Annals of the ICRP

ICRP PUBLICATION 1XX

Occupational Intakes of Radionuclides:
Part 4

Editor-in-Chief
C.H. CLEMENT

Associate Editor
H. OGINO

Authors on behalf of ICRP

PUBLISHED FOR
The International Commission on Radiological Protection

by

[Sage logo]

Please cite this issue as ‘ICRP, 201Y. Occupational Intakes of Radionuclides: Part 4. ICRP Publication 1XX, Ann. ICRP 4X (0).’
Abstract - The 2007 Recommendations (ICRP, 2007) introduced changes that affect the calculation of effective dose, and implied a revision of the dose coefficients for internal exposure, published previously in the Publication 30 series (ICRP, 1979, 1980, 1981, 1988b) and Publication 68 (ICRP, 1994b). In addition, new data are now available that support an update of the radionuclide-specific information given in Publications 54 and 78 (ICRP, 1988a, 1997b), for the design of monitoring programmes and retrospective assessment of occupational internal doses. Provision of new biokinetic models, dose coefficients, monitoring methods and bioassays data was performed by Committee 2 and its Task Groups INDOS and DOCAL.

A first report in a series of documents replacing the Publication 30 series and Publications 54, 68 and 78 has been issued (OIR Part 1). This first report describes the assessment of internal occupational exposure to radionuclides, biokinetic and dosimetric models, methods of individual and workplace monitoring, and general aspects of retrospective dose assessment.

The following reports of the series (Parts 2 to 5) provide data on individual elements and their radioisotopes, including information on chemical forms encountered in the workplace; a list of principal radioisotopes and their physical half-lives and decay modes; the parameter values of the reference biokinetic model; and data on monitoring techniques for the radioisotopes most commonly encountered in workplaces. For most of the elements, reviews of data on inhalation, ingestion and systemic biokinetics are also provided.

Dosimetric data provided in the printed reports of the series include tables of committed effective dose per intake (Sv per Bq intake) for inhalation and ingestion, tables of committed effective dose per content (Sv per Bq measurement) for inhalation, and graphs of retention and excretion data per Bq intake for inhalation. These data are provided for all absorption types and for the most common isotope(s) of each element section.

The electronic annex that accompanies this series of reports contains a comprehensive set of committed effective and equivalent dose coefficients, committed effective dose per content functions, and reference bioassay functions. Data are provided for inhalation, ingestion and for direct input to the blood.

This fourth report in the series provides the above data for the following elements: Cerium (Ce), Praseodymium (Pr), Neodymium (Nd), Promethium (Pm), Samarium (Sm), Europium (Eu), Gadolinium (Gd), Terbium (Tb), Dysprosium (Dy), Holmium (Ho), Erbium (Er), Thulium (Tm), Ytterbium (Yb), Lutetium (Lu), Actinium (Ac), Protactinium (Pa), Neptunium (Np), Plutonium (Pu), Americium (Am), Curium (Cm), Berkelium (Bk), Californium (Cf), Einsteinium (Es) and Fermium (Fm).

Keywords: Occupational exposure; Internal Dose Assessment; Biokinetic and Dosimetric models; Bioassays interpretation
PREFACE

The 2007 Recommendations (Publication 103, ICRP, 2007) introduced changes to the radiation weighting factors used in the calculation of equivalent dose to organs and tissues and also changes to the tissue weighting factors used in the calculation of effective dose. In addition, an important development was the adoption of reference computational models, in place of the ad-hoc composite mathematical models that have been used by ICRP for all previous internal dose assessments. Publication 103 also clarified the need for separate calculation of equivalent dose to males and females and sex-averaging in the calculation of effective dose (ICRP, 2007).

These changes implied a revision of the dose coefficients provided in the Publication 30 series (ICRP, 1979, 1980, 1981, 1988b) and Publication 68 (ICRP, 1994b). In addition, there was a need to update the radionuclide-specific information given in Publications 54 and 78 (ICRP, 1988a, 1997b), for the design and planning of monitoring programmes and retrospective assessment of occupational internal doses. This work was performed by Committee 2 and its Task Groups INDOS, DOCAL and IDC and is published now as a series of documents providing revised dose coefficients for occupational intakes of radionuclides (OIR) by inhalation and ingestion.

The first report of this series (OIR Part 1, ICRP, 2015) provided general information on control of occupational exposures, biokinetic and dosimetric models, monitoring methods, monitoring programmes and retrospective dose assessment. The subsequent reports provide data on individual elements and their radioisotopes, including information on chemical forms encountered in the workplace; a list of principal radioisotopes and their physical half-lives and decay modes; reviews of data on inhalation, ingestion and systemic biokinetics; the structure and parameter values of the reference systemic biokinetic model; and data on monitoring techniques for the radio-isotopes most commonly encountered in workplaces.

Dosimetric data provided in the printed reports of the series include tables of committed effective dose per intake (Sv per Bq intake) for inhalation and ingestion, tables of committed effective dose per content (Sv per Bq measurements) for inhalation, and graphs of retention and excretion data per Bq intake for inhalation. These data are provided for all absorption types and for the most common isotope(s) of each element section.

The electronic annex that accompanies this series of reports contains a comprehensive set of committed effective and equivalent dose coefficients, committed effective dose per content functions, and reference bioassay functions for inhalation, ingestion and for direct input to the blood.

The second report in the series (ICRP, 2016a) provided data for the following elements: Hydrogen (H), Carbon (C), Phosphorus (P), Sulphur (S), Calcium (Ca), Iron (Fe), Cobalt (Co), Zinc (Zn), Strontium (Sr), Yttrium (Y), Zirconium (Zr), Niobium (Nb), Molybdenum (Mo) and Technetium (Tc).

The third report (ICRP, 2016b) provided data for the following elements: Ruthenium (Ru), Antimony (Sb), Tellurium (Te), Iodine (I), Caesium (Cs), Barium (Ba), Iridium (Ir), Lead (Pb), Bismuth (Bi), Polonium (Po), Radon (Rn), Radium (Ra), Thorium (Th) and Uranium (U).
This report provides data on the actinide and lanthanide series. (Please note that Th and U data are given in Part 3). The elements included are: Cerium (Ce), Praseodymium (Pr), Neodymium (Nd), Promethium (Pm), Samarium (Sm), Europium (Eu), Gadolinium (Gd), Terbium (Tb), Dysprosium (Dy), Holmium (Ho), Erbium (Er), Thulium (Tm), Ytterbium (Yb), Lutetium (Lu), Actinium (Ac), Protactinium (Pa), Neptunium (Np), Plutonium (Pu), Americium (Am), Curium (Cm), Berkelium (Bk), Californium (Cf), Einsteinium (Es) and Fermium (Fm).

Part 5 will provide data for most of the other elements.

Four Task Groups participated in the completion of this report. INDOS and DOCAL were involved until 2014 and then were replaced by the newly formed IDC and CPRT.

The membership of Task Group 21 on Internal Dosimetry (INDOS) was:

Members:
- F Paquet (Chair)
- E Ansoborlo
- M R Bailey
- E Blanchardon
- H Doerfel

Corresponding Members:
- A Bouville
- C-M Castellani
- R Cruz-Suarez
- C Hurtgen

The membership of Task Group 4 on Dose Calculations (DOCAL) was:

Members:
- W E Bolch (Chair)
- M Zankl
- D Nosske
- N Petoussi-Henss
- M Pelliccioni

Corresponding Members:
- A Birchall
- G Gualdrini
- D Jokisch
- C Lee

The membership of Task Group 95 on Internal Dose Coefficients (IDC) was:

Members:
- F Paquet (Chair)
- M R Bailey
- E Blanchardon
Corresponding Members:

- E Ansoborlo
- L Bertelli
- E Davesne
- A Giussani

Members:

- W Bolch (Chair)
- J Hunt
- CH Kim

Corresponding Members:

- D Jokisch
- J Li

The membership of Task Group 96 on Computational Phantoms and Radiation Transport (CPRT) was:

Acknowledgments

The work of the authors was aided by significant contributions from E. Ansoborlo, E. Davesne, A Giussani, G Ratia, M Puncher, P. Pellow, D. Gregoratto, K. Eckerman, W. Bolch, and all the IDC and CPRT members.
1. **INTRODUCTION**

(1) The present report is Part 4 of a series which provides revised dose coefficients for occupational intakes of radionuclides (OIR) by inhalation and ingestion. It also presents radionuclide-specific information for the design and planning of monitoring programmes and retrospective assessment of occupational internal doses.

(2) This OIR report series replaces the *Publication 30* series (ICRP, 1979, 1980, 1981, 1988b), and *Publications 54, 68 and 78* (ICRP, 1988a, 1994b, 1997). The revised dose coefficients, dose per content values and reference bioassay functions have been calculated using the *Publication 100* (ICRP, 2006) Human Alimentary Tract Model (HATM) and a revision of the *Publication 66* (ICRP, 1994a) Human Respiratory Tract Model (HRTM) which takes account of more recent data. The revisions made to the HRTM are described in OIR Part 1 (ICRP, 2015). Revisions have also been made to many models for the systemic biokinetics of radionuclides, making them more physiologically realistic representations of uptake and retention in organs and tissues and of excretion.

(3) Data are given for elements of the lanthanide and actinide families, apart for uranium and thorium which were presented in OIR Part 3. Due to the lack of information in the literature on the biokinetics of many of the 15 elements of the lanthanide series, 57La to 71Lu, individual development of meaningful biokinetic models to describe the behaviour of each of the elements in humans was not feasible. Available data have been utilised to construct a generic lanthanide biokinetic model and to define element-specific parameters for each element in the series.

(4) A generic model is also presented for the actinide family since most data showed a similar behaviour in the body of all actinide elements except uranium. Additional data are presented in the respective element section.

1.1. **Methodology used in this report series**

(5) The general methodology for producing the biokinetic and dosimetric models is given in OIR Part 1 (ICRP, 2015). For each element, detailed reviews of the literature were carried out to identify experimental studies and human contamination cases that provide information to quantify absorption to blood from the respiratory and alimentary tracts, and the biokinetics following systemic uptake. These reviews, and the analyses of the data obtained from them, are summarised in each element section.

(6) In the case of inhalation, chemical forms are usually addressed in order of decreasing solubility in the lungs. Where information was available, HRTM absorption parameter values were derived from experimental data from both *in vivo* and *in vitro* studies. For *in vitro* studies, estimation of the dissolution parameter values (rapidly dissolved fraction, f_r, rapid and slow dissolution rates, s_r and s_s) was usually straightforward. For *in vivo* studies, however, simulation modelling was often needed to derive them from the data available: typically retention in organs and excretion in urine and faeces: for further information see Supporting Guidance 3 (ICRP, 2002).

(7) In some recent publications, the authors derived HRTM parameter values: if so they are reported. In most cases, parameter values were derived by the ICRP Task Group (INDOS or IDC) members and their colleagues. This is indicated in the text by wording such as "analysis carried out here...": the first such occurrence for each element is given as "analysis carried out here (i.e. by the Task Group)....".
Material-specific rates of absorption have been adopted (and dose coefficients and bioassay functions provided for them in the accompanying electronic annex) for a limited number of selected materials, i.e., those for which:

- There are in vivo data from which specific parameter values can be derived;
- Results from different studies are consistent;
- It was considered that occupational exposure to the material is likely;
- The specific parameter values are sufficiently different from default Type F, M or S parameter values to justify providing additional specific dose coefficients and bioassay functions.

Other materials were assigned to default HRTM absorption Types, using the criteria described in Publication 71 (ICRP, 1995) and Supporting Guidance 3 (ICRP, 2002) for making such assignments using experimental data. Type M is assumed for particulate forms of most elements "by default", i.e. in the absence of such information. A material is assigned to Type F if the amount absorbed into blood by 30 d after intake is greater than the amount absorbed over the same period from a hypothetical material with a constant absorption rate corresponding to a half-time of 10 d, under identical conditions. Similarly, a material is assigned to Type S if the amount absorbed into blood by 180 d is less than the amount absorbed over the same period from a hypothetical material with a constant rate of absorption to blood of 0.001 d⁻¹ (extrapolation was used in some cases, as indicated in the text). For studies where it was possible to apply the criteria, a statement is made to the effect that results “are consistent with” (or “give”) assignment to Type F (M or S). For studies where the results point towards a particular Type, but there was insufficient information to apply the criteria, a statement is made to the effect that the results “indicate” or “suggest” Type F (M or S) behaviour.

