Task Group 116 Workshop: Radiological Protection Aspects of Imaging in Radiotherapy

PEDIATRIC IMAGING IN RADIOTHERAPY

Thomas E. Merchant, DO, PhD Chair, Department of Radiation Oncology St. Jude Children's Research Hospital Memphis, Tennessee, USA

April 8, 2025

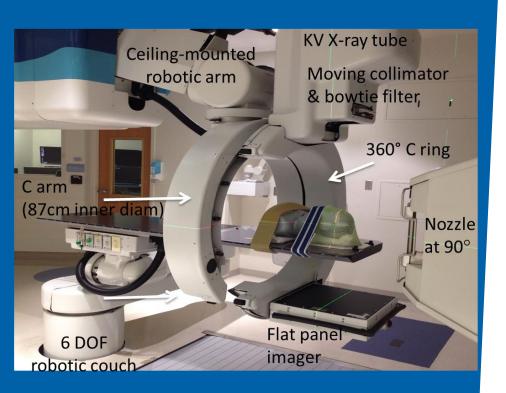
X-Ray (CT) in Pediatric Cancer Evaluation

Key Applications

- Initial Diagnosis and Staging:
 - First imaging modality for suspected pediatric cancer.
 - Critical for evaluating:
 - Brain tumors
 - Musculoskeletal tumors
 - Pediatric-specific tumors (e.g., Wilms tumor, neuroblastoma).
- Pulmonary Metastatic Disease:
 - Preferred technique for detecting lung metastases in musculoskeletal and solid tumors with high metastatic potential.

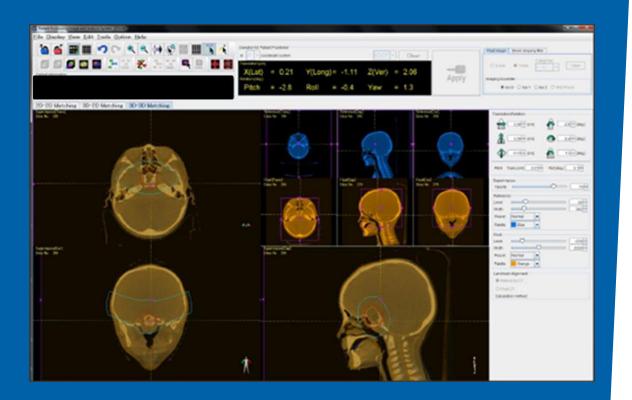
Global Usage of Ionizing Radiation

- Developed Countries:
 - Use of ionizing radiation is limited after initial diagnosis and staging.
 - Primarily for monitoring pulmonary metastases or treatment complications.
- Low- and Middle-Income Countries:
- X-rays often remain the sole diagnostic imaging modality due to resource limitations.


The Role of Radiotherapy in Childhood Cancer

• Prevalence of Radiotherapy Use

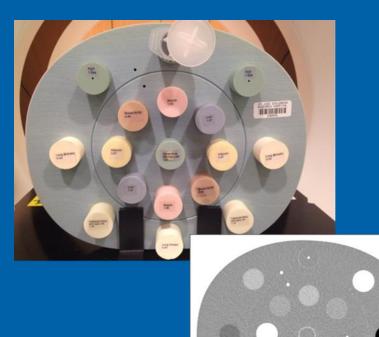
- Over 50% of children diagnosed with cancer in developed countries receive radiotherapy as part of frontline management.
- This statistic persists despite the removal of radiotherapy from CNS-directed therapy for children with acute lymphoblastic leukemia in developed countries.
- Applications in Pediatric Tumor Types
 - Brain and Spinal Cord Tumors:
 - Essential for treating medulloblastoma, ependymoma, gliomas (high/low grade), craniopharyngioma, and germ cell tumors.
 - Often utilized even in the youngest patients.
 - Musculoskeletal Tumors:
 - High-dose radiotherapy frequently required depending on surgical resection extent.
 - For soft tissue tumors, doses may be reduced based on resection extent and systemic therapy response.
 - Unique Solid Tumors:
 - Critical for treating residual tumor or subclinical microscopic disease.
 - Lower radiotherapy doses are typically sufficient compared to other tumor types.


