

Calculation of the Decommissioning Radiation Field of Nuclear Power Plants Based on the Coupling of MC and **Point Kernel Integration**

GUO Yu-fei^{1,2}, LIU Yan-fang^{1,2}, WANG Li^{1,2}, LIU Shui-qing¹, ZHANG Hang-zhou^{1,2} ¹Nuclear Power Institute of China, Chengdu, 610005, China

²Sichuan Engineering Laboratory for Nuclear Facilities Decommissioning and Radwaste Management, Chengdu, 610005, China

Introduction

In the three-dimensional simulation system for the decommissioning of nuclear power plants, the radiation field level of the decommissioning site needs to be displayed in **real time** with the decontamination and demolition of the nuclear facilities.

Figure 1.1 Visual display of 3D radiation field

Table 3.4 Calculation accuracy of the coupling method for different grid numbers in the single source model

	F _{MC-PK} /F _{MC}		
Point		2	
	A & R: 2.5cm	A &R: 1cm	
1	3.177	3.178	
2	3.088	3.088	
3	2.836	2.837	
4	3.090	3.091	
5	3.502	3.503	
6	3.657	3.658	
7	3.945	3.946	
8	4.128	4.129	
Q	3 955	3 956	

- It requires the radiation field calculation module \bullet to calculate the radiation field level **quickly** and accurately.
- **Space problem**: geometrically simple regions and geometrically complex regions both exist in in the decommissioning site.
- The three basic methods of radiation field calculation can not solve the problem and then can not meet the requirements of calculation speed and accuracy.
- The **MC-PK coupling method** is proposed.

Methods	Discrete ordinate (S _N)	Point kernel integration (PK)	Monte Carlo (MC)
Applicable region	Simple	Simple	Complex
Calculation time	Long	Short	Long
Accuracy	High	Low	High

Table 1 1 The adv and disad of three basic methods

MC-PK Coupling Method

-800	0	1000 X(CM)

Figure 3.1 Single source calculation model (0.662MeV, 1.0E6Bq)

Table 3.1 Result comparison of the coupling method and MC method in the single source model

	γ energy flux rates (MeV/(cm²∙s))		
Point	Coupling method	MCNP5	Ratios
1	4.6630E-03	1.4678E-03	3.177
2	3.5499E-03	1.1497E-03	3.088
3	8.3030E-04	2.9278E-04	2.836
4	6.4362E-03	2.0831E-03	3.090
5	2.2223E-03	6.3462E-04	3.502
6	4.5223E-03	1.2367E-03	3.657
7	2.8517E-03	7.2289E-04	3.945
8	2.0303E-03	4.9189E-04	4.128
9	3.8058E-03	9.6218E-04	3.955
10	3.1389E-03	7.3675E-04	4.260

• $F_{MC-PK}/F_{MC} = 3-5$

- Calculation time(CPU: 2.9GHz Memory: 2GB) \bullet
 - MCNP5: 4h \bullet
 - MC-PK: 30min + 40min

4.260	4.262

Table 3.5 Calculation accuracy of the coupling method for different energy group spacings in the single source model

	F _{MC-PI}	к /F _{MC}
Point	0.2MeV	0.05MeV
1	3.177	2.968
2	3.088	2.877
3	2.836	2.600
4	3.090	2.913
5	3.502	3.260
6	3.657	3.443
7	3.945	3.696
8	4.128	3.855
9	3.955	3.731
10	4.260	4.014

γ energy \uparrow

 \bullet

10

- $accuracy \uparrow$
- Grid number↑ calculation time \uparrow \bullet
- MC-PK coupling method has good stability.

Calculation of Qinshan I

Basic idea:

- To use MC in geometrically complex regions; \bullet
- To use PK in geometrically simple regions;
- To transform particle parameters on the coupling surface.

Figure 2.1 Decommissioning site division of a nuclear power plant

Assuming that the MC region is a pure emitter, it can be derived from the Boltzmann equation:

 $j_n^+(\boldsymbol{r}_s, E, \boldsymbol{\Omega}) = S_A(\boldsymbol{r}_s, E, \boldsymbol{\Omega})$

Table 3.2 Calculation accuracy of the coupling method for different photon energies in the single source model

	F _{MC-PK} /F _{MC}			
Point	0.662MeV	0.83MeV	1.17MeV	1.33MeV
1	3.177	2.509	1.792	1.847
2	3.088	2.857	1.947	1.879
3	2.836	2.667	1.913	1.964
4	3.090	2.885	2.017	1.948
5	3.502	3.247	2.270	2.168
6	3.657	3.229	2.232	2.137
7	3.945	3.464	2.326	2.279
8	4.128	3.685	2.534	2.370
9	3.955	3.556	2.441	2.298
10	4.260	3.726	2.524	2.396

Table 3.3 Calculation accuracy of the coupling method for different shield thicknesses in the single source model