Assignments are not made here on the basis of the known solubility of chemical forms in aqueous media, because this is not considered to be a reliable guide to absorption from the respiratory tract (Section E.2.2.1 in ICRP, 1994a). If it is considered appropriate in a particular situation, it would need to be carried out with caution. In practice, it might well be possible to assign a radionuclide, to which workers have been exposed, to an absorption Type without knowing its chemical form, e.g. from environmental and/or bioassay measurements. These could include in-vitro dissolution tests on air filters or swabs; in-vivo measurements (chest compared to whole body); or excretion measurements (urine compared to fecal). Nevertheless, for each element, a default absorption Type is recommended for use in the absence of information on which the exposure material can be assigned to Type F, M or S. For most elements Type M is recommended by default.

For soluble (Type F) forms of each element, estimates are made of the overall rate of absorption from the respiratory tract to blood, where information is available. In general this results from dissolution of the deposited material, and also transfer through lining fluids and epithelium into blood. Nevertheless, for simplicity this is usually represented by the rapid dissolution rate, s_r, (see Section 3.2.3 in OIR Part 1). Because of the wide range of the estimated values of s_r, element-specific values are adopted in this series of documents for those elements for which estimates could be made. Justification of the value chosen for an element is given in the subsection headed: "Rapid dissolution rate for element".

For some elements, a significant fraction of the dissolved material is absorbed slowly. In some cases this can be represented by formation of particulate material (which is subject to clearance by particle transport). In others, some dissolved material appears to be attached to lung structural components, and removed only by absorption to blood. To represent the latter type of time-dependent uptake, it is assumed that a fraction, f_{b}, of the dissolved
material is retained in the ‘bound’ state, from which it goes into blood at a rate s_b. Evidence for retention in the bound state, rather than by transformation into particulate material may be in one or more forms: e.g. systemic uptake rather than faecal clearance of the retained material; slower clearance than for insoluble particles deposited in the same region of the respiratory tract; or autoradiography showing diffuse rather than focal retention of activity.

(13) The bound state was included in the HRTM mainly to take account of slow clearance of dissolved materials from the alveolar-interstitial region. Applying the same bound state parameter values in all regions could lead, unintentionally, to high calculated doses to the bronchial (BB) and bronchiolar (bb) regions. Hence in this series of documents it is assumed that for those elements for which a bound state is adopted ($f_b > 0$), it is applied in the conducting airways (ET$_2$, BB and bb regions) only if there is supporting experimental evidence. Justification of the values chosen for an element is given in the subsection headed: "Extent of binding of element to the respiratory tract".

1.2. Data presented in this report series

(14) Data presented in this report series are in a standard format for each element and its radioisotopes. Each element section provides information on chemical forms encountered in the workplace; principal radioisotopes, their physical half-lives and decay modes; reviews of data on inhalation, ingestion and systemic biokinetics; the structure and parameter values for the systemic biokinetic model; monitoring techniques and detection limits typically achieved in a practical monitoring programme. The detection limits presented in this report were derived from a compilation of data from laboratories in Europe, Asia, North America and South America that perform routine monitoring of the specified radionuclide. The sensitivity of the measurements depends on the technique, the counting time and other factors. For example in vivo detection limits depend on the detection system (type, quality and number of detectors), counting geometry, and shielding and design of the installation. Those details are outside the scope of this report.

(15) Dosimetric data are provided in the printed reports of the series and in electronic annexes. The methodology for dose calculation is described in OIR Part 1 (ICRP, 2015) and in Publication 134 (ICRP, 2016c). Due to the amount of data to be provided, the printed reports provide tables and graphs restricted to tables of committed effective dose per intake (Sv per Bq intake) for inhalation and ingestion; tables of committed effective dose per content (Sv per unit activity measurements (Bq)) for inhalation, and graphs of retention and excretion data per Bq intake for inhalation.

(16) Data in the printed reports are provided for all absorption Types of the most common isotope(s) and for an Activity Median Aerodynamic Diameter (AMAD) of 5 µm. In cases for which sufficient information is available (principally for actinide elements), lung absorption is specified for different chemical forms and dose coefficients and bioassay data are calculated accordingly. The dose coefficients and dose per content values presented in this report series are given for a Reference Worker at light work (ICRP, 2015).

(17) The electronic annex that accompanies this series of reports contains a comprehensive set of committed effective and equivalent dose coefficients, dose per content functions, and reference bioassay functions for almost all radionuclides included in Publication 107 (ICRP, 2008) that have half-lives equal to or greater than 10 min, and for other selected radionuclides. Data are provided for a range of physico-chemical forms and for aerosols with median sizes ranging from an Activity Median Thermodynamic Diameter (AMTD) of 0.001 µm to an AMAD of 20 µm. Data for ingestion and injection (i.e. direct entry to the blood) are
provided to allow the interpretation of bioassay data for cases of inadvertent ingestion (e.g. of material on contaminated skin) or rapid absorption through intact or damaged skin (injection).

(18) The dose coefficients and other radionuclide-specific data are provided as a set of data files which may be accessed by the user directly or by using the accompanying Data Viewer. The Data Viewer permits rapid navigation of the dataset and visualisation of the data in tabulated and graphical formats, such as graphs of the time series of dose per content coefficients or predicted activity content per unit dose (Bq Sv⁻¹) as a function of time after intake. Graphical presentations of decay chains and nuclear decay data from Publication 107 (ICRP, 2008) are also included.

(19) Part 2 (ICRP, 2016a) provided the data above on: Hydrogen (H), Carbon (C), Phosphorus (P), Sulphur (S), Calcium (Ca), Iron (Fe), Cobalt (Co), Zinc (Zn), Strontium (Sr), Yttrium (Y), Zirconium (Zr), Niobium (Nb), Molybdenum (Mo) and Technetium (Tc).

(20) Part 3 (ICRP 2016b) provided the data above on the following elements: Ruthenium (Ru), Antimony (Sb), Tellurium (Te), Iodine (I), Caesium (Cs), Barium (Ba), Iridium (Ir), Lead (Pb), Bismuth (Bi), Polonium (Po), Radon (Rn), Radium (Ra), Thorium (Th) and Uranium (U).

(21) Part 4 provides data on the actinides and lanthanide series. (Please note that Th and U data are given in Part 3). The elements included are: Cerium (Ce), Praseodymium (Pr), Neodymium (Nd), Promethium (Pm), Samarium (Sm), Europium (Eu), Gadolinium (Gd), Terbium (Tb), Dysprosium (Dy), Holmium (Ho), Erbium (Er), Thulium (Tm), Ytterbium (Yb), Lutetium (Lu), Actinium (Ac), Protactinium (Pa), Neptunium (Np), Plutonium (Pu), Americium (Am), Curium (Cm), Berkelium (Bk), Californium (Cf), Einsteinium (Es) and Fermium (Fm).

Due to the similarities between the elements in a series, generic biokinetic models are provided for the lanthanides and the actinides. Specific individual data are given, when relevant, in the element sections.

(22) Part 5 will provide data for most of the remaining elements.

REFERENCES

2. A GENERIC BIOKINETIC MODELING SCHEME FOR THE LANTHANIDES

Information on the biokinetics of several of the 15 elements of the lanthanide series, \(^{57}\text{La} \) to \(^{71}\text{Lu} \), is too limited to develop well-supported biokinetic models based on element-specific data. However, the lanthanides show a regular gradation in chemical properties across the series, and animal studies indicate that this is reflected in reasonably predictable changes across the lanthanide family in their deposition in the liver and skeleton as well as in their excretion patterns. These regular differences in chemical and biological behaviour have been used to construct a generic lanthanide biokinetic model and, where specific information is not available, to assign element-specific parameter values for each of the lanthanides.

This section describes the basis for the generic modeling scheme, the common model structure applied, and the generic and element-specific parameter values assigned to each element in the series. Subsequent element sections expand on specific data or assumptions for each of the lanthanides.

2.1. Lanthanide physico-chemistry

The fifteen elements from lanthanum (Z=57) to lutetium (Z=71) form the lanthanide series. The term 'rare earths' has also been used to refer to this group of elements, and at times to a larger group, including yttrium (Z=39) and scandium (Z=21). The International Union of Pure and Applied Chemistry (IUPAC) prefers the term lanthanoid to lanthanide (IUPAC, 2005) but this terminology is not adopted in this document.

There are strong similarities in the chemical behaviour of the lanthanide elements (Durbin, 1960, 1962; Vidaud et al., 2012).

Sources and production

Lanthanides may be encountered in industry in a variety of chemical and physical forms, including oxides, hydroxides, and inorganic salts (chlorides, fluorides, sulphates, carbonates and citrates). The most common lanthanides minerals are monazite (sand-composed of phosphates of thorium, cerium, neodymium and lanthanum) and bastnäsite (mixed fluorocarbonate of various lanthanides).

The radio-lanthanides from lanthanum (La) through dysprosium (Dy) are produced in significant yield (representing about 40% of fission product mass) in the fission of \(^{235}\text{U} / ^{239}\text{Pu}\) in light water reactors. The mutual separation of fission product lanthanides from transplutonium actinides in used nuclear fuel reprocessing is motivated by the desire to reduce long-term radiotoxicity of used fuel (Nash et al., 2012).

Uses

Lanthanides are increasingly employed in electronic (e.g. superconductors), catalytic, ceramic, glass polishing, magnetic technologies… Lanthanide ions are used as the active ions in luminescent materials for optoelectronics applications (e.g. Nd:YAG laser) and as co-dopants in doped-fiber optical amplifiers. The radio-lanthanides (e.g. \(^{153}\text{Sm}, ^{177}\text{Lu}, ^{166}\text{Ho}\)…) are also considered as excellent candidates for radiotherapy because of their desirable physical characteristics and ready availability. They have also been investigated for different potential therapeutic applications such as: i) palliative treatment of pain from bone cancer (\(^{153}\text{Sm}\)); ii) microspheres and colloids for radiation synovectomy (\(^{165}\text{Dy}, ^{166}\text{Ho}, ^{153}\text{Sm}\)); iii) labeled monoclonal antibodies for radioimmunotherapy (\(^{177}\text{Lu}, ^{166}\text{Ho}\)). Common polyaminocarboxylate...
chelating agents such as ethylene diamine tetraacetic acid (EDTA) and diethylene triamine pentaacetic acid (DTPA) are currently used to form strong and stable in vivo complexes.

Physico-Chemistry

The fifteen elements of the lanthanide series (Ln), also called f-transition metals or 4f elements, exhibit basically similar chemical properties. The electronic structure of the lanthanide elements is \([\text{Xe}]6s^24f^n\), except for lanthanum (La), gadolinium (Gd) and lutetium (Lu) which are \([\text{Xe}]5d^16s^24f^n\). Lanthanide ions are usually stable and mainly present in aqueous solution as trivalent ions Ln(III) with few exceptions such as cerium (Ce), praseodymium (Pr), terbium (Tb) and dysprosium (Dy) that can also exist at valence IV, and samarium (Sm), europium (Eu) thulium (Tm) and ytterbium (Yb) that can be also present at valence II (Table 2.1).

In aqueous solutions, the properties of the lanthanides are usually ruled by the ionic radii decreasing, the so-called lanthanide contraction, regularly from 1.16 Å for La(III) to 0.98 Å for Lu(III) (Fig. 2.1) at coordination number VI (Shannon, 1976). The coordination numbers for \([\text{Ln(H}_2\text{O)}_n]^{3+}\) in aqueous solution are up to IX for the early lanthanides and VIII for the later members.

