately between preoperative and postoperative angiography, as postoperative angiography usually takes shorter time to just confirm the operative results.

Limitation: This study analyzed a relatively small sample size of data from our single institute. Currently, nationwide, multicenter research projects are progressing.

Conclusion

In order to optimize exposure protection for various cerebral angiography, P_{KA} and $K_{a,r}$ can be selected as DRL quantities, and DRL values categorized by imaging objectives and by disease groups can be established by using display value of the angiography devices.