ICRP TG95 Internal Dose Coefficients

F. Paquet, M.R. Bailey, R.W. Leggett, T. Fell, T. Smith, V. Berkovski and J.D. Harrison

ICRP C2

A Coefficient is a value that multiplies another value (Cambridge Dictionary)

Allows to transform one quantity into another

Every dose to biological tissues is « internal »

« Misuse » of language

Distinguish doses from external exposure

INTERNATIONAL COMMISSION ON RADIOLOGICAL PROTECTION

Every dose to biological tissues is « internal »

« Misuse » of language

Distinguish doses from external exposure from

doses from internal exposure

ICRP has been active from the early begining in the field of internal exposure

RADIATION PROTECTION

Recommendations of the International Commission on Radiological Protection

ICRP PUBLICATION 2

Report of Committee II on Permissible Dose for Internal Radiation (1959)

> PUBLISHED FOR The International Commission on Radiological Protection IV

PERGAMON PRESS

OXPORD , LONDON , EDINDURGH , NEW YORK TORONOV , SYDNEY PARTS , BRAUNSCHWERG

ICRP has been active from the early begining in the field of internal exposure

RADIATION PROTECTION

Recommendations of the International Commission on Radiological Protection

ICRP PUBLICATION 2

Report of Committee II or Permissible Dose for Internal Radiation 1959

> PUBLISHED FOR The International Gammiono on Radiological Protection 197

PERGAMON PRESS

OXPORD LONDON EDINDUROF NEW YORK TORONOY SYDNEY PARTS BRAINSCHWEIG

Internal exposures to radiations are managed by the use of the committed effective dose

$$e(\tau) = \sum_{T} w_{T} \left[\frac{h_{T}^{M}(\tau) + h_{T}^{F}(\tau)}{2} \right]$$

Cannot be measured !!

Calculating committed effective dose after internal contamination is a complex procedure

Generic biokinetic model

ICRP Publication 130, 2015

13

Complex procedure, limited to experts

ICRP has defined concepts and tools, to allow non-specialists to perform dose assessment

INTERNATIONAL COMMISSION ON RADIOLOGICAL PROTECTION

Dose per Intake coefficients

Dose per Bq inhaled or ingested

Table 10.7. Committed effective dose coefficients (Sv Bq⁻¹) for the inhalation or ingestion of ⁸⁵Sr, ⁸⁹Sr, and ⁹⁰Sr compounds.

	Effective dose coefficients (Sv Bq ⁻¹)				
Inhaled particulate materials (5 µm AMAD aerosols)	⁸⁵ Sr	⁸⁹ Sr	⁹⁰ Sr		
Type F, strontium chloride, sulphate and carbonate	3.8E-10	9.6E-10	3.2E-08		
Type M, fuel fragments, all unspecified forms	5.0E-10	2.2E-09	1.8E-08		
Type S, FAP, PSL, strontium titanate	6.7E-10	3.2E-09	2.0E-07		
Ingested materials					
$f_{\rm A} = 0.01$, strontium titanate	2.1E-10	4.0E-10	1.1E-09		
$f_{\rm A} = 0.25$, all other chemical forms	3.8E-10	8.9E-10	2.4E-08		

AMAD, activity median aerodynamic diameter; FAP, fused aluminosilicate particles; PSL, polystyrene.

From ICRP Publication 134, 2016

ICRP provides dose coefficients for inhalation and ingestion of the most important isotopes and for (almost) every element

General procedures for assessing doses

INTERNATIONAL COMMISSION ON RADIOLOGICAL PROTECTION

General procedures for assessing doses

Dose per Bq measured in organs or tissues

Table 12.6. Dose per activity content of 95 Zr in the total body, lungs and in daily excretion of urine (Sv Bq⁻¹); 5 µm activity median aerodynamic diameter aerosols inhaled by a reference worker at light work.