In terms of oxido-reduction potentials, the Ln (0/3+) couples are nearly the same for all the family ranging from +2.28 V (Lu) to +2.52 V (La) (Charlot, 1958) which means that these metals are strongly electropositive or highly reducing and thus are classified as hard acidic cations in the Pearson theory of Hard and Soft Acids and Bases (HSAB) (Pearson, 1963). One important property of Ln(III) is that, whatever the ligand, they form ionic bonds rather than covalent bonding. Their high hydrophilicity leads to a competition between any chelating or extracting agent and water molecules. Because the different lanthanide ions have slightly different radii, the lattice energy of their salts and hydration energies of the ions are slightly different, leading to small differences in solubility.

Lanthanides in aqueous solution are mainly present as Ln\(^{3+}\) ions and as hard acidic cations, readily form stable complexes with O-donor ligands. They react slowly and can form either hydroxides Ln(OH)\(_{3aq}\) or precipitated Ln(OH)\(_3s\) (Klungness et al., 2000; Cotton, 2006), with stability constant (log \(\beta\)) ranging from -8.8 to -7.3 and solubility product (log \(K_s\)) ranging from -20.1 to -25.0 in the series. Moreover, solubility product (log \(K_s\)) of two basic mineral anions such as phosphates (PO\(_4^{3-}\)) (-26.2 to -25.4) and carbonates (CO\(_3^{2-}\)) (-29.9 to -32.2) can be dominant and play a major role within different biological and environmental media (Leggett et al., 2014). Some specific ligands which are good complexing agents such as EDTA with log \(\beta\) ranging from 15.5 to 19.8 (Smith et Martell, 1989) and DTPA with log \(\beta\) ranging from 19.5 to 22.5 (Anderegg et al., 2005), are commonly used in separation chemistry and radiotherapy.

Table 2.1. Oxidation states for the lanthanide elements\(^a\).

<table>
<thead>
<tr>
<th>Element</th>
<th>Oxidation state</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>III</td>
</tr>
<tr>
<td>Ce</td>
<td>III, IV</td>
</tr>
<tr>
<td>Pr</td>
<td>III, IV</td>
</tr>
<tr>
<td>Nd</td>
<td>III</td>
</tr>
<tr>
<td>Pm</td>
<td>III</td>
</tr>
<tr>
<td>Sm</td>
<td>II, III</td>
</tr>
<tr>
<td>Eu</td>
<td>II, III</td>
</tr>
</tbody>
</table>
DRAFT REPORT FOR CONSULTATION: DO NOT REFERENCE

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gd</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>Tb</td>
<td>III, IV</td>
<td></td>
</tr>
<tr>
<td>Dy, Ho, Er, Tm</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td>II, III</td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td>III</td>
<td></td>
</tr>
</tbody>
</table>

In bold font are the most stable oxidation states under aqueous conditions.

Fig. 2.1. Ionic radii of lanthanide series for the two main oxidation states (III and IV) and for a coordination number (CN = VI). Ca(II) and Fe(III) radii are given as a comparison.

Behaviour within biological media

(34) The biochemical properties of lanthanides have been described by several authors (e.g. Evans, 1983). Elements of the lanthanide series occur in only trace amounts in organisms and play no biological role. However, it may be expected that they find their way into the food chain, water and air, and that the human body contain a natural, or ‘base load’, of the elements (e.g. Zhu et al, 2010).

(35) Speciation of lanthanides within biological media is driven mainly by hydrolysis and precipitation with basic mineral anions such as phosphates (PO$_4^{3-}$) and carbonates (CO$_3^{2-}$), as a function of pH conditions (Leggett et al., 2014).

(36) Trivalent lanthanides have been shown to substitute for metal ions such as Ca$^{2+}$, and, to a lesser extent, Mg$^{2+}$, Fe$^{3+}$ and Mn$^{2+}$ (Evans, 1983). Trivalent lanthanides therefore interact with many proteins which either have an absolute dependence on Ca$^{2+}$ or whose activity is stimulated by Ca$^{2+}$. Trivalent lanthanide can for example replace Ca$^{2+}$ in Conconavalin A and bind to many proteins such as transferrin, IgG, albumin and calmodulin and to acetylcholine receptors (Evans, 1983). Trivalent lanthanides also promote polymerization of collagen and some individual elements such as Tb$^{3+}$ promote aggregation of haemocyanin (Evans and Drouven, 1983). Stability constants of lanthanides with different amino acids are relatively...
weak (log β ranging from 3.0-6.5) (Smith and Martell, 1989) compared to classical organic complexes.

(37) Trivalent lanthanides are known to bind to the cellular membrane but not penetrate it. They also bind tightly to cartilage, which explains their use for investigations on arthritis (Evans, 1983). Additional characteristics of tissue binding and on the behaviour in the body are given in the paragraphs below.

2.2. Routes of Intake

2.2.1. Inhalation

(38) The behaviour of ionic (water-soluble) lanthanides following deposition in the respiratory tract is difficult to determine because ionic solutions (e.g. chloride) are unstable at neutral pH and in many biological media, resulting in colloid formation. For example, cerium hydroxide precipitates from nitrate solution at pH 8.1 (NCRP, 1978). As discussed in the cerium inhalation section, this may account, in part at least, for the wide range in lung clearance kinetics observed following deposition of cerium chloride in the lungs.

(39) There is extensive information on the behaviour of cerium following its deposition in the respiratory tract, but relatively little for other lanthanides, and for several of them there are no experimental studies at all. Because of the lack of information on the lung clearance characteristics of most lanthanides other than cerium, and the similarities in the chemical behaviour of the lanthanides, the behaviour of cerium is used in this document as a model for other lanthanide elements.

(40) As described in the cerium section, there have been many studies of the behaviour of cerium deposited in the respiratory tract as chloride (more than for any other water-soluble form of any lanthanide). It appears that the absorption characteristics of cerium following deposition of the chloride depend strongly on the methods used to prepare and administer the material. In particular, the fraction dissolved rapidly (f_r) varied from 0.02 to 0.96 and seems to decrease with increasing mass administered and increasing pH.

(41) In the analysis of the data and the determination of absorption parameter values carried out here (i.e., by the Task Group), the following biokinetic data and models were used:

- For deposition in the respiratory tract of each species, data from the literature, e.g. Snipes et al. (1983), Raabe et al. (1988), and information relating to the study (e.g. early excretion).
- For particle transport from the alveolar-interstitial region of the respiratory tract in each species, clearance rates from the literature (e.g. Snipes et al., 1983; Bailey et al., 1985).
- For transit through the alimentary tract and for systemic biokinetics, the cerium model for dogs developed by Shyr et al. (1991); changes were made to the rates, but not to the structure, for other species (rats, mice, hamsters).
- Rates for the respiratory tract, alimentary tract or systemic models were also adapted when no information was available for the particular species or strain, or when the fit with “default” values was not considered sufficiently good.

(42) The most comprehensive studies of cerium chloride deposited in the lungs involved complementary experiments in which 144Ce was inhaled by dogs as carrier-free 144Ce in a CsCl vector, in a mixture of CsCl and CeCl$_3$, or in CeCl$_3$ (Boecker and Cuddihy 1974; Cuddihy et al., 1975, 1976). Analysis was carried out here by simultaneously fitting data from these experiments: values of s_c, f_b, s_b, and s_s were assumed to be the same in each experiment, while f_r
was allowed to vary between them. The results could be fit well, with absorption parameter
values of \(s_r = 0.44 \text{ d}^{-1} \), \(f_r = 0.07 \); \(s_b = 0.021 \text{ d}^{-1} \) and \(s_s = 0.0015 \text{ d}^{-1} \). (Values of \(f_r \) were ~0.95 for
carrier-free \(^{144}\text{Ce} \) in a CsCl vector; 0.84 for \(^{144}\text{Ce} \) in a mixture of CsCl and CeCl\(_3\); and 0.52 for
\(^{144}\text{Ce} \) in CeCl\(_3\).)

These parameter values were applied in the analysis of the results of other lanthanide
studies carried out here. The bound fraction parameter values were applied in all cases. The
rapid and slow dissolution rates were usually applied to water-soluble forms.

These results were also used to select the bound state parameter values for cerium;
specific parameter values for water-soluble forms of cerium; and were a major input to
selecting the rapid dissolution rate for cerium. These parameter values were then applied to the
rest of the lanthanides. See the section below on Absorption Types and parameter values, and
for more details, the cerium inhalation section.

2.2.1.1. Comparisons of respiratory tract clearance of lanthanides

Comparisons that could be made between the clearance characteristics of lanthanides
deposited in the respiratory tract under similar conditions are described in the next paragraphs.
Ideally, comparisons would have been made between elements administered simultaneously
e.g. 'dual-isotope' experiments, or at least as part of the same study, but there are very few such
experiments reported. Comparisons are therefore made here between studies carried out by the
same research group under apparently similar conditions. However, as noted above, the
clearance kinetics of cerium deposited as chloride in the respiratory tract seem to be sensitive to
the conditions under which it is administered. Hence observed differences could be due to
differences in experimental conditions or to differences between elements. In this section,
emphasis is placed on comparing the biokinetics of different lanthanides following deposition
in the respiratory tract. Further information on the experiments and derivation of parameter
values is given in the corresponding element sections.

Cerium, praseodymium, promethium and samarium chlorides inhaled by mice

Similar studies were carried out in which the biokinetics were followed after
inhalation of the chlorides (pH 3.5) of \(^{144}\text{Ce} \), \(^{143}\text{Pr} \), \(^{147}\text{Pm} \), and \(^{153}\text{Sm} \) by mice (Gensicke and
Spode, 1962; Gensicke and Nitschke, 1964, 1965, 1970; Gensicke et al., 1973). The results are
compared in Fig. 2.2.
Fig. 2.2. Comparison of biokinetics of lanthanides inhaled by mice as chlorides. Data (decay-corrected) normalised to sum of contents of lungs, trachea, and systemic organs at end of inhalation (t = 30 minutes).

Broadly similar behaviour is seen, except for greater retention of 144Ce (than of other lanthanides) in the lungs beyond 1 d, and greater retention of 144Ce in the blood beyond 1 hour. The very low lung clearance of 144Ce is surprising, but the data are difficult to interpret (see cerium section). Even for insoluble particles, clearance from the lungs of mice would normally be readily observable over this period, suggesting that a considerable fraction is bound. As noted above, there is great variation between studies in lung clearance of cerium deposited in the lungs as chlorides. The fraction dissolved rapidly seemed to decrease with increasing mass administered and increasing pH. However, it was administered in this experiment at pH 3.5, and the avid retention was not observed with the other lanthanides administered under similar conditions.

Analyses were carried out here, considering together the four experiments which showed similar behaviour: one each for 143Pr and 153Sm and two for 147Pm. Assuming (as above) that $s_r = 0.44 \text{ d}^{-1}$, $s_b = 0.07$, $s_s = 0.0015 \text{ d}^{-1}$, fits were obtained with values of $f_r = 0.3$ for 147Pm and 0.4 for 153Sm and 143Pr.

As an alternative, the value of the slow dissolution rate was optimised for the results of these four experiments simultaneously. This gave a higher value of $s_s = 0.006 \text{ d}^{-1}$, and slightly lower values of f_r: 0.2 for 147Pm, and 0.4 for 143Pr and 153Sm.

With the same assumptions for the other parameter values (including $s_s = 0.0015 \text{ d}^{-1}$), a fit was also made to the four datasets simultaneously, assuming that the same value of f_r applied to 143Pr, 153Sm and 147Pm. This gave $f_r = 0.4$.

The values of f_r derived for 144Ce, 153Sm and 147Pm administered as chlorides, with various assumptions, ranged from 0.2 to 0.4. These are similar to those obtained for 140La and 144Ce administered to dogs as LaCl$_3$ and CeCl$_3$ (0.4 and 0.5 respectively, see below).

