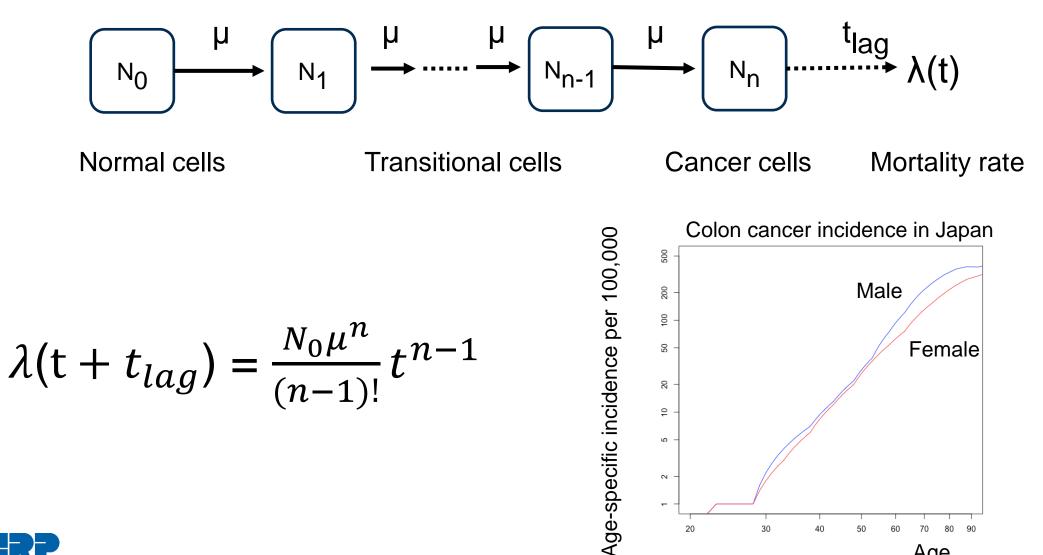
Biologically-Motivated Mechanistic Models

ICRP TG91 Radiation Risk Inference at Low-Dose and Low-Dose-Rate Exposure for Radiological Protection Purposes

May 28, 2025

Michiaki KAI Werner Rühm



History in a Nutshell

- Biologically-based mechanistic models (BMD) have been used to discuss the process of carcinogenesis with appropriate quantitative data
- In 1950s, Nording postulated six or seven mutational cellular changes to develop cancer among humans.
- Armitage and Doll (1954) to develop a mathematical formalism, multistage theory of carcinogenesis to describe the observed cancer mortality.
- Armitage and Doll (1957) to develop two-stage model,
 - the first stage is the production of a mutation in a healthy cell
 - the second stage is a mutation to confer a selective advantage on the changed cells.
- Knudson (1971) explained the occurrence of retinoblastoma by two mutational events.
- Two-stage clonal expansion (TSCE) models were developed by Moolgavkar and Venzon (1979)

Multistage theory of carcinogenesis model

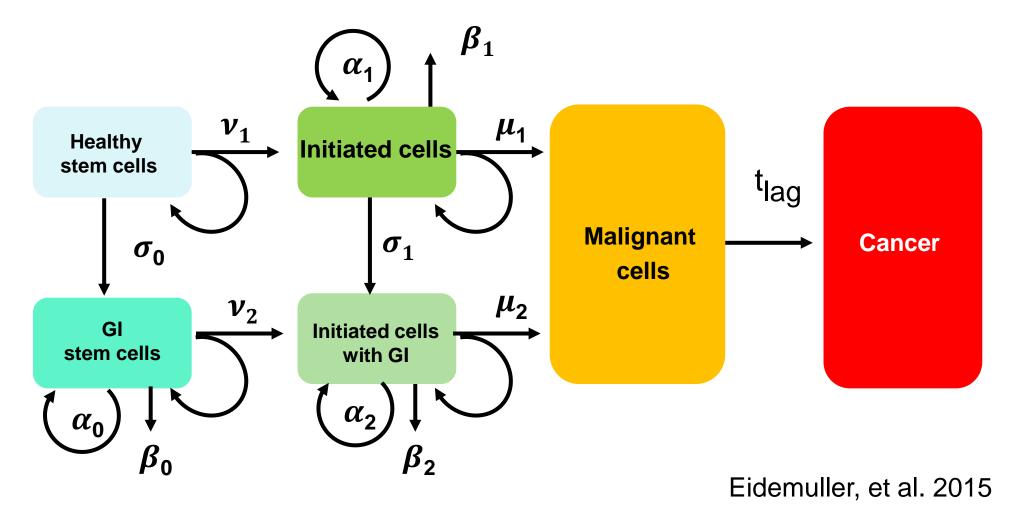
Age

Two-stage clonal expansion (TSCE) model Initiation Promotion Transformation tumor growth α ν μ malignant cells Initiated cells Cancer Normal cells tlag N₀ β **Differentiation / inactivation**