Time after intake (d)	Type F			Type M			Type S		
	Total body	Lungs	Urine	Total body	Lungs	Urine	Total body	Lungs	Urine
1	4.6E-09	2.4E-07	6.4E-07	3.2E-09	3.8E-08	5.7E-06	4.3E-09	4.2E-08	1.5E-04
2	7.1E-09	2.6E-07	1.7E-06	5.9E-09	4.0E-08	1.3E-05	8.0E-09	4.4E-08	3.5E-04
3	1.1E-08	2.9E-07	2.2E-06	1.3E-08	4.2E-08	1.7E-05	1.8E-08	4.6E-08	4.8E-04
4	1.3E-08	3.2E-07	2.5E-06	2.2E-08	4.3E-08	1.9E-05	3.2E-08	4.7E-08	5.4E-04
5	1.4E-08	3.5E-07	2.8E-06	2.9E-08	4.5E-08	2.1E-05	4.2E-08	4.8E-08	5.9E-04
6	1.5E-08	3.8E-07	3.1E-06	3.2E-08	4.6E-08	2.2E-05	4.6E-08	5.0E-08	6.4E-04
7	1.5E-08	4.2E-07	3.4E-06	3.3E-08	4.8E-08	2.4E-05	4.8E-08	5.1E-08	6.9E-04
8	1.6E-08	4.6E-07	3.7E-06	3.4E-08	4.9E-08	2.6E-05	5.0E-08	5.2E-08	7.5E-04
9	1.6E-08	5.1E-07	4.0E-06	3.5E-08	5.0E-08	2.8E-05	5.1E-08	5.3E-08	8.1E-04
10	1.6E-08	5.6E-07	4.4E-06	3.6E-08	5.2E-08	3.0E-05	5.2E-08	5.4E-08	8.8E-04
15	1.7E-08	8.8E-07	7.0E-06	3.9E-08	5.7E-08	4.1E-05	5.7E-08	5.9E-08	1.3E-03
30	2.1E-08	3.2E-06	2.6E-05	4.8E-08	7.6E-08	8.7E-05	7.0E-08	7.2E-08	3.2E-03
45	2.5E-08	9.5E-06	7.8E-05	5.8E-08	9.9E-08	1.4E-04	8.4E-08	8.7E-08	5.6E-03
60	3.0E-08	2.1E-05	1.7E-04	6.9E-08	1.3E-07	1.9E-04	1.0E-07	1.1E-07	7.7E-03
90	4.1E-08	5.1E-05	4.1E-04	1.0E-07	2.2E-07	3.3E-04	1.5E-07	1.5E-07	1.2E-02
180	1.1E-07	2.7E-04	2.0E-03	2.9E-07	1.1E-06	1.5E-03	4.6E-07	4.8E-07	3.7E-02
365	8.2E-07	3.3E-03	2.4E-02	2.3E-06	2.6E-05	2.6E-02	4.4E-06	4.7E-06	3.4E-01

From ICRP Publication 134, 2016

Dose per Bq measured in organs or tissues

Table 12.6. Dose per activity content of 95 Zr in the total body, lungs and in daily excretion of urine (Sv Bq⁻¹); 5 µm activity median aerodynamic diameter aerosols inhaled by a reference worker at light work.