Water-soluble forms of praseodymium, europium, gadolinium, terbium and ytterbium administered to rats

Moskalev et al. (1972) followed the biokinetics of 143Pr (for 32 d), 153Gd, 160Tb, 169Yb (for 64 d) and 152Eu (for 128 d) after deposition in the lungs of rats. However, few details are given. The text states that following inhalation or intratracheal instillation, rare-earth nuclides, even when administered as soluble simple salts, are slowly and incompletely absorbed
from lung tissue, but the distribution of the absorbed portion is the same as after intravenous administration. Fig. 135 of Moskalev et al. (1972) shows retention (presumably in the lungs) of the five radionuclides: data read from it are given in Table 2.2. They are assumed here to be decay-corrected, although it is not stated in the original paper.

Table 2.2. Radionuclide lung retention in rats (Moskalev et al., 1972).

<table>
<thead>
<tr>
<th></th>
<th>% of "given dose" (initial lung deposit)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>143Pr</td>
</tr>
<tr>
<td>1 hour</td>
<td>72</td>
</tr>
<tr>
<td>1 d</td>
<td>66</td>
</tr>
<tr>
<td>2 d</td>
<td>53</td>
</tr>
<tr>
<td>8 d</td>
<td>29</td>
</tr>
<tr>
<td>32 d</td>
<td>12</td>
</tr>
<tr>
<td>64 d</td>
<td>–</td>
</tr>
<tr>
<td>128 d</td>
<td>–</td>
</tr>
</tbody>
</table>

Results are similar for 160Tb, 169Yb and 152Eu: lung retention falls fairly rapidly to ~10% initial lung deposit (ILD) at 8 d, and ~1% ILD remains at 64 d. Retention of 153Gd falls much faster in the first hour, presumably because of greater deposition in the upper airways, and rapid mucociliary clearance (see gadolinium section). Retention of 143Pr was somewhat greater.

Analysis was carried out here assuming that $s_t = 0.44$ d$^{-1}$, $f_b = 0.07$; $s_b = 0.021$ d$^{-1}$, and $s_s = 0.0015$ d$^{-1}$ (based on cerium, see above). The results fit well with $f_r \sim 0.7$ for 143Pr; ~0.9 for 153Gd; and >0.95 for 160Tb, 169Yb and 152Eu. Thus they support the application of the cerium parameter values to these elements.

Lanthanum and cerium chlorides inhaled by dogs

Cuddihy and Boecker (1970) followed the biokinetics of 140La up to 8 d in beagle dogs that inhaled 140La as 140LaCl$_3$ in a LaCl$_3$-CsCl vector. Comparison with the behaviour of cerium deposited in the respiratory tract under similar conditions was made using the results reported by Cuddihy et al. (1975) (Fig. 2). The same research team followed the biokinetics of 144Ce up to 32 d, in beagle dogs that inhaled 144Ce as 144CeCl$_3$ or as 144Ce in a CsCl vector (both in 0.1N HCl). The former is more directly comparable with the 140La experiment because it also involved the use of the stable element as carrier, but tissue distribution data are available only at 32 d, whereas the last 140La measurement was at 8 d. As shown in Fig. 2, 144Ce as 144CeCl$_3$ is absorbed more slowly from the lungs than for 144Ce in CsCl vector, with less uptake to blood and deposition in liver and skeleton. The amounts of lanthanum in lung, liver and skeleton show similar trends with time to those of 144Ce in CsCl vector, and if extrapolated to 32 d, would be reasonably consistent with the 144Ce as 144CeCl$_3$. Measurements of activity in blood made throughout the experiment are similar for lanthanum and 144Ce as 144CeCl$_3$. Thus the results indicate that the two elements behaved similarly.
Fig. 2.3. Tissue distribution and retention of lanthanum and cerium (decay-corrected percent of initial body burden, IBB), following inhalation of chlorides by beagle dogs.

Cuddihy et al. (1970) LaCl$_3$ (+); Cuddihy et al. (1975) CeCl$_3$ (●) Cuddihy et al. (1975) CeCl$_3$ in a CsCl vector (□).

(56) It was observed that the 140La concentration in the nasal turbinates was higher at all times than in other tissues, including lung. The authors noted that persistent high local concentrations of other radionuclides in the nasal turbinates had been observed following inhalation (see e.g. cerium section). Benjamin et al. (1979) noted long-term retention of 144Ce and 91Y but not of 90Sr in the nasal cavity following inhalation of the chlorides by dogs.

Lanthanum and cerium chlorides inhaled by monkeys

(57) Ducousso and Pasquier (1974) investigated the rapid phase of absorption of 140La inhaled by monkeys as 140LaCl$_3$ in a vector of NaCl in 0.1N HCl solution (pH 1). The fraction absorbed in 1 hour decreased with increasing mass deposited, from ~6% ILD at 0.2 µg to ~3% ILD at 9 µg. (However, it was noted that the absolute mass absorbed increased.) By 4 hours the fraction absorbed at the highest mass increased to ~6% ILD. Measurements were also made under the same conditions with 144Ce inhaled as 144CeCl$_3$ in a vector of NaCl in 0.1N HCl solution. Broadly similar results were obtained for 144Ce as for 140La.

(58) Pasquier (1973) also provided evidence for binding of lanthanum in the alveolar region, as is assumed here for cerium.

Lanthanum, gadolinium and yttrium chlorides intratracheally instilled into rats
Suzuki et al. (1992), Yoneda et al. (1995) and Hirano et al. (1990) followed the biokinetics of lanthanum, gadolinium, and yttrium for 168 d, 174 d and 162 d following intratracheal instillation of stable chlorides (10–100 µg) into rats. The lanthanum, gadolinium and yttrium were retained in the lungs with half-times of ~244 d, 136 d and 170 d, respectively. In all three cases the clearance was considerably slower than observed in radiotracer studies, and considerably slower than would be expected for insoluble particles in rats (ICRP, 2002), suggesting that there was considerable binding to lung structures.

2.2.1.2. Long-term lung retention following occupational exposure to rare earths

Stable ‘rare earth’ elements have had a number of industrial applications which have resulted in worker inhalation exposures. Cerium (containing other rare earths) has been widely used in lens polishing. The electrodes of some carbon arc lamps contained a cerium fluoride core to enhance their brightness. As the electrodes burned, dust containing cerium and other rare earths was inhaled by the lamp operators, such as cinema projectionists and photo-engravers. Studies have been conducted to investigate the lung retention of rare earths and their possible role in lung disease. Table 2.3 summarises information from analyses of lung tissues and/or lung lavage fluid of exposed workers, typically many years after exposure. The table records which elements were measured at concentrations well above the range observed in subjects who were not occupationally exposed. This depends not only on their persistence in the lungs, but also on the relative concentrations in the inhaled material and the method of analysis. Insufficient information is available from such studies to assess absorption parameter values, nor is the chemical form inhaled known, but the presence of lanthanides in the lungs years after exposure indicates Type M or S behaviour.

Table 2.3. Lanthanides measured in human lung tissue or lavage fluid following occupational exposure (concentration higher than in range observed in non-occupationally observed subjects indicated by ✓).

<table>
<thead>
<tr>
<th>Element</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>✓</td>
</tr>
<tr>
<td>Ce</td>
<td>✓</td>
</tr>
<tr>
<td>Nd</td>
<td>✓</td>
</tr>
<tr>
<td>Sm</td>
<td>✓</td>
</tr>
<tr>
<td>Eu</td>
<td>✓</td>
</tr>
<tr>
<td>Tb</td>
<td>✓</td>
</tr>
<tr>
<td>Yb</td>
<td>✓</td>
</tr>
<tr>
<td>Lu</td>
<td>✓</td>
</tr>
</tbody>
</table>

2.2.1.3. Environmental exposure to lanthanides

Zhu et al. (2010) reported measured concentrations of 60 elements in 18 major organ or tissue samples collected from autopsies of 68 adult men (20–60 years old) from four regions of China. The results include concentrations in lung for all the lanthanides except promethium, which has no stable isotopes. (Concentrations of europium were measured with a less sensitive technique than that used for the other elements, and are not strictly comparable.) Leggett et al. (2014) compared the concentrations of lanthanides (relative to that of lanthanum) in the various...
tissues with their concentrations in "soil" (based on measurements in crustal rock etc.) to investigate whether transfer through the environment to tissues was similar across the lanthanides. They noted that concentrations in lung were higher than in other soft tissues, and assessed that most of the material in lungs resulted from retention of inhaled particles (presumably dust derived from rocks and soil), rather than systemic material. The concentration (relative to that of lanthanum) in lungs followed a pattern broadly similar to that in soil: an exponential decrease with increasing atomic number (Z), with the lanthanides having even numbered values of Z being more abundant than those with odd numbered Z. This suggests broadly similar behaviour of the lanthanides in terms of air concentrations, lung deposition, and lung retention. The decrease in relative concentration with increasing Z is somewhat faster in the lungs than in soils. However, this might reflect either the lanthanide profile in the inhaled material, or an increase in the rate of dissolution in the lungs with increasing Z.

Absorption Types and parameter values

Rapid dissolution rate for lanthanides

By analogy with cerium, a value of 1 d\(^{-1}\) is applied here to all Type F forms of all lanthanides. Because it is lower than the general default value of 3 d\(^{-1}\) for Type M and S materials, it is also applied to Type M and S forms of all lanthanides.

Extent of binding of lanthanides to the respiratory tract

By analogy with cerium, a bound fraction with \(f_b = 0.07\) and a rate of uptake \(s_b = 0.02\) d\(^{-1}\), applied in the ET\(_2\) and AI regions (but not in the BB and bb regions), is adopted here for all lanthanides.

Absorption parameter values and Types, and associated \(f_A\) values for particulate forms of lanthanides are given in Table 2.4. As noted above, the bound fraction parameter values and rapid dissolution rates derived for cerium are applied to the other lanthanides. Table 2.4 is therefore based on the table of absorption parameter values for inhaled and ingested cerium (Table 4.2.).

As described above, in most cases where comparisons could be made between the biokinetics of different lanthanides deposited in the respiratory tract under similar conditions, similar behaviour was observed. Therefore the material specific parameter values chosen for water-soluble forms of cerium are assumed here to apply to other lanthanides. Material-specific parameter values for dioxides based on cerium dioxide are also included, but oxides forms other than dioxide, are by default assigned to Type M.

For most elements (including cerium), under the heading 'Default parameter values', the corresponding table includes a list of materials for which there is \textit{in vivo} information which is sufficient to assign the chemical form to a default absorption Type, but specific parameter values for that form are not adopted. This could be because there is insufficient information to derive parameter values, or for another reason, for example, exposure to it is unlikely. For the lanthanides, these materials are instead listed in Table 2.5.
Table 2.4. Absorption parameter values for inhaled and ingested lanthanides.

<table>
<thead>
<tr>
<th>Inhaled particulate materials</th>
<th>Absorption parameter valuesa</th>
<th>Absorption from the alimentary tract, f_A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>f_t</td>
<td>s_t (d$^{-1}$)</td>
</tr>
<tr>
<td>Specific parameter valuesc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water soluble forms, including chloride and citrated</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>Dioxide</td>
<td>0.001</td>
<td>1</td>
</tr>
<tr>
<td>Default parameter valuesd,e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absorption Type</td>
<td>Assigned forms</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>— NB: Type F should not be assumed without evidence</td>
<td>1</td>
</tr>
<tr>
<td>Me</td>
<td>0.2</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>Irradiated fuel fragments</td>
<td>0.01</td>
</tr>
<tr>
<td>Ingested materialf</td>
<td>All compounds</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 x 10$^{-4}$</td>
</tr>
</tbody>
</table>
It is assumed that for all lanthanides a bound fraction $f_b = 0.07$ with an uptake rate $s_b = 0.02\ d^{-1}$ is applied to material in the ET and AI regions, and associated lymph nodes LN$_{ET}$ and LN$_{TH}$. It is assumed that $f_b = 0.0$ for material deposited in the BB and bb regions. The values of s_r for Type F, M and S forms of all lanthanides ($1\ d^{-1}$) are element-specific.

For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the alimentary tract, the default f_r values for inhaled materials are applied: i.e., the (rounded) product of f_r for the absorption Type (or specific value where given) and the f_A value for ingested soluble forms the lanthanide (5×10^{-4} in all cases).