X-Ray Modalities in Pediatric Radiotherapy Planning

• Key Roles

- Localization and Verification:
- Routinely used prior to treatment for accurate patient positioning.
- CT for Tissue Composition:
- Essential for assessing electron density and spatial tissue representation.
- Serves as the coordinate system for registering other imaging modalities.
- Daily Cone-Beam CT (CBCT):
- Evolved as the standard for in-room localization and verification for most pediatric patients.
- Multisequence MRI for Tumor Delineation
 - Most pediatric tumors are best visualized and delineated using multisequence MRI.
 - However, CT remains crucial for radiation dose calculation and planning.
- Emerging Interest in MRI for Treatment Planning
 - Efforts to replace x-ray CT with MRI for treatment planning are limited.
 - Currently applied only to patients receiving photon therapy.

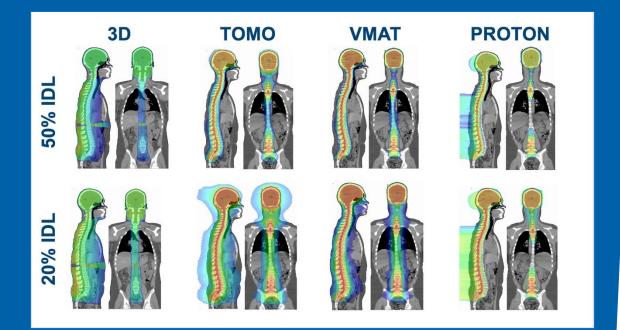
CBCT Utilization in Pediatric Radiotherapy European Perspective



- Key Findings
 - Extensive Use in IGRT:
 - Investigators from SIOP Europe report widespread use of CBCT for pediatric radiotherapy.
 - Daily CBCT is the standard for treatment verification in most cases.
 - Site-Specific Utilization:
 - <u>Brain/Head Sites: 84% of centers use CBCT as the</u> <u>standard imaging modality.</u>
 - <u>Abdominal Sites: 70% of centers employ CBCT for</u> <u>treatment verification.</u>
- Challenges
 - Radiation Exposure Concerns:
 - Pediatric patients are more sensitive to cumulative radiation doses.
 - Lack of Optimized Protocols:
 - Pediatric-specific protocols are underdeveloped, leading to inconsistent application across institutions.
- Call to Action
 - Address radiation safety concerns by developing standardized, dose-optimized CBCT protocols tailored to pediatric patients.

Østergaard DE, Bryce-Atkinson A, Skaarup M, et al. Paediatric CBCT protocols for image-guided radiotherapy; outcome of a survey across SIOP Europe affiliated countries and literature review. Radiother Oncol. 2024. PMID: 38406888.

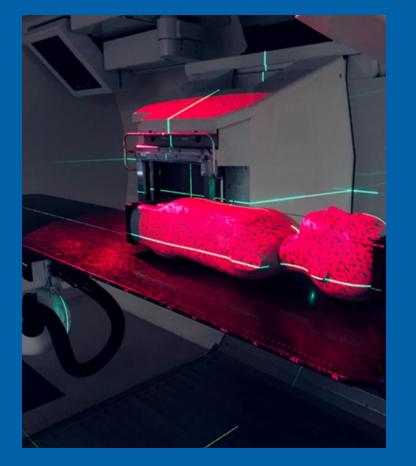
Optimizing Pediatric CBCT Protocols in IGRT