Time arter intake (c	Type F			Type M			Type S		
	Total body	Lungs	Urine	Total body	Lungs	Urine	Total body	Lungs	Urine
1	4.6E-09	2.4E-07	6.4E-07	3.2E-09	3.8E-08	5.7E-06	4.3E-09	4.2E-08	1.5E-04
2	7.1E-09	2.6E-07	1.7E-06	5.9E-09	4.0E-08	1.3E-05	8.0E-09	4.4E-08	3.5E-04
3	1.1E-08	2.9E-07	2.2E-06	1.3E-08	4.2E-08	1.7E-05	1.8E-08	4.6E-08	4.8E-04
4	1.3E-08	3.2E-07	2.5E-06	2.2E-08	4.3E-08	1.9E-05	3.2E-08	4.7E-08	5.4E-04
5	1.4E-08	3.5E-07	2.8E-06	2.9E-08	4.5E-08	2.1E-05	4.2E-08	4.8E-08	5.9E-04
6	1.5E-08	3.8E-07	3.1E-06	3.2E-08	4.6E-08	2.2E-05	4.6E-08	5.0E-08	6.4E-04
7	1.5E-08	4.2E-07	3.4E-06	3.3E-08	4.8E-08	2.4E-05	4.8E-08	5.1E-08	6.9E-04
8	1.6E-08	4.6E-07	3.7E-06	3.4E-08	4.9E-08	2.6E-05	5.0E-08	5.2E-08	7.5E-04
9	1.6E-08	5.1E-07	4.0E-06	3.5E-08	5.0E-08	2.8E-05	5.1E-08	5.3E-08	8.1E-04
10	1.6E-08	5.6E-07	4.4E-06	3.6E-08	5.2E-08	3.0E-05	5.2E-08	5.4E-08	8.8E-04
15	1.7E-08	8.8E-07	7.0E-06	3.9E-08	5.7E-08	4.1E-05	5.7E-08	5.9E-08	1.3E-03
30	2.1E-08	3.2E-06	2.6E-05	4.8E-08	7.6E-08	8.7E-05	7.0E-08	7.2E-08	3.2E-03
45	2.5E-08	9.5E-06	7.8E-05	5.8E-08	9.9E-08	1.4E-04	8.4E-08	8.7E-08	5.6E-03
60	3.0E-08	2.1E-05	1.7E-04	6.9E-08	1.3E-07	1.9E-04	1.0E-07	1.1E-07	7.7E-03
90	4.1E-08	5.1E-05	4.1E-04	1.0E-07	2.2E-07	3.3E-04	1.5E-07	1.5E-07	1.2E-02
180	1.1E-07	2.7E-04	2.0E-03	2.9E-07	1.1E-06	1.5E-03	4.6E-07	4.8E-07	3.7E-02
365	8.2E-07	3.3E-03	2.4E-02	2.3E-06	2.6E-05	2.6E-02	4.4E-06	4.7E-06	3.4E-01

Dose per Bq measured in organs or tissues

aerodynamic diameter aerosols inhelted by a reference worker at light work. Type F Type M Type S Total Time at. Total Total intake (d) Lungs body Urine body Lungs Urine Lungs orme 4.3E-09 1 4.6E-09 2.4E-07 6.4E-07 5.7E-06 4.2E-08 1.5E-04 3.2E-09 3.8E-08 2 1.7E-06 7.1E-09 2.6E-07 5.9E-09 4.0E-08 1.3E-05 8.0E-09 4.4E-08 3.5E-04 3 1.1E-08 2.9E-07 2.2E-06 1.3E-08 4.2E-08 1.7E-05 1.8E-08 4.6E-08 4.8E-04 4 1.3E-08 3.2E-07 2.5E-06 2.2E-08 4.3E-08 1.9E-05 3.2E-08 4.7E-08 5.4E-04 5 1.4E-08 3.5E-07 2.8E-06 2.9E-08 4.5E-08 2.1E-05 4.2E-08 4.8E-08 5.9E-04 6 1.5E-08 3.8E-07 3.1E-06 3.2E-08 4.6E-08 2.2E-05 4.6E-08 5.0E-08 6.4E-04 7 1.5E-08 4.2E-07 3.4E-06 3.3E-08 4.8E-08 2.4E-05 4.8E-08 5.1E-08 6.9E-04 8 1.6E-08 4.6E-07 3.7E-06 3.4E-08 4.9E-08 2.6E-05 5.0E-08 5.2E-08 7.5E-04 9 1.6E-08 5.1E-07 4.0E-06 3.5E-08 5.0E-08 2.8E-05 5.1E-08 5.3E-08 8.1E-04 1.6E-08 5.6E-07 3.6E-08 3.0E-05 5.2E-08 8.8E-04 104.4E-06 5.2E-08 5.4E-08 15 1.7E-08 8.8E-07 7.0E-06 3.9E-08 5.7E-08 4.1E-05 5.7E-08 5.9E-08 1.3E-03 4.8E-08 7.0E-08 2.1E-08 3.2E-06 2.6E-05 7.6E-08 8.7E-05 7.2E-08 3.2E-03 30 9.5E-06 5.8E-08 8.4E-08 8.7E-08 5.6E-03 45 2.5E-08 7.8E-05 9.9E-08 1.4E-04 60 3.0E-08 2.1E-05 1.7E-04 6.9E-08 1.3E-07 1.9E-04 1.0E-07 1.1E-07 7.7E-03 90 4.1E-08 5.1E-05 4.1E-04 1.0E-07 2.2E-07 3.3E-04 1.5E-07 1.5E-07 1.2E-02 180 1.1E-07 2.7E-04 2.0E-03 2.9E-07 1.1E-06 1.5E-03 4.6E-07 4.8E-07 3.7E-02