See text of cerium section for summary of information on which parameter values are based, and on ranges of parameter values observed in different studies. For both water soluble forms, and dioxide, specific parameter values are used for dissolution in the lungs, but a default value of f_A (footnote b).

Note that oxides forms of lanthanides other than cerium will probably not be dioxides, and so will be assigned to Type M.

Materials are listed in Table 4 where there is sufficient information in the individual element section to assign to a default absorption Type. If specific parameter values are derived, they are not adopted here.

Default Type M is recommended for use in the absence of specific information on which the exposure material can be assigned to an Absorption Type, e.g. if the form is unknown, or if the form is known but there is no information available on the absorption of that form from the respiratory tract.

Activity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject to reabsorption to blood. The default absorption fraction f_A for the secreted activity is the reference $f_A (= 5 \times 10^{-4})$ for ingestion of the radionuclide.

Table 2.5. Summary of information from in vivo studies to enable assignment of chemical forms to default absorption Types.

<table>
<thead>
<tr>
<th>Element</th>
<th>Type F</th>
<th>Type M</th>
<th>Type S</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>La-DTPA</td>
<td>Chloride</td>
<td></td>
</tr>
<tr>
<td>Ce</td>
<td>Chloride, citrate, fluoride, hydroxide</td>
<td></td>
<td>Irradiated fuel fragments</td>
</tr>
<tr>
<td>Pr</td>
<td>Chloride</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pm</td>
<td>Chloride, oxide (Pm$_2$O$_3$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sm</td>
<td>Chloride, oxide (Sm$_2$O$_3$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eu</td>
<td>Nitrate, oxide (Eu$_2$O$_3$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td>Chloride, citrate</td>
<td>Oxide (Gd$_2$O$_3$)</td>
<td></td>
</tr>
<tr>
<td>Tb</td>
<td>Oxide (Tb$_2$O$_7$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tm</td>
<td>Oxide (Tm$_2$O$_3$)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a See text of individual element section.

2.2.2. Ingestion

Lanthanides in solution exhibit a strong tendency to hydrolyse and to form insoluble species, poorly available for intestinal absorption (Harrison, 1995).
Durbin et al. (1956) investigated the biokinetics of lanthanide tracers in rats, including GI uptake of \(^{144}\text{Ce},^{152,154}\text{Eu},^{160}\text{Tb}\) and \(^{170}\text{Tm}\) administered intragastrically in citrate solution. Estimated fractional absorption was below \(1 \times 10^{-3}\) in all cases.

Moskalev et al. (1972) summarised results of their extensive studies of the biological behaviour of radio-lanthanides \(^{140}\text{La},^{144}\text{Ce},^{143}\text{Pr},^{147}\text{Pm},^{152}\text{Eu},^{153}\text{Gd},^{160,161}\text{Tb}\), and \(^{169}\text{Yb}\) in rats, including fractional uptake from the GI tract following intragastric administration.

Preparations were administered in hydrochloride, nitrate, or citrate solutions with a pH of 3.0-6.0. The investigators concluded that GI uptake of lanthanides does not exceed \(5 \times 10^{-4}\).

Results of other, smaller-scale studies of GI uptake of the lanthanides are reasonably consistent with the above findings for rats (Table 2.6). Estimated \(f_A\) values for La tracers were \(\sim 2 \times 10^{-3}\) for administration as chloride to dogs (Cuddihy and Boecker, 1970), \(< 7 \times 10^{-6}\) for administration as carbonate to dogs (Damment and Gill, 2003); and \(< 10^{-5}\) for administration as carbonate to human subjects (Pennick et al., 2006). The estimated \(f_A\) was \(< 10^{-4}\) for \(^{144}\text{Ce}\) ingested as chloride and \(^{147}\text{Pm}\) ingested as perchlorate by miniature swine (McClellan et al., 1965). In goats, urinary \(^{144}\text{Ce}\) and \(^{147}\text{Pm}\) represented an estimated 0.3% and 0.08%, respectively, of the orally administered amounts over the first 7-9 d, and activity in urine was undetectable thereafter (Ekman and Åberg, 1961). In a dual stable isotope study of GI uptake of Nd in four men and four women, the estimated \(f_A\) values for individual subjects ranged from \(< 1.4 \times 10^{-3}\) to \(3.6 \times 10^{-3}\) (McAughey, 1996). The estimated mean \(f_A\) for Pm was \(10^{-3}\) for ingestion of \(^{143}\text{Pm}\) as chloride by adult male human subjects (Palmer et al., 1970) and \(7 \times 10^{-5}\) for intragastric administration of \(^{147}\text{Pm}\) as chloride to rats (Sullivan et al., 1984). \(f_A\) for Sm was extremely low following its administration as nitrate or oxide to rats (Bruce et al., 1963) or chloride to human subjects (Fairweather et al., 1997). The estimated \(f_A\) for \(^{153}\text{Gd}\) administered to rats as the chloride in a wide range of masses (\(2 \times 10^{-2}\) µg to \(4 \times 10^{-2}\) g) was in the range \(7.6 \times 10^{-5}\) to \(2.0 \times 10^{-4}\) (Ramounet et al., 2000). The estimated \(f_A\) for Eu administered as chloride to rats was in the range \(2 \times 10^{-4}\) to \(3 \times 10^{-3}\) (Berke, 1970).

In Publication 30, Part 3 (ICRP, 1981), a reference GI absorption fraction of 3 \(\times 10^{-4}\) was recommended for all compounds of lanthanides. In Publication 68 (ICRP, 1994b), a value of \(5 \times 10^{-4}\) was adopted by analogy with trivalent actinides. The \(f_A\) value \(5 \times 10^{-4}\) is adopted here for all lanthanides as a reasonably representative value based on experimental results.

Table 2.6. Fractional absorption \(f_A\) of lanthanides.

<table>
<thead>
<tr>
<th>Lanthanides (Ln)</th>
<th>In vivo (f_A)</th>
<th>ICRP recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lanthanum (La)</td>
<td>(< 7 \times 10^{-6}) to (2 \times 10^{-3})</td>
<td></td>
</tr>
<tr>
<td>Cerium (Ce)</td>
<td>(< 10^{-3})</td>
<td></td>
</tr>
<tr>
<td>Praseodymium (Pr)</td>
<td>(< 5 \times 10^{-4})</td>
<td></td>
</tr>
<tr>
<td>Neodymium (Nd)</td>
<td>(< 1.4 \times 10^{-4}) to (3.6 \times 10^{-3})</td>
<td>(5 \times 10^{-4})</td>
</tr>
<tr>
<td>Promethium (Pm)</td>
<td>(10^{-5}) to (< 5 \times 10^{-4})</td>
<td></td>
</tr>
<tr>
<td>Samarium (Sm)</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>Europium (Eu)</td>
<td>(7.8 \times 10^{-5}) to (1.6 \times 10^{-2})</td>
<td></td>
</tr>
<tr>
<td>Gadolinium (Gd)</td>
<td>(7.6 \times 10^{-5}) to (2.0 \times 10^{-4})</td>
<td></td>
</tr>
<tr>
<td>Terbium (Tb)</td>
<td>(< 5 \times 10^{-4}) to (< 10^{-3})</td>
<td></td>
</tr>
<tr>
<td>Dysprosium (Dy)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>to Lutetium (Lu)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.2.3. Systemic distribution, retention and excretion of lanthanide elements

2.2.3.1. A regular distribution pattern for lanthanides observed in rat studies

Durbin (1960, 1962, 1973) compared the behavior of trivalent lanthanide elements in rats following their intramuscular administration. The main sites of deposition of all lanthanides were the liver and skeleton. The initial division between liver and skeleton and the early excretion pattern appeared to be related to the ionic radius, which for the lanthanide family declines monotonically with increasing atomic number (Table 2.7). For elements with ionic radii between 92 pm and 106 pm, a decrease in ionic radius was associated overall with a decrease in uptake by liver, an increase in uptake by bone, and an increase in the early urinary excretion rate (Table 2.7 and Fig. 2.4). Little difference in the distribution or excretion through 4 d was seen for lanthanide elements with ionic radius of 92 pm or less (Tb, Dy, Ho, Er, Tm, Yb, and Lu): the content of bone and liver ranged from 58–68% and 1–7%, respectively, and cumulative urinary excretion was 16–27% of the injected amount. Elements that deposited primarily in the liver were eventually excreted largely in faeces.

Table 2.7. Distribution of trivalent lanthanide elements in rats 4 d post administration, as a function of ionic radius and atomic number.

<table>
<thead>
<tr>
<th>Element</th>
<th>Ionic radius (pm)</th>
<th>Atomic number</th>
<th>% injected activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bone</td>
</tr>
<tr>
<td>Lanthanum</td>
<td>106</td>
<td>57</td>
<td>18</td>
</tr>
<tr>
<td>Cerium</td>
<td>103</td>
<td>58</td>
<td>28</td>
</tr>
<tr>
<td>Praesodymium</td>
<td>101</td>
<td>59</td>
<td>27</td>
</tr>
<tr>
<td>Neodymium</td>
<td>100</td>
<td>60</td>
<td>31</td>
</tr>
<tr>
<td>Promethium</td>
<td>98</td>
<td>61</td>
<td>36</td>
</tr>
<tr>
<td>Samarium</td>
<td>96</td>
<td>62</td>
<td>33</td>
</tr>
<tr>
<td>Europium</td>
<td>95</td>
<td>63</td>
<td>36</td>
</tr>
<tr>
<td>Gadolinium</td>
<td>94</td>
<td>64</td>
<td>41</td>
</tr>
<tr>
<td>Terbium</td>
<td>92</td>
<td>65</td>
<td>60</td>
</tr>
<tr>
<td>Dysprosium</td>
<td>91</td>
<td>66</td>
<td>60</td>
</tr>
<tr>
<td>Holmium</td>
<td>89</td>
<td>67</td>
<td>56</td>
</tr>
<tr>
<td>Erbium</td>
<td>88</td>
<td>68</td>
<td>56</td>
</tr>
<tr>
<td>Thulium</td>
<td>87</td>
<td>69</td>
<td>64</td>
</tr>
<tr>
<td>Ytterbium</td>
<td>86</td>
<td>70</td>
<td>58</td>
</tr>
<tr>
<td>Lutetium</td>
<td>85</td>
<td>71</td>
<td>68</td>
</tr>
</tbody>
</table>

Based on data reported by Durbin (1960, 1962, 1973).
Fig. 2.4. Relation of ionic radius of lanthanide elements and their accumulation in bone and liver of rats following intramuscular injection (based on data of Durbin, 1960).

Moskalev et al. (1974) reached conclusions similar to those of Durbin from their studies of the systemic behavior of the lanthanide elements La, Ce, Pr, Pm, Eu, Gd, Tb, and Yb in rats following intravenous administration (Fig. 2.5.) but described their results in terms of increasing atomic weight rather than decreasing ionic radius. They found that the lighter lanthanides La, Ce, Pr accumulated mainly in the liver (~70%) and to some extent in the skeleton (~20%); the relatively heavy lanthanides Tb and Yb accumulated mainly in the skeleton (~80%) and to some extent in the liver (<20%); and the elements Pm, Eu, and Gd with intermediate atomic weight occupied intermediate places in this scheme. Elimination of the lanthanide elements in urine and faeces also was found to depend on atomic weight. The light elements La, Ce, Pr were excreted primarily in faeces, and only a few percent was excreted in urine over the observation period. With increasing atomic number the percentage eliminated in faeces decreased proportionally to the decline in accumulation in the liver. A change in pH of solutions and presence of carriers had a substantial effect on the distribution of lanthanides due to differences in uptake by the reticuloendothelial system.
Fig. 2.5. Comparison of contents of lanthanide elements in bone and liver of rats 4 d after intramuscular or intravenous administration, as determined by Moskalev et al. (1974) and Durbin (1960).