		₣ _{мс-рк} /₣ _{мс}	
Point	5cm	20cm	40cm
1	2.521	3.177	5.362
2	2.712	3.088	2.765
3	3.268	2.836	0.897
4	2.672	3.090	3.821
5	3.137	3.502	3.017
б	2.939	3.657	4.106
7	3.176	3.945	3.932
8	3.351	4.128	4.023
9	3.139	3.955	4.709
10	3.245	4.260	4.912

Figure 4.1 The simplified model of Qinshan I

Table 4.1 Result comparison of the coupling method and MC

 method in Qinshan I

	Air-absorbed dose rates (mSv/h)		
Point	Coupling method	MCNP5	Ratios
1	4.3988E+02	7.3010E+01	6.02
2	4.1344E+03	2.7059E+03	1.53
3	6.3208E+03	6.4018E+03	0.99
4	4.1344E+03	6.5739E+03	0.63

- $D_{MC-PK}/D_{MC} < 7$
- Calculation time (CPU: 4.6GHz Memory: 64GB)

• MCNP5: 8h

• MC-PK: 1h + 5min

Conclusions

sphere source (the length of the arrow in the figure is proportional to the γ energy)

- The coupling method has reasonable accuracy, short calculation time and good stability.
- The MC-PK coupling method is adequate for the requirements of radiation field calculation in decommissioning of nuclear power plants.

Contact

GUO Yu-fei

Nuclear Power Institute of China

Sichuan Engineering Laboratory for Nuclear Facilities Decommissioning and Radwaste Management Email:guoyf13@163.com Phone:+86 18380364221

References

[1] GUO Ya-ping, FU Meng-ting, ZHANG Ze-huan, SONG Ying-ming. Study on the Rapid Calculation Method of Radiation Field.[A]. Proceeding of the 2nd Nuclear Power Plant Radioactive Waste Management Symposium of China Nuclear Energy Industry Association[C]: 2018: 69-75. [2] B. Davision. Neutron Transport Theory. Oxford University Press, 174(1957). [3] XI Fu-kun, FANG Bang-cheng. A Monte Carlo Method of the Point Kernel Integration for Gamma-Rays Calculation. Nuclear Power Engineering, 1987,8(2): 66-74.

[4] SONG Yu-shou, LIU Hui-lan, LI Wei. Monte Carlo Simulation of Particle Detectors[M]. Chongqing: Chongqing University Press, 2016.05: 4-10.

[5] OUYANG Yu. Design and Construction of Qinshan Nuclear Power Plant[J]. Nuclear Power Engineering, 1985, 6(6): 481-489.

[6] ZHU Mei-ying, XU Tao-zhong. Modeling Analysis and Estimation Report of Radioactive Retention[R]. Chengdu: Nuclear Power Institute of China, 2018.

[7] Frank Herbert Attix. Introduction to Radiological Physics and Radiation Dosimetry[M]. Beijing: Atomic Energy Press, 2013.05: 41.

[8] YANG De-feng, XUE Na, CHENG He-ping, MAO Ya-wei. MCNP and DORT Couptation Method[J]. Science and Technology Review, 2013,31(18): 53-56.

[9] HAN Jing-ru, CHEN Yi-xue, SHI Sheng-chun, YUAN Long-jun, LU Dao-gang. Development of Three-dimensional Coupled Code System Based on Discrete Ordinates and Monte Carlo Method[J]. Chinese Journal of Nuclear Science and Engineering, 2012,32(2): 160-164.

[10] BI Yuan-jie, YANG Hong-wei, GUO Jin-sen, LUO Zhi-ping, LI Chuan-long, CHEN Ling. Study on Fast Radiation Transport Calculation Methodology in Decommissioning of Research Reactor[J]. Atomic Energy Science and Technology, 2015, 49(S1): 470-474.

[11] BI Yuan-jie, YANG Hong-wei, LUO Zhi-ping, GUO Jin-sen, LI Chuan-long. Coupling Method for Fast Calculation of Three-dimensional Radiation Field[J]. Annual Report of China Institute of Atomic Energy. 2013: 246. [12] ZHANG Yong-ling, HU Yi-fei, LIU Meng, ZHANG Kai-yun, DAI Bo, ZHANG Hang-zhou. Study of Nuclear Reactor Decommissioning Simulation Key Technologies[A]. Atomic Energy Press[C]. 2015:64-65-66-67-68-69-70. [13] LUO Shang-geng, ZHANG Zhen-tao, ZHANG Hua. Decommissioning of Nuclear Facilities and Radiation Facilities[M]. Beijing: China Environmental Science Press, 2011. [14] WANG Jun-feng, WANG Shao, Liu Kun-xian, ZHANG Tian-xiang. Decommissioning of Nuclear Facilities[M]. Beijing: Atomic Energy Press, 2013.