2.3E-06

2.6E-05

2.6E-02

Table 12.6. Dose per activity content of 95 Zr in the total body, lungs and in daily excretion of urine (Sv Bq⁻¹); 5 µm activity median

From ICRP Publication 134, 2016

4.7E-06

3.4E-01

4.4E-06

3.3E-03

2.4E-02

8.2E-07

365

Dose per Bq measured in organs or tissues

Table 12.6. Dose per activity content of 95 Zr in the total body, lungs and in daily excretion of urine (Sv Bq⁻¹); 5 µm activity median aerodynamic diameter aerosols inhaled by a reference worker at light work.

Time after intake (d)	Type F			Type M			Type S		
	Total body	Lungs	Urine	Total body	Lungs	Urine	Total body	Lungs	Urine
1	4.6E-09	2.4E-07	0010507	3.2E-09	3.8E-08	5.7E-06	4.3E-09	4.2E-08	1.5E-04
2	7.1E-09	2 5-07	1.7E-06	5.9E-09	4.0E-08	1.3E-05	8.0E-09	4.4E-08	3.5E-04
3	1.1E-08	2.9E-07	2.2E-06	1.3E-08	4.2E-08	1.7E-05	1.8E-08	4.61- 98	4.8E-04
4	12E-08	3.2E-07	2.5E-06	2.2E-08	4.3E-08	1.9E-05	3.2E-08	4.7E-08	5.4E-04
5	1.4E-08	3.5E-07	2.8E-06	2.9E-08	4.5E-08	2.1E-05	4.2E-08	4.8E-08	. 9E-04
6	1.5E-08	3.8E-07	3.1E-06	3.2E-08	4.6E-08	2.2E-05	4.6E-08	5.0E-08	6.4E-04
7	1.5E-08	4.2E-07	3.4E-06	3.3E-08	4.8E-08	2.4E-05	4.8E-08	5.1E-08	6.9E-04
8	1.6E-08	4.6E-07	3.7E-06	3.4E-08	4.9E-08	2.6E-05	5.0E-08	5.2E-08	7.5E-04
9	1.6E-08	5.1E-07	4.0E-06	3.5E-08	5.0E-08	2.8E-05	5.1E-08	5.3E-08	8.1E-04
10	1.6E-08	5.6E-07	4.4E-06	3.6E-08	5.2E-08	3.0E-05	5.2E-08	5.4E-08	8.8E-04
15	1.7E-08	8.8E-07	7.0E-06	3.9E-08	5.7E-08	4.1E-05	5.7E-08	5.9E-08	1.3E-03
30	2.1E-08	3.2E-06	2.6E-05	4.8E-08	7.6E-08	8.7E-05	7.0E-08	7.2E-08	3.2E-03
45	2.5E-08	9.5E-06	7.8E-05	5.8E-08	9.9E-08	1.4E-04	8.4E-08	8.7E-08	5.6E J3
60	3.0E-08	2.1E-05	1.7E-04	6.9E-08	1.3E-07	1.9E-04	1.0E-07	1.1E-07	77E-03
90	- 1E-08	5.1E-05	4.1E-04	1.0E-07	2.2E-07	3.3E-04	1.5E-07	1.5E-07	1.2E-02
180	1.1E-07	2.7E-04	2.0E-03	2.9E-07	1.1E-06	1.5E-03	4.6E-07	4.8F 67	3.7E-02
365	8.2E-07	. 2E-03	2.4E-02	2.3E-06	2.6E-05	2.6E-02	4.4E-06	4.7E-06	3.4E-01

From ICRP Publication 134, 2016

Replace the former system

Reference Bioassay function

Predicted activity in organs or tissues for intake of 1 Bq

Fig. 12.3. Total body and lung contents, and daily urinary excretion of ⁹⁵Zr following inhalation of 1 Bq Type F.