$$\begin{split} \lambda(\mathbf{t} + t_{lag}) &= \frac{\nu N_0}{\alpha} pq\{e^{-qt} - e^{-pt}\}\\ p &= \frac{1}{2}\{(-\alpha + \beta + \mu) - \sqrt{(\alpha + \beta + \mu)^2 - 4\alpha\beta}\}\\ q &= \frac{1}{2}\{(-\alpha + \beta + \mu) + \sqrt{(\alpha + \beta + \mu)^2 - 4\alpha\beta}\} \end{split}$$

Atomic Bomb Survivors

- Fit to solid cancer incidence, Kai et al (1997)
 - Radiation acts linearly with dose on initiation of healthy cells
 - Fit to Japanese incidence data for lung, stomach and colon cancer (1958 1987 incidence follow-up)
- Comparison among several models, Heidenreich et al (2002),(2007)
 - RERF data suggest that a number of models including multistage models can describe cancer incidence equally well.
 - Promotion effects of radiation were suggested from protraction.
- Cell inactivation, Jacob et al (2008)
 - Examine the possible influence of radiation-induced cell inactivation
 - Radiation acts on initiation / transformation and inactivation / promotion
 - Most of the preferred models describe the data better than the preferred empirical (relative or absolute) risk models

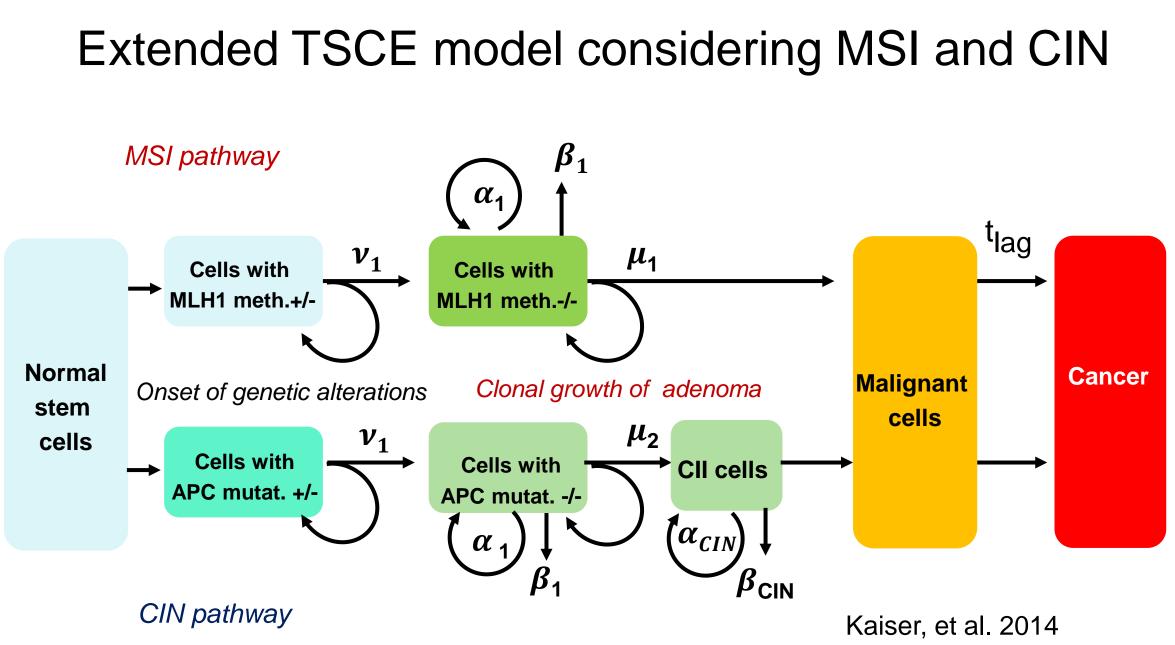

More sophisticated models

- Age-at-exposure effects, Shuryak, et al. (2010)
 - A new formalism was developed by assuming radiation initiates, promotes, or kills pre-malignant cells; a pre-malignant cell generates a clone.
 - Promotional processes in radiation carcinogenesis become increasingly important as the age at exposure increases.
- Genomic instability, Eidemuller, et al. (2015)
 - Develop an extended TSCE model considering Genomic Instability for colon cancer
 - A radiation-induced transition towards genomic instability was highly significant.
 - Main effect of radiation-induced genomic instability is to increase the rate of transition of noninitiated cells to initiated cells with a proliferative advantage.