Findings of Ando et al. (1989) regarding the early systemic behavior of the lanthanide elements Ce, Sm, Gd, Tb, Tm, Yb, and Lu in rats support Durbin’s conclusions that bone and liver are the dominant deposition sites for the lanthanides and that the deposition in bone tends to increase and deposition in liver tends to decrease with decreasing ionic radius (Fig. 2.6.). The data of Ando and coworkers, which were reported as activity concentrations rather than tissue contents, are normalised in Fig. 2.6. to tissue contents determined by Durbin for terbium.
Fig. 2.6. Comparison of relative contents of lanthanide elements in bone and liver of rats at early times after administration, as determined by Ando et al. (1989) and Durbin (1960).

Tissue activity concentrations determined by Ando et al. were normalised to the organ contents of terbium at 4 d as determined by Durbin.

Data on uptake of lanthanide elements in tissues other than liver and bone do not reveal any trends in the systemic behavior. For example, data reported by Ando et al. (1989) for early times after injection indicate that the relative concentrations of Ce, Sm, Gd, Tb, Tm, Yb and Lu ranged from 0.02–0.05 in blood, 1.2–2.8 in kidneys, 0.02–0.07 in skeletal muscle, and 0.2–0.8 in the spleen, with no indication of uptake being related to the ionic radius of the elements.
2.2.3.2. Systemic biokinetic models for the lanthanide elements

A largely generic systemic biokinetic model for the lanthanide elements proposed by Taylor and Leggett (2003) is used in this report. The generic (element-independent) features of the model include the model structure and most but not all transfer coefficients between compartments. Transfer coefficients that are assumed to vary to some extent across the lanthanide elements include those describing transfer from blood to liver, blood to bone, blood to excretion pathways, exchange between blood and one of three compartments of other soft tissues, and the removal half-time from liver to blood.

The model structure is shown in Fig. 2.7. This is a generic structure introduced in ICRP Publication 67 (1993) and applied in the present report series to a number of elements that accumulate largely in the liver and on bone surfaces including most actinide elements.

On the basis of the apparently gradual change in the distribution and excretion of the lanthanides with decreasing ionic radius and a recognition of the uncertainty in interspecies extrapolation of the available biokinetic data, Taylor and Leggett divided the lanthanide elements into five sets of neighboring or individual elements for the purpose of assigning set-specific parameter values: (1) La, Ce, and Nd; (2) Nd, Pm, and Sm; (3) Eu; (4) Gd; (5) Tb, Dy, Ho, Eu, Tm, Yb, Lu. In the development of either generic or set-specific parameter values, preference was given to data on human subjects, dogs, and swine when available. Because biokinetic data for human subjects or laboratory animals other than rodents are sparse or absent for some lanthanide elements, the development of some generic or set-specific parameter values also relied on the assumption that the general trends in the initial distribution and urinary excretion of the lanthanides observed in rats also hold for man. In contrast to data for rats, human studies of the biokinetics of Pm and Gd in human subjects indicate relatively slow removal loss from the liver. Based on these human data as well as analogy with actinide elements, it was assumed that the lanthanide elements are tenaciously retained in the liver. The model for update and removal by other soft tissues is based on collective data on the lanthanides in laboratory animals, and analogy with the actinide elements. The model for uptake and removal by the gonads is based on analogy with the actinide elements.

For all lanthanide elements, half of the skeletal deposit is assigned to trabecular surfaces and half to cortical surfaces. The subsequent behavior of skeletal deposits is then described by the generic bone model for bone-surface-seeking radionuclides. That is, activity is removed from bone surfaces at a rate proportional to the bone turnover rate. Part of the activity removed from bone surfaces is buried in bone volume and part deposits in bone marrow. Activity is removed from bone volume at the rate of bone remodeling and deposited in bone marrow. The removal half-time from bone marrow to blood is assumed to be 0.25 y by analogy with plutonium.
Transfer coefficients from blood to other compartments generally are derived from a generic removal half-time from blood, together with deposition fractions for those compartments. The removal half-time from blood is assumed to be 30 min for each of the lanthanide elements. The corresponding transfer coefficient is 33.27 d\(^{-1}\). Of activity leaving blood, 30% is assigned to a rapid-turnover soft-tissue compartment called ST0, which is assumed to be part of the circulation. Thus, the deposition fractions are relative to the remaining 70% of outflow from blood, 23.29 d\(^{-1}\) (= 0.7 x 33.27 d\(^{-1}\)). For example, if the deposition fraction for cortical bone surface is 0.2, the transfer coefficient from blood to cortical bone surface is 0.2 x 23.29 d\(^{-1}\) or 4.658 d\(^{-1}\).

The following parameter values are generic, i.e., they are applied to all lanthanide elements:

- Percentage of outflow from blood going to rapid-turnover soft tissue (ST0): 30%
- Deposition fractions for:
 a. Kidneys 1: 1.5%
 b. Kidneys 2: 0.5%
 c. ST2 (soft tissues with tenacious retention): 2%
 d. Testes: 0.035%
 e. Ovaries: 0.011%
- Removal half-time from:
a. Blood (to all destinations): 0.5 h
b. ST0 (to blood): 0.5 d
c. ST2 (to blood): 15 y
d. Kidneys 1 (to urinary bladder contents): 7 d
e. Kidneys 2 (to blood): 500 d
f. Liver 1 (to SI content + Liver 2): 30 d
g. Bone marrow compartments to blood: 0.25 y
h. Gonads to blood: 5 y

• Fractional transfer from:
 a. Liver 1 to SI content: 0.84 \(y^{-1} \) (10% of outflow from Liver 1)
b. Liver 1 to Liver 2: 7.59 \(y^{-1} \) (90% of outflow from Liver 1)
c. Trabecular surface to trabecular volume, 0.09 \(y^{-1} \)
d. Cortical surface to cortical volume, 0.015 \(y^{-1} \)
e. Trabecular surface to trabecular marrow, 0.18 \(y^{-1} \)
f. Cortical surface to cortical marrow, 0.03 \(y^{-1} \)
g. Trabecular volume to trabecular marrow, 0.18 \(y^{-1} \)
h. Cortical volume to cortical marrow, 0.03 \(y^{-1} \)
i. Trabecular or cortical marrow to blood, 2.77 \(y^{-1} \)

(80) Element- or set-specific parameter values for the lanthanide elements are listed in Table 2.8 (See sections on individual elements).

<table>
<thead>
<tr>
<th>Parameter value</th>
<th>La to Nd</th>
<th>Pm, Sm</th>
<th>Eu</th>
<th>Gd</th>
<th>Tb to Lu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deposition fraction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver 1 (0.9) + Biliary path (0.1)</td>
<td>0.50</td>
<td>0.45</td>
<td>0.25</td>
<td>0.15</td>
<td>0.05</td>
</tr>
<tr>
<td>Bone surface</td>
<td>0.30</td>
<td>0.35</td>
<td>0.35</td>
<td>0.45</td>
<td>0.55</td>
</tr>
<tr>
<td>Urinary bladder contents</td>
<td>0.02</td>
<td>0.07</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Right colon contents</td>
<td>0.06</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Soft tissues (ST1)</td>
<td>0.07954</td>
<td>0.07954</td>
<td>0.14954</td>
<td>0.14954</td>
<td>0.14954</td>
</tr>
<tr>
<td>(T_{1/2}), ST1 to Blood</td>
<td>1 y</td>
<td>1 y</td>
<td>100 d</td>
<td>100 d</td>
<td>100 d</td>
</tr>
<tr>
<td>(T_{1/2}), Liver 2 to Blood</td>
<td>2 y</td>
<td>2 y</td>
<td>1 y</td>
<td>1 y</td>
<td>1 y</td>
</tr>
</tbody>
</table>
Table 2.9. Transfer coefficients for the lanthanide elements (see sections on individual element).

<table>
<thead>
<tr>
<th>Patha</th>
<th>Transfer coefficient (d<sup>–1</sup>)</th>
<th>La, Ce, Pr</th>
<th>Nd, Pm, Sm</th>
<th>Eu</th>
<th>Gd</th>
<th>Tb, Dy, Ho, Er, Tm, Yb, Lu</th>
</tr>
</thead>
<tbody>
<tr>
<td>From</td>
<td>To</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood</td>
<td>Liver 1</td>
<td>11.6</td>
<td>10.5</td>
<td>5.82</td>
<td>3.49</td>
<td>11.6</td>
</tr>
<tr>
<td>Blood</td>
<td>Trab surf</td>
<td>3.49</td>
<td>4.08</td>
<td>4.08</td>
<td>5.24</td>
<td>6.41</td>
</tr>
<tr>
<td>Blood</td>
<td>Cort surf</td>
<td>3.49</td>
<td>4.08</td>
<td>4.08</td>
<td>5.24</td>
<td>6.41</td>
</tr>
<tr>
<td>Blood</td>
<td>Kidneys 1</td>
<td>0.349</td>
<td>0.349</td>
<td>0.349</td>
<td>0.349</td>
<td>0.349</td>
</tr>
<tr>
<td>Blood</td>
<td>Kidneys 2</td>
<td>0.117</td>
<td>0.117</td>
<td>0.117</td>
<td>0.117</td>
<td>0.117</td>
</tr>
<tr>
<td>Blood</td>
<td>UB cont</td>
<td>0.466</td>
<td>1.63</td>
<td>4.66</td>
<td>4.66</td>
<td>4.66</td>
</tr>
<tr>
<td>Blood</td>
<td>RC cont</td>
<td>1.4</td>
<td>0.233</td>
<td>0.233</td>
<td>0.233</td>
<td>0.233</td>
</tr>
<tr>
<td>Blood</td>
<td>Testes</td>
<td>0.00815</td>
<td>0.00815</td>
<td>0.00815</td>
<td>0.00815</td>
<td>0.00815</td>
</tr>
<tr>
<td>Blood</td>
<td>Ovaries</td>
<td>0.00256</td>
<td>0.00256</td>
<td>0.00256</td>
<td>0.00256</td>
<td>0.00256</td>
</tr>
<tr>
<td>Blood</td>
<td>ST1</td>
<td>1.85</td>
<td>1.85</td>
<td>3.48</td>
<td>3.48</td>
<td>3.48</td>
</tr>
<tr>
<td>Blood</td>
<td>ST2</td>
<td>0.466</td>
<td>0.466</td>
<td>0.466</td>
<td>0.466</td>
<td>0.466</td>
</tr>
<tr>
<td>Liver 1</td>
<td>SI cont</td>
<td>0.00231</td>
<td>0.00231</td>
<td>0.00231</td>
<td>0.00231</td>
<td>0.00231</td>
</tr>
<tr>
<td>Liver 1</td>
<td>Liver 2</td>
<td>0.0208</td>
<td>0.0208</td>
<td>0.0208</td>
<td>0.0208</td>
<td>0.0208</td>
</tr>
<tr>
<td>Liver 2</td>
<td>Blood</td>
<td>0.00095</td>
<td>0.00095</td>
<td>0.0019</td>
<td>0.0019</td>
<td>0.0019</td>
</tr>
<tr>
<td>Trab surf</td>
<td>Trab mar</td>
<td>0.000493</td>
<td>0.000493</td>
<td>0.000493</td>
<td>0.000493</td>
<td>0.000493</td>
</tr>
<tr>
<td>Trab surf</td>
<td>Trab vol</td>
<td>0.000247</td>
<td>0.000247</td>
<td>0.000247</td>
<td>0.000247</td>
<td>0.000247</td>
</tr>
<tr>
<td>Trab vol</td>
<td>Trab mar</td>
<td>0.000493</td>
<td>0.000493</td>
<td>0.000493</td>
<td>0.000493</td>
<td>0.000493</td>
</tr>
<tr>
<td>Trab mar</td>
<td>Blood</td>
<td>0.0076</td>
<td>0.0076</td>
<td>0.0076</td>
<td>0.0076</td>
<td>0.0076</td>
</tr>
<tr>
<td>Cort surf</td>
<td>Cort mar</td>
<td>0.0000821</td>
<td>0.0000821</td>
<td>0.0000821</td>
<td>0.0000821</td>
<td>0.0000821</td>
</tr>
<tr>
<td>Cort surf</td>
<td>Cort vol</td>
<td>0.0000411</td>
<td>0.0000411</td>
<td>0.0000411</td>
<td>0.0000411</td>
<td>0.0000411</td>
</tr>
<tr>
<td>Cort vol</td>
<td>Cort mar</td>
<td>0.0000821</td>
<td>0.0000821</td>
<td>0.0000821</td>
<td>0.0000821</td>
<td>0.0000821</td>
</tr>
<tr>
<td>Cort mar</td>
<td>Blood</td>
<td>0.0076</td>
<td>0.0076</td>
<td>0.0076</td>
<td>0.0076</td>
<td>0.0076</td>
</tr>
<tr>
<td>Kidneys 1</td>
<td>UB cont</td>
<td>0.099</td>
<td>0.099</td>
<td>0.099</td>
<td>0.099</td>
<td>0.099</td>
</tr>
<tr>
<td>Kidneys 2</td>
<td>Blood</td>
<td>0.00139</td>
<td>0.00139</td>
<td>0.00139</td>
<td>0.00139</td>
<td>0.00139</td>
</tr>
<tr>
<td>Testes</td>
<td>Blood</td>
<td>0.00038</td>
<td>0.00038</td>
<td>0.00038</td>
<td>0.00038</td>
<td>0.00038</td>
</tr>
<tr>
<td>Ovaries</td>
<td>Blood</td>
<td>0.00038</td>
<td>0.00038</td>
<td>0.00038</td>
<td>0.00038</td>
<td>0.00038</td>
</tr>
<tr>
<td>ST0</td>
<td>Blood</td>
<td>1.39</td>
<td>1.39</td>
<td>1.39</td>
<td>1.39</td>
<td>1.39</td>
</tr>
<tr>
<td>ST1</td>
<td>Blood</td>
<td>0.0019</td>
<td>0.0019</td>
<td>0.00693</td>
<td>0.00693</td>
<td>0.00693</td>
</tr>
<tr>
<td>ST2</td>
<td>Blood</td>
<td>0.000128</td>
<td>0.000128</td>
<td>0.000128</td>
<td>0.000128</td>
<td>0.000128</td>
</tr>
</tbody>
</table>