European Perspective

- Key Issues
 - Lack of Standardized Protocols:
 - Greater consistency for brain/head sites compared to abdominal sites.
 - Urgent need for dose-optimized protocols tailored to children.
 - Underutilization of Low-Dose Protocols:
 - Despite research support, low-dose CBCT protocols are underused, especially for abdominal sites.
 - Missed opportunity to reduce radiation exposure in sensitive pediatric patients.
- Dose Optimization Strategies
 - Lowering mAs settings.
 - Using bowtie filters.
 - Implementing motion management techniques.
 - Proven to reduce doses without compromising accuracy.
- Challenges in Adoption
 - Variability in patient size.
 - Lack of awareness among clinicians.
 - Limited resources for developing pediatric-specific protocols.
 - <u>Only 39% of surveyed facilities reported optimized exposure</u> <u>settings for pediatric patients.</u>

Image-Guided Radiotherapy in Pediatric Radiotherapy

North American Perspective



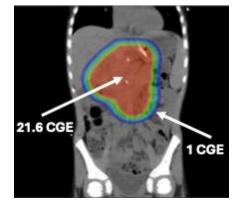
- Key Applications
 - Widely used for treatments requiring high precision:
 - Intensity-Modulated Radiation Therapy (IMRT)
 - Volumetric Modulated Arc Therapy (VMAT)
 - Proton Therapy (PT)
 - Enhances soft-tissue visualization and ensures precise patient positioning.
 - Utilization varies by disease site and institutional resources.
- Radiation Exposure Concerns
 - Pediatric patients are more sensitive to cumulative radiation exposure.
 - Efforts to minimize imaging doses include:
 - Lower-dose CBCT protocols.
 - Exploring non-ionizing imaging methods (e.g., MRI, surface imaging).
- Balancing Accuracy and Safety
 - CBCT improves treatment accuracy in complex cases.
 - Dose-reduction strategies are essential to ensure both effective treatment and long-term safety for pediatric patients.

Hua CH, Vern-Gross TZ, Hess CB, et al. Practice patterns and recommendations for pediatric image-guided radiotherapy: A Children's Oncology Group report. Pediatr Blood Cancer. 2020. PMID: 32776500.

Image-Guided Radiotherapy in Pediatric Radiotherapy

North American Perspective

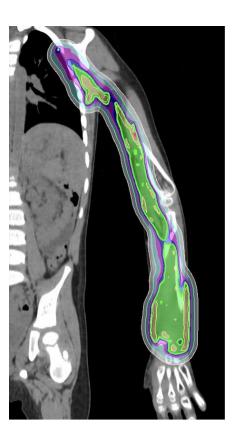
- Imaging Techniques and Frequency
 - Daily Imaging: Standard for pediatric radiotherapy.
 - Kilovoltage Imaging (kVi): Preferred for simpler treatments.
 - Cone-Beam CT (CBCT): Used for complex cases requiring precise localization.
 - Weekly Imaging: Rare, typically follows initial confirmation with daily imaging.
- Dose Reduction Strategies
 - Lower mAs and kVp settings.
 - Limit imaging fields.
 - Prioritize kV imaging over MV imaging.
 - Encourage non-ionizing methods (e.g., surface imaging, MRI guidance).
- Concerns About Secondary Malignancies
 - Cumulative imaging doses increase risks of secondary cancers.
 - Reduced safety margins and improved accuracy often outweigh these risks.
- Recommendations for Pediatric IGRT
 - Follow Children's Oncology Group (COG) guidelines:
 - Disease-specific imaging modalities.
 - Appropriate imaging frequency.


Image-Guided Radiotherapy in Pediatric Radiotherapy

Neuroblastoma & Rhabdomyosarcoma

Neuroblastoma

Conformal methods


- Minimize radiation exposure to radiosensitive organs (e.g., kidneys, vertebral bodies).
- Proton therapy reduces doses to healthy tissues but requires advanced verification imaging due to smaller target margins.
- Imaging Protocols & Timing
 - Therapy occurs post-high-dose chemotherapy consolidation, reducing anatomical shifts and replanning needs.
 - Imaging (CT/MRI) is conducted at key junctures: pre-treatment, postchemotherapy, and postconsolidation.
- Potential for Non-Ionizing Imaging
 - Interest in ultrasound for localization is growing to reduce collateral radiation exposure from x-ray-based imaging.