From ICRP Publication 134, 2016

Main past ICRP publications on these topics

For workers

Publication 30 series (ICRP, 1979, 1980, 1981, 1988)

dose coefficients and ALI for inhalation and ingestion. based on Reference man (Publication 23, 1975) and 1977 recommendations (Publication 26, 1977).

Publication 68 (ICRP, 1994)

updated dose coefficients following 1991 Recommendations (Publication 60, 1991), HRTM (Publication 66, 1994), new skeletal data (Publication 70, 1995) and revised systemic biokinetic models. No ALI anymore.

Publications 54 and 78 (ICRP, 1988, 1997)

guidance on the design of monitoring programs and the interpretation of results, to estimate doses to workers following radionuclide inhalation or ingestion. Provide predicted values of measured quantities after intake.

Main past ICRP publications on these topics

For the members of the public

Publications 56, 67, 69, 71 and 72 (ICRP, 1989, 1993, 1995)

age-specific dose coefficients for inhalation and ingestion for 91 elements, using up-to-date models and latest ICRP recommendations.

Publications 88 and 95 (2001,2004) Dose to embryo/fetus and infants

Progress and changes made during this period

In physiology and biokinetic models

- New data on Reference man (ICRP 89, 2002)
- Human Alimentary Tract Model (ICRP 100, 2006)

The Human alimentary tract model

The former model

The Human alimentary tract model (2006)

Ingestion

Progress and changes made during this period

In physiology and biokinetic models

- New data on Reference man (ICRP 89, 2002)
- Human Alimentary Tract Model (ICRP 100, 2006)
- New element specific systemic models, physiologically realistic

Systemic model for lodine

The former model (ICRP 1994, 1997)

The new model ICRP Publication 137, In Press

Three subsystems:

- circulating inorganic iodide;
- thyroidal organic iodine
- extrathyroidal organic iodine.

INTERNATIONAL COMMISSION ON RADIOLOGICAL PROTECTION

Systemic model for Strontium

Structure of the biokinetic model for systemic strontium. ST, soft tissue; exch, exchangeable; nonexch, non-exchangeable.

The former model (ICRP 1989)

The new model ICRP Publication 134, 2016

In physiology and biokinetic models

- New data on Reference man (ICRP 89, 2002)
- Human Alimentary Tract Model (ICRP 100, 2006)
- New element specific systemic models, physiologically realistic
- More realistic treatment of the biokinetics of radionuclide daughters
- New data supporting update of the Human Respiratory Tract Model

Particle transport model (ICRP 66 HRTM)

ERNATIONAL COMMISSION ON RADIOLOGICAL PROTECTION

Particle transport model (ICRP 103)

Default parameter values Type F, M, S

Element-specific values for s_r . Range from 0.4 to 100 d⁻¹

Example of Uranium absorption

Compound	Absorption parameter values T_{r} f_{r} s_{r} (d ⁻¹) s_{s} (d ⁻¹)				
<i>Default Type F (UF6, U-TBP)</i>	1.0	10	- ~ /		
Uranyl nitrate, UO ₂ (NO ₃) ₂	0.8	1	0.01	(F/M)	
Uranium peroxide hydrate	0.8	1	0.01	(F/M)	
Ammonium diuranate, ADU	0.8	1	0.01	(F/M)	
Default Type M (UF4)	0.2	3	0.005		
Uranium Octoxide U ₃ O _{8;} Uranium dioxide	0.03	1	0.0005	(M/S)	
Default Type S	0.01	3	0.0001		