*Trab = trabecular; Cort = cortical; surf = surface; vol = volume; mar = marrow; UB = urinary bladder; RC = right colon; cont = content; ST0, ST1, ST2 are compartments of Other soft tissues with fast, intermediate, and slow turnover, respectively.

2.2.3.3. Treatment of radioactive progeny

Chain members addressed in the derivation of dose coefficients for radioisotopes of lanthanide elements are also lanthanides, except that caesium and barium isotopes appear in a few lanthanum or cerium chains. A radioactive progeny produced in a systemic compartment following intake of a lanthanide is assumed to follow the characteristic model of the progeny from its time of production, insofar as this assumption is unambiguous. This assumption is always straightforward if the progeny is a lanthanide because the characteristic models for all lanthanides were developed within a common model structure, so that the site of production of a lanthanide progeny is always identifiable in the progeny’s systemic model. Because the
structures of the characteristic models for caesium and barium differ from that of the lanthanides, however, caesium or barium may be produced by radioactive decay at systemic sites not identifiable with the model structures for these two elements. In such cases caesium or barium is assumed to transfer to the central blood compartment of its characteristic model at the rate 1000 d^{-1} if produced in a soft tissue compartment or bone surface compartment and at the rate of bone turnover if produced in a bone volume compartment. The subsequent behavior of caesium or barium is assumed to be described by its characteristic model.

REFERENCES

Hölzer, F., Gensicke, F., 1965. Investigations of the microdistribution of inhaled radiopromethium (147Pm) [in German], Strahlentherapie 128, 396–405.

Sullivan, M. F., Miller, B. M., Goebel, J. C., 1984. Gastrointestinal absorption of metals (51Cr, 65Zn, 95mTc, 109Cd, 113Sn, 147Pm, and 238Pu) by rats and swine. Environ. Res. 35, 439–453.

3. LANTHANUM (Z = 57)

3.1. Chemical Forms in the Workplace

Lanthanum is the first element of the lanthanide series which occurs mainly in oxidation state III. Lanthanum may be encountered in industry in a variety of chemical and physical forms, including oxides, hydroxides, and inorganic salts (chlorides, fluorides, sulphates, carbonates and citrates).

Table 3.1. Isotopes of lanthanum addressed in this report.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Physical half-life</th>
<th>Decay mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>La-129</td>
<td>11.6 m</td>
<td>EC, B+</td>
</tr>
<tr>
<td>La-131</td>
<td>59 m</td>
<td>EC, B+</td>
</tr>
<tr>
<td>La-132</td>
<td>4.8 h</td>
<td>EC, B+</td>
</tr>
<tr>
<td>La-132m</td>
<td>24.3 m</td>
<td>IT, EC, B+</td>
</tr>
<tr>
<td>La-133</td>
<td>3.912 h</td>
<td>EC, B+</td>
</tr>
<tr>
<td>La-135</td>
<td>19.5 h</td>
<td>EC, B+</td>
</tr>
<tr>
<td>La-137</td>
<td>6.0E+4 y</td>
<td>EC</td>
</tr>
<tr>
<td>La-138</td>
<td>1.02E+11 y</td>
<td>EC, B-</td>
</tr>
<tr>
<td>La-140*</td>
<td>1.678 d</td>
<td>B-</td>
</tr>
<tr>
<td>La-141</td>
<td>3.92 h</td>
<td>B-</td>
</tr>
<tr>
<td>La-142</td>
<td>91.1 m</td>
<td>B-</td>
</tr>
<tr>
<td>La-143</td>
<td>14.2 m</td>
<td>B-</td>
</tr>
</tbody>
</table>

*K dose coefficients and bioassay data for this radionuclide are given in the printed copy of this report. Data for other radionuclides listed in this table are given in the accompanying electronic annexes.

3.2. Routes of Intake

3.2.1. Inhalation

Absorption Types and parameter values

Studies have been reported of lung retention in man following chronic inhalation exposure to stable ‘rare earth’ (lanthanide) elements, including lanthanum (La) (see general lanthanide section). Information on absorption from the respiratory tract is available from experimental studies of lanthanum, mainly as chloride. However, the behaviour of ionic (soluble) lanthanides following deposition in the respiratory tract is difficult to determine because ionic solutions (e.g. chloride) are unstable at neutral pH and in many biological media, resulting in colloid formation. The radiotrace studies reported were of short duration because they used 140La, which has a half-life of only 1.7 d. Lanthanum-140 is usually encountered as the daughter of the important fission product barium-140 (half-life 12.8 d).

As described in the general lanthanide section, absorption parameter values based on cerium are applied in this document to the other lanthanides.
Absorption parameter values and Types, and associated f_A values for particulate forms of lanthanides, including lanthanum, are given in Table 2.4 of the general lanthanide section.

Lanthanum chloride (LaCl_3)

Cuddihy and Boecker (1970) followed the biokinetics of ^{140}La up to 8 d in beagle dogs that inhaled ^{140}La as $^{140}\text{LaCl}_3$ in a LaCl_3-CsCl vector (6.3 mg LaCl_3 and 3.7 mg CsCl per ml, pH not reported). Further details are given by Cuddihy and Griffith (1970). Complementary studies were conducted of $^{140}\text{LaCl}_3$ administered by gavage and $^{140}\text{LaCl}_3$ or ^{140}La citrate administered by intravenous injection. Cuddihy et al. estimated from the results that fractional absorption from the alimentary tract was \sim0.3%. It was observed that following inhalation \sim50% of the initial body content of ^{144}La cleared during the first 2 d: this was attributed to clearance of the upper respiratory tract (URT) by mucociliary action and swallowing, suggesting that the rapid dissolution rate was comparatively slow. Nevertheless, Cuddihy and Boecker noted that in dogs killed immediately after exposure ^{140}La was already present in muscle, skeleton and kidney. Activity remaining in lungs over the period of observation (8 d) was retained with a biological half time of \sim7 d, cleared mainly by absorption. It was observed that the ^{140}La concentration in the nasal turbinates was higher at all times than in other tissues, including lung. The authors noted that persistent high local concentrations of other radionuclides in the nasal turbinates had been observed following inhalation (see e.g. cerium section). While this suggests the presence of a bound fraction, the authors were not certain whether similar behaviour would occur in man because of differences in nasal structure. A biokinetic model for the retention of ^{140}La was developed (Cuddihy and Boecker, 1970; Cuddihy and Griffith, 1972). Analysis carried out here (i.e. by the Task Group) showed that most of the results could be fit well with absorption parameter values of $f_r = 0.07$, $s_r = 12 \text{ d}^{-1}$ and $s_s = 0.10 \text{ d}^{-1}$, which would give (by extrapolation) assignment to Type F. However, the relatively high values of s_r and s_s compared to that obtained for cerium inhaled as chloride (0.44 and 0.0015 d$^{-1}$ respectively, see cerium section) could be due to the short duration of the ^{140}La measurements.

Comparison made here with the behaviour of cerium deposited in the respiratory tract under similar conditions indicated that the two elements behaved similarly (see general lanthanide section). Application here of absorption parameter values $f_b = 0.07$; $s_b = 0.021 \text{ d}^{-1}$ and $s_s = 0.0015 \text{ d}^{-1}$, based on analysis of the cerium experiments, to the LaCl_3 data gave $s_r = 0.73 \text{ d}^{-1}$ and $f_r = 0.52$, similar to the values for ^{144}Ce in CeCl_3, and giving assignment to Type M.

Cuddihy and Griffith (1972) followed the biokinetics of ^{140}La up to 64 d in beagle dogs that inhaled ^{140}Ba and ^{140}La as chlorides in a BaCl_2-LaCl_3 vector (6.3 mg LaCl_3 and 3.7 mg BaCl_2 per ml, pH not reported). Although at the time of administration the ^{140}La activity was equal to or greater than that of ^{140}Ba, because of the relatively short physical half-life of ^{140}La (1.7 d), the ^{140}La present was increasingly due to ingrowth from decay of ^{140}Ba. Barium is more readily absorbed from both the respiratory and alimentary tracts than lanthanum. Hence the authors estimated that ^{140}Ba and ^{140}La were essentially in equilibrium in all bone samples obtained at times greater than 4 d after exposure. Nevertheless, the results enabled them to improve the biokinetic model for inhaled lanthanum developed by Cuddihy and Boecker (1970).
(89) Ducousso and Pasquier (1974) investigated the rapid phase of absorption of 140La inhaled by monkeys as 140LaCl${}_3$ in a vector of NaCl in 0.1N HCl solution (pH 1). Alveolar deposition was maximised by inhaling small particles through an endotracheal tube. An external detector was positioned to measure activity predominantly in the alveolar region. The fraction absorbed (estimated by the decrease in lung activity, assuming that particle transport was negligible) in 1 hour decreased with increasing mass deposited, from ~6% ILD at 0.2 µg to ~3% ILD at 9 µg. (However, it was noted that the absolute mass absorbed increased.) Assuming a single absorption rate, 6% ILD absorbed in 1 hour suggests a value of \sim1.5 d${}^{-1}$. Alternatively, assuming this represents a rapid phase of absorption, it suggests values of $r_i \sim$0.1 and $s_r >$10 d${}^{-1}$.

By 4 hours the amount absorbed at the highest mass increased to ~6% ILD. Measurements were also made under the same conditions with 144Ce inhaled as 144CeCl${}_3$ in a vector of NaCl in 0.1N HCl solution (see general lanthanide inhalation section). Broadly similar results were obtained for 144Ce as for 140La.

(90) Similar experiments (with ILD ~10 µg) had previously been carried by Pasquier (1973), but significant transfer from lungs to blood was observed in only 6 out of 40 experiments. Pasquier (1973) also conducted studies of the physico-chemical state of lanthanum in solution. In vitro, at biological pH (7.2-7.4), some hydrolysis and polymerization occurred but >50% of the lanthanum was filterable (presumably monomeric). In vivo it was found that lanthanum is rapidly fixed by alveolar lipo-proteins.