• Kaiser, et al. (2014)

- The CIN pathway exhibits a strong radio-sensitivity
- Among young birth cohorts of both sexes the excess absolute radiation risk related to CIN is larger
 by an order of magnitude compared to the MSI-related risk.

Extended TSCE model considering Genomic Instability



More sophisticated models

- Age-at-exposure effects, Shuryak, et al. (2010)
 - A new formalism was developed by assuming radiation initiates, promotes, or kills pre-malignant cells; a pre-malignant cell generates a clone.
 - Promotional processes in radiation carcinogenesis become increasingly important as the age at exposure increases.
- Genomic instability, Eidemuller, et al. (2015)
 - Develop an extended TSCE model considering Genomic Instability for colon cancer
 - A radiation-induced transition towards genomic instability was highly significant.
 - the main effect of radiation-induced genomic instability is to increase the rate of transition of noninitiated cells to initiated cells with a proliferative advantage.

• Kaiser, et al. (2014)

- The CIN pathway exhibits a strong radio-sensitivity
- Among young birth cohorts of both sexes the excess absolute radiation risk related to CIN is larger
 by an order of magnitude compared to the MSI-related risk.

More sophisticated models

- Age-at-exposure effects, Shuryak, et al. (2010)
 - A new formalism was developed by assuming radiation initiates, promotes, or kills pre-malignant cells; a pre-malignant cell generates a clone.
 - Promotional processes in radiation carcinogenesis become increasingly important as the age at exposure increases.
- Genomic instability, Eidemuller, et al. (2015)
 - Develop an extended TSCE model considering Genomic Instability for colon cancer
 - A radiation-induced transition towards genomic instability was highly significant.
 - the main effect of radiation-induced genomic instability is to increase the rate of transition of noninitiated cells to initiated cells with a proliferative advantage.

• Kaiser, et al. (2014)

- The CIN pathway exhibits a strong radio-sensitivity
- Among young birth cohorts of both sexes the excess absolute radiation risk related to CIN is larger
 by an order of magnitude compared to the MSI-related risk.

Other model analyses

- Long-term exposure model, Shuryak, et al. (2009)
 - A typical radiation dose-response, which is determined by the balance of cell initiation, inactivation (killing), and repopulation.
 - Fractionation of the dose increases cancer ERR because repopulation of both normal and pre-malignant cells during the inter-fraction intervals compensates for much of the cell killing.
- Techa-River cohort, Eidemuller et al (2010)
 - Data could be described equally well by a model incorporating effects of genomic instability using TSCE model.
- Thyroid cancer in Chernobyl, Kaiser et al (2016)
 - Propose a mechanistic model motivated by the CLIP2 describes PTC development
 - The model constitutes a unique interface between molecular biology and radiation
 pidemiology.

Conclusions - On the Use of Mechanistic Models

- Arguments that tend to support the use of biologically-motivated models:
 - The numerical values obtained are in most cases biologically plausible
 - In many cases, they perform similarly or better than descriptive models
 - Good description of investigated endpoints as a function of time since exposure
- Thus, the assumed mechanisms (initiation, transformation, promotion) might play some role in carcinogenesis
- The TSCE model can provide robust risk estimates without additional assumptions, and offers an inherent flexibility to add more stages
- Various options of radiation action, including nonlinear processes can be tested
- We expect that the approach of using these biologically-based models will continuously benefit in the future from growing knowledge on carcinogenesis 12

Conclusions - On Shape of Dose Response

- Only very rarely the implications of such models on the shape of dose-response was investigated
- Even if the radiation action is assumed linear, the overall dose response is not necessarily be linear
- If radiation acts at different process in carcinogenesis, the dose rate effects considering fractionation is needed to be further investigated.
- A systematic investigation of the implication of mechanistic models on dose response is needed and currently being performed by the authors

www.icrp.org

