Special case: the dynamic bladder model

Martin Andersson, ICRP C2 member

TG36 WORKSHOP | 29 JULY 2025 | 12:00 - 14:00 UTC

RADIATION DOSE TO PATIENTS IN DIAGNOSTIC NUCLEAR MEDICINE

Introduction

The urinary bladder wall can receive a high amount of the absorbed dose

- Many radiopharmaceuticals have a high excretion through urine
- E.g. in 7 of the 60 models in ICRP Publication 128 the urinary bladder wall contributes more than 50 % of the effective dose.

Tissue weighting factor for urinary bladder wall: W_T =0.04

Changes from previous ICRP publication 128:

- Fixed shape of urinary bladder (200 mL) -> dynamic shape of bladder (10->500 mL)
- Static specific absorbed fraction (SAF) -> SAF changes with bladder volume
- Fixed age specific voiding periods -> biologic based voiding intervals
- Descriptive modelling -> Compartmental model

Background - Previous dynamic models

First model: Cloutier et al. (1973):

Investigated the dose to a foetus from the urinary bladder

Snyder and Ford (1976):

Started to calculate the absorbed dose to the urinary bladder wall

Latest model: Thomas et al. (1999):

Calculated the absorbed dose to the inner surface of the bladder wall

Cloutier RJ et al. Dose to the fetus from radionuclides in the bladder. *Health Phys.* 25:147-61 (1973)
Snyder WS, Ford MR 1976 Estimation of dose to the urinary bladder and to the gonads. *Proc. Radiopharmaceutical Dosimetry Symposium* 313-350(1976)
Thomas SR et al. MIRD Pamphlet No. 14 revised: A dynamic urinary bladder model for radiation dose calculations. *J. Nucl. Med.* 40:102S-123S (1999)

Method - Biological parameters

ICRP Publication 89 gives daily urinary excretions

- a) Excretion rate
- b) Initial volume
- c) Voiding volume
- d) Residual volume

Table 2.41. Reference values for daily urinary excretion (Section 8.3.2)

Age	Excretic	on (ml/day)
	Male	Female
Newborn	300	300
1 year	400	400
5 years	500	500
10 years	700	700
15 years	1200	1200
Adult	1600	1200

Voiding periods in ICRP Publication 128

Age (years)	Adult	15 years	10 years	5 years	1 year	Newborn
Voiding period (h)	3.5	3.5	3.5	3.0	2.0	2.0

Monte Carlo-simulated spheres

- Anatomical data from ICRP89 (mass of urinary wall)
- Elemental compositions from ICRP publ. 110
- 27 monoenergetic α , β and γ radiations between 0.001 MeV and 10 MeV
- 26 spherical volumes: 10, 20, 40, 60 (...) 480, 500 mL
- 7 anatomical data depending on sex and age
- Total 15 687 simulations

Validation of SAF-values

Photon SAF compared with the adult ICRP reference phantoms (200mL)

Electron SAF compared with the adult ICRP reference phantoms (200mL)

Zankl M et al. Electron specific absorbed fractions for the adult male and female ICRP/ICRU reference computational phantoms *Phys. Med. Biol.* 57:4501-4526 (2012)

Andersson M et al Improved estimates of the radiation absorbed dose to the urinary bladder wall Phys. Med. Biol. 59 2173 (2014)

A revised compartmental model for biokinetics and dosimetry of 2-[18F]FDG

Kamp A, Andersson M, Leide-Svegborn S, Noβke D, Mattsson S, Giussani A. A revised compartmental model for biokinetics and dosimetry of 2-[18F]FDG. EJNMMI Phys. 10:10 (2023)

Results for 2-[18F]FDG

Results from Kamp A, Andersson M, Leide-Svegborn S, Noβke D, Mattsson S, Giussani A. A revised compartmental model for biokinetics and dosimetry of 2-[¹⁸F]FDG. EJNMMI Phys. 10:10 (2023)

www.icrp.org