• Rhabdomyosarcoma

• Challenges with Tumor Dynamics

- Frequent imaging is needed due to anatomical changes (e.g., weight loss, tumor response).
- Replanning and additional CTs are often required for conformal methods with small target margins.
- Proton Therapy & Imaging Needs
 - Proton therapy reduces radiation exposure to healthy tissues, especially for large metastatic sites like lungs.
- Precise volumetric imaging is essential to address range uncertainties.
 - Emergence of MRI for Treatment
 Planning
 - MRI is increasingly used for target delineation, avoiding ionizing radiation exposure while maintaining imaging quality.

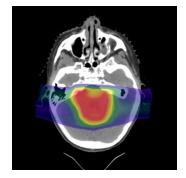
Image-Guided Radiotherapy in Pediatric Radiotherapy Ependymoma & Medulloblastoma

• Ependymoma

Proton Therapy & Daily Verification Imaging

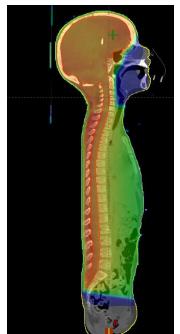
- Proton therapy minimizes radiation exposure to healthy tissues in critical neurovascular and CSF pathways.
- Daily imaging with cone-beam CT (CBCT) or optical surface imaging ensures precision targeting.

Image-Guidance Optimization for Young Patients


- Radiation therapy for children as young as 12 months requires tailored imaging protocols to reduce dose exposure.
- Pediatric CBCT protocols often result in higher exposures compared to adults, emphasizing the need for dose-reduction strategies.
- Risk of Secondary Malignant Neoplasms
 - Repeated diagnostic-quality x-ray imaging raises concerns about secondary cancers.
 - Advanced imaging technologies and non-ionizing methods are critical for long-term safety.

Medulloblastoma

- Craniospinal Radiation Therapy
 - Precision imaging during craniospinal irradiation is essential to target subarachnoid spaces while sparing healthy tissues.
 - Daily imaging is common with advanced techniques like IMRT or proton therapy; weekly imaging may suffice for less advanced methods.


Boost Phase Imaging & Precision

- Additional CT scans during the boost phase improve accuracy for targeting smaller margins, despite increased exposure.
- Adverse Effects & Collateral Dose Concerns
 - Severe acute and long-term complications include risks of secondary malignancies and cataracts.
 - Optimized imaging protocols and non-ionizing imaging alternatives are essential to mitigate collateral radiation exposure.

Ependymoma

Medulloblastoma

Optimizing Radiation Therapy Imaging in Pediatrics

Long-Term Considerations

- Pediatric radiation oncologists must balance effective tumor coverage with minimizing long-term complications.
- Imaging plays a critical role in assessing tumor coverage and reducing risks of future complications.

Imaging Objectives

- Primary: Verify patient positioning using x-ray-based imaging.
- Secondary/Tertiary: Evaluate external contours, tumor changes, and internal tissue deformities impacting dosimetry. Awareness of Imaging Risks
- Limited awareness exists about the risks of repeated diagnostic-quality x-rays exposing healthy tissues during IGRT.
- Often overlooked in clinical protocols, consent forms, and follow-up procedures.

Need for Consensus and Guidelines

- Concerns about low-dose radiation exposure have led some institutions to prefer 3D-conformal techniques over IMRT or VMAT.
- Standardized guidelines and greater discussions are necessary to address these concerns.

Optimizing Pediatric Imaging

- Employ technical advancements to minimize radiation exposure:
 - Reduce field of view.
 - Use iterative CT reconstruction.
 - Adopt non-ionizing imaging methods (e.g., MRI and optical surface guidance).

www.icrp.org