In physiology and biokinetic models

- New data on Reference man (ICRP 89, 2002)
- Human Alimentary Tract Model (ICRP 100, 2006)
- New element specific systemic models, physiologically realistic
- More realistic treatment of the biokinetics of radionuclide daughters
- New data supporting update of the Human Respiratory Tract Model

In dosimetry and monitoring

- Development of adult reference computational phantom, based on the new ref man (ICRP 110, 2009)
- New skeletal dosimetry (ICRP 116, 2010)
- Revised nuclear decay data (ICRP 107, 2008)
- Concept of dose per content

IGRP INTERNATIONAL COMMISSION ON RADIOLOGICAL PROTECTIO

In ICRP recommendations

- Adoption of the use of realistic phantoms (ICRP 103, 2007)
- Changes in weighting factors (ICRP 103, 2007)
- Changes in calculation of equivalent dose (ICRP 103, 2007)

These new data and recommendations supported a revision of the past reports and provision of new dose coefficients with guidance on monitoring programs and data interpretation

Done for external dosimetry (ICRP 116, 2010) Need to be done for internal dosimetry

Revision of the reports on internal exposure

Division of the work in two parts :

- Revision of models and dose coefficients for workers (OIR series)
- Revision of models and dose coefficients for members of the public (EIR series,..)

The OIR series 5 volumes

OIR Part 1 (ICRP Publication 130, 2015)

- Control of occupational exposures to radionuclides
- Biokinetic and dosimetric models
- Methods of individual and workplace monitoring
- Monitoring programmes
- General aspects of retrospective dose assessment

The OIR series 5 volumes

OIR Part 2 to 5

For each element section:

- Chemical forms in the workplaces
- Principal radioisotopes, physical half-lives and decay modes
- Review of data on inhalation, ingestion and systemic biokinetics
- Structure of biokinetic models and parameter values
- Monitoring techniques and typical detection limits
- Dose coefficients, reference bioassays functions and dose per content functions in printed document and/or electronic annexes

The OIR series 5 volumes

OIR Part 2 ICRP Publication 134 Hydrogen (H), Carbon (C), Phosphorus (P), Sult Cobalt (Co), Zinc (Zn), Strontium (Sr), Yttrium Molybdenum (Mo) and Technetium (Tc).

OIR Part 3

Ruthenium (Ru), Antimony (Sb), Tellurium (Te Iridium (Ir), Lead (Pb), Bismuth (Bi), Poloniun Thorium (Th) and Uranium (U).

m (Ca), Iron (Fe),

(Zr), Niobium (Nb),

OIR Part 4 Lanthanides series, actinium (Ac), protactinium 2018 isuranic elements

OIR Part 5 Fluorine (F), Sodium (Na), Magnesium (Mg), Potassium (K), Manganese (Mn), Nickel (Ni), Selenium (Se), Molybdenum (Mo), Technetium (Tc) and Silver (Ag) and most of the others

OIR Data viewer

Processing Contract & Parlingers Program Provider								140-1		
r Intake Dose per Content & Reference Boassay Functions								9		
Intake Parameters				Displayed Data						
$\frac{c_0}{c_0} = \frac{c_0}{c_0} = $			Dose per Content Function Content for the Specified Dose Content for the Specified Dose Content per Intake (Reference Bioassay Function)							
										Intake
an a		Comm	itted Effectiv	e Dose per P	redicted Co	ntent in an Or	gan er Exce	reta		
			Sample	Unite per C		tions z/11, Su	100	1		
nscal forms, fA=0,1		Time, days	Whole Body	(24-hour sample)	Faeces (24-hour sample)	Alimentary Tract*	Skeleton*			
•		0	3.2E-9	-			1.00	+-		
		0.041667	3.2E-9		-	3.3E-8	6.1E-6	1.3		
		0.083333	1.32-9			3.36-9	2.16-6	4		
EE 🔟 🛯 🖪 🔄 🔄 🍪		0.125	1.3E-5	-		1.4E-9	1.3E-6	2.		
		0.25	3.35-9	-		3.5E-9	6.9E-7	1.		
10		0.375	3.4E-5			366-8	5.7E-7	1.		
		0.5	3.4E-9			1.7E-0	6.3E-7	ti		
15		0.625	3.6E-9			1.86-9	6.1E-7	1.1		
· · · · · · · · · · · · · · · · · · ·		0.75	3.元-9	-		4.0E-9	5.0E-7	1		
		0.875	4.05-9			4.36.9	4.9E-7	1.		
10		1	4,2E-9	9.4E-8	1,6E-8	4.6E-8	4.9E-7	1.		
		1.126	4.6E-9			6.0E-9	4.9E-7	1.3		
61		1.25	5.0E-9		-	5.5E-3	4.9E-7	1.5		
		1.375	6.6E-9	-	1.00	6.1E-9	4.9E-7	1.1		
		15	6.1E-9	1 AL 1	1.0	6.9E-9	4.9E-7	1.2		
167		1.625	6.9E-9	-		7.8E-9	4.8E-7	1.3		
		1.75	7.7E-9		1.1	8.8E-9	4.1.1.7	1.4		
103	Vinoia Bety	1,875	8,6E-9			1.0E-8	4.8E-7	1.4		
	P A Ofne (24-hour sample)	2	9,8E-9	6.0E-7	7.6E-9	1.2E-8	4.8E-?	1.4		
	🖓 🛊 Alinentary Tract	2,25	1,2E-8	-		1.6E-8	4.9E-7	1,£		
"	🗭 ┥ Skalatzri*	2.5	1,6E-8	1	(a) -	2.1E-0	4.8E-7	1,1		
	R > Liter	2,75	2,0E-8	. Sec.		2,9E-8	4,8E-7	9,7		
10		3	2.6E-8	8.0E-7	1,8E-8	4.1E-8	4.8E-7	1,1		
		3,25	3,2E-8			5,7E-8	4.9E-7	2,1		
		3,5	3,8E-8	-	1.04	8,1E-8	4,9E-7	2.		
* * *******		3,75	4,58.4			1,16.7	4.9E-7	2,3		
		4	5,2E-8	1.0E-6	5,4E-8	1.6E-7	4.年7	2.3		
167 · + > + + + + + + + + + + + + + + + + +		4,25	5,8E-8	+		2.2E-7	5.0E-7	2.4		
		4,5	6,3E-8			3.0E-7	5.0E-7	2,8		
EI		4,75	6.8E-8	· · · ·		4.作-7	6.0E-7	2.7		
		5	7,2E-8	1.3E-6	2,1E-7	5,4E-7	5.1E-7	2,1		
		「五方	7.8E-8	which		1,7E-7	5.1E-7	3,1		
163		6	1,32-8	1.6E-6	7,98.7	1.28-6	6.2E-7	3,4		
0.01 0,1 1 10 100 1000 18# Time, days	105	6.5 V	意/花-8	-	-	1.6E-6	6.3E-7	3,1		

The EIR series 4 volumes

EIR Part 1 (in Progress)

Same information and data for every element currently described in OIR P2 to 4 (plus Ag, Ni, Se)

EIR Part 2 Same information for every other element

EIR Part 3 Breast-feeding Infant Internal Dose Coefficients for Maternal Intakes

EIR Part 4 *In utero* Internal Dose Coefficients for Maternal Intakes

Comparison of dose coefficients between ICRP 68 and OIR P2

Comparison of dose coefficients between ICRP 68 and OIR P3

The authors of this work

The membership of the Task Group 95 on Internal Dosimetry (IDC)

Members:

F Paquet (Chair) M R Bailey V Berkovski E Blanchardon G Etherington T P Fell **R W Leggett**

Corresponding Members:E AnsoborloD GregorattoM PuncherL BertelliJ Marsh T SmithE DavesneD MeloG RatiaA GiussaniD Nosske

and ..

the CPRT (TG 96)and the committee 2 members ...

www.ICRP.org