(91) Pasquier et al. (1969) studied the effectiveness of inhaled DTPA (diethylenetriamine-pentaacetic acid) on removal of 140La from the lungs following its inhalation as chloride by monkeys.

(92) Suzuki et al. (1992) followed the biokinetics of lanthanum for 168 d following intratracheal instillation of stable lanthanum chloride (50 µg) into rats. The lanthanum was mainly retained in the lung with a biological half-time of 244 d. The clearance was considerably slower than observed in the radiotracer studies described above, and considerably slower than would be expected for insoluble particles in rats (ICRP, 2002), suggesting that there was considerable binding of lanthanum to lung structures. Similar observations were reported for stable yttrium and gadolinium compared to tracer level radionuclides (see general lanthanide section).

(93) Although specific parameter values for lanthanum chloride based on in vivo data could be derived, inhalation exposure to it is unlikely. Instead, lanthanum chloride is assigned to water-soluble forms of lanthanides (see general lanthanide section, Table 3).

140La-labelled DTPA

(94) Pasquier et al. (1969) investigated the absorption from the lungs of 140La inhaled by monkeys as 140La-DTPA and measured a half-time of 44 minutes. In complementary experiments 14C-DTPA was intravenously injected: 50% was excreted in urine in ~1 hour, and the rest within a few hours. These results are similar to conclusions from extensive measurements of 99mTc-DTPA inhaled by human subjects (see DTPA in technetium section in OIR Part 2). In healthy non-smokers, lung retention half-times of 99mTc were reported to be ~1 hour, and there is evidence that the 99mTc-DTPA did not dissociate during its movement from lungs to urine. A similar absorption rate was estimated for 14C-DTPA inhaled by healthy volunteers (see carbon section). This suggests that the half-time of 44 minutes measured by Pasquier et al. (1969) is characteristic of DTPA, rather than lanthanum. Although specific parameter values for lanthanum-DTPA based on in vivo data could be derived, inhalation
exposure to it is unlikely. Based on its absorption from the lungs, it could be assigned to Type F. However, uptake from the alimentary tract, and systemic biokinetics, are also likely to be determined by DTPA, rather than lanthanum (see DTPA in carbon and technetium sections in OIR Part 2).

Lanthanum oxide

(95) Barnes (1971) studied the distribution within the lungs of 140La oxide formed by heat treatment of chloride at 1150°C, inhaled by dogs. Measurements were only made immediately after inhalation, and therefore absorption parameters cannot be determined, but the material did not dissolve readily in the lungs.

Fused aluminosilicate particles (FAP)

(96) FAP or “fused clay” particles have been extensively used as relatively insoluble particles in inhalation studies, both of bio kinetics and of radiation effects (see, e.g. cerium section). Barnes (1971) studied the distribution within the lungs of 140La-labelled FAP, inhaled by dogs. Measurements were only made immediately after inhalation, and therefore absorption parameters cannot be determined, but the material did not dissolve readily in the lungs.

Kaolin

(97) Cohn et al. (1957) reported the tissue distribution of 140La in mice up to 3 d after inhalation of 140LaCl$_3$ adsorbed onto kaolin, or administration of a suspension of the particles by gavage. There is insufficient information to estimate parameter values, but absorption from the respiratory tract seems to have been greater than from the alimentary tract.

3.2.2. Ingestion

(98) The fractional absorption of lanthanum in rats was reported to be less than 5 x 10$^{-4}$ (Hamilton, 1948; Moskalev et al., 1972). However, in experiments on dogs the fractional absorption of lanthanum, ingested as the chloride, from the gastrointestinal tract was found to be about 2 x 10$^{-3}$ (Cuddihy and Boecker, 1970).

(99) Damnent et al. (2003) and Pennick et al. (2006) have reported low values of the bioavailability of lanthanum administered as an oral dose of carbonate: in dogs the rate of absorption was estimated < 7 x 10$^{-6}$ (Damnent et al., 2003) and in human around 10$^{-5}$ (Pennick et al., 2006).

(100) In *Publication 30* (ICRP, 1979), an f_i of 10$^{-3}$ was recommended for all compounds of lanthanum. In *Publication 68* (ICRP, 1994), a value of 5 x 10$^{-4}$ was adopted by analogy with trivalent actinides and this f_A value is adopted in this report for every element of the lanthanide family.

3.2.3. Systemic distribution, retention and excretion of lanthanum

3.2.3.1. Data

(101) After intravenous administration of 140LaCl$_3$ to human subjects, urinary excretion ranged from 0.5% to 2% of the dose in 24 h (Spencer, 1968). Faecal excretion accounted for approximately 0.5% of the dose during the first four days.
Following intravenous administration of lanthanum chloride to healthy human subjects, renal clearance amounted to 1.7% of total plasma clearance over the first 7 d (Pennick et al., 2006). Following intravenous administration of lanthanum chloride to rats, 74% of the administered lanthanum was excreted in faeces in 42 days, and <2% was recovered in urine (Dammert and Pennick, 2007).

Cuddihy and Boecker (1970) studied the biokinetics of \(^{140}\)La in beagle dogs following administration of \(^{140}\)LaCl\(_3\) by inhalation, gavage, and intravenous injection. The division of \(^{140}\)La between liver and skeleton depended on the route of administration, with lower relative uptake by liver for inhaled lanthanum than for injected lanthanum. The tissue distribution patterns were greatly influenced by the chemical form administered. The investigators concluded that injection studies involving \(^{140}\)La are of limited value for interpreting the results or predicting the fate of inhaled lanthanum. They developed a biokinetic model for lanthanum as a fit to the inhalation data for dogs. The model assigns 45% of outflow from blood to liver, 32% to skeleton, 3.8% to kidneys, 0.0048% to spleen, 9.6% to urine, and 9.6% to the intestinal contents. The estimated rates of return from tissue compartments to blood are as follows: 0.002 h\(^{-1}\) from liver, 0.001 h\(^{-1}\) from skeleton, 0.01 h\(^{-1}\) from kidneys, and 0.05 h\(^{-1}\) from spleen.

In rats, relatively larger concentrations were observed in the kidneys and bones and relatively lower concentrations in the liver after intramuscular or subcutaneous administration than after intravenous administration (Moskalev, 1961).

3.2.3.2. Biokinetic model

The biokinetic model for systemic lanthanum applied in this report is described in Section 2.2.3.2.

3.2.3.3. Treatment of progeny

The treatment of radioactive progeny of lanthanum produced in systemic compartments or absorbed to blood after production in the respiratory or gastrointestinal tract is described in section 2.2.3.3.

3.3. Individual monitoring

Measurements of \(^{140}\)La concentrations in urine and faeces are performed to determine intakes of the radionuclide for routine monitoring. Measurements of \(^{140}\)La may be performed by \textit{in vivo} whole-body measurement technique. \textit{In vivo} lung measurement is used as an additional technique for special investigations. The main technique is gamma spectrometry.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Monitoring Technique</th>
<th>Method of Measurement</th>
<th>Typical Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{140})La</td>
<td>Urine Bioassay</td>
<td>γ-ray spectrometry</td>
<td>6 Bq/L</td>
</tr>
<tr>
<td>(^{140})La</td>
<td>Faecal Bioassay</td>
<td>γ-ray spectrometry</td>
<td>6 Bq/24h</td>
</tr>
<tr>
<td>(^{140})La</td>
<td>Lung Measurement(^a)</td>
<td>γ-ray spectrometry</td>
<td>320 Bq</td>
</tr>
</tbody>
</table>
DRAFT REPORT FOR CONSULTATION: DO NOT REFERENCE

<table>
<thead>
<tr>
<th>140La</th>
<th>Whole-body Measurement</th>
<th>γ-ray spectrometry</th>
<th>60 Bq</th>
</tr>
</thead>
</table>

| | Measurement system comprised of two Broad Energy Germanium Detectors (BEGe) for counting time of 36 minutes and chest wall thickness of 2.54 cm. |
| | Measurement system comprised of two Broad Energy Germanium Detectors (BEGe) and counting time of 15 minutes. |

3.4. Dosimetric data for lanthanum

Dosimetric data will be provided in the final version of the document.

REFERENCES

Ann. ICRP 2 (3-4).
4. CERIUM (Z = 58)

4.1. Chemical Forms in the Workplace

Cerium is an element of the lanthanide series which occurs mainly in oxidation state III and IV. Cerium may be encountered in a variety of chemical and physical forms, including oxides, hydroxides, and inorganic salts (chlorides, fluorides, sulphates, carbonates and citrates). Cerium is most commonly obtained from bastnäsite and monazite. Cerium isotopes (e.g. ^{144}Ce) are fission products.

Table 4.1 Isotopes of cerium addressed in this report.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Physical half-life</th>
<th>Decay mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ce-130</td>
<td>22.9 m</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Ce-131</td>
<td>10.2 m</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Ce-132</td>
<td>3.51 h</td>
<td>EC</td>
</tr>
<tr>
<td>Ce-133</td>
<td>97 m</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Ce-133m</td>
<td>4.9 h</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Ce-134</td>
<td>3.16 d</td>
<td>EC</td>
</tr>
<tr>
<td>Ce-135</td>
<td>17.7 h</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Ce-137</td>
<td>9.0 h</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Ce-137m</td>
<td>34.4 h</td>
<td>IT, EC</td>
</tr>
<tr>
<td>Ce-139*</td>
<td>137.641 d</td>
<td>EC</td>
</tr>
<tr>
<td>Ce-141*</td>
<td>32.508 d</td>
<td>B-</td>
</tr>
<tr>
<td>Ce-143</td>
<td>33.039 h</td>
<td>B-</td>
</tr>
<tr>
<td>Ce-144*</td>
<td>284.91 d</td>
<td>B-</td>
</tr>
</tbody>
</table>

*Dose coefficients and bioassay data for this radionuclide are given in the printed copy of this report. Data for other radionuclides listed in this table are given in the accompanying electronic annexes.

4.2. Routes of Intake

4.2.1. Inhalation

Absorption Types and parameter values

Studies have been reported of the behaviour of cerium (Ce) radioisotopes in man following accidental inhalation, and of lung retention in man following chronic inhalation exposure to the stable element (see general lanthanide section). Information on absorption from the respiratory tract is available from experimental studies of cerium in various chemical forms, including chloride, citrate, dioxide, irradiated fuel fragments, and in fused aluminosilicate particles (FAP). The behaviour of ionic (soluble) cerium following deposition in the respiratory tract is complex and difficult to quantify because ionic solutions (e.g. chloride) are unstable at neutral pH and in many biological media, resulting in colloid formation (see general lanthanide
For example, cerium hydroxide precipitates from nitrate solution at pH 8.1 (NCRP, 1978). Hence in some studies described below chloride was administered in dilute acid. The question of whether cerium deposited in the respiratory tract in relatively soluble forms is retained in particulate and/or bound form has been discussed for about 50 years, and remains unresolved (see section on bound state below). However, because absorption of cerium from the alimentary tract is low, most uptake to blood following intake by inhalation generally originates in the respiratory tract, which simplifies analysis.

A report on the properties of radiocerium relevant to radiation protection, published by the National Council on Radiation Protection and Measurements (NCRP) includes a review of information available at that time on the retention of cerium deposited in the respiratory tract in various chemical forms (NCRP, 1978). The biological effects of irradiation from 144Ce inhaled in both soluble and insoluble forms have been studied extensively: 144Ce was chosen as an important fission product, representative of beta-emitters of intermediate (of order 1 year) half-life. Complementary studies of tissue distribution were conducted, but mainly to enable radiation doses to be determined in the studies of effects. Cerium-144 decays to 144Pr which has a half-life of only 17 minutes. Thus, "144Ce" generally refers to an equilibrium mixture of 144Ce with 144Pr.

Absorption parameter values and Types, and associated f_A values for particulate forms of cerium are given in Table 4.2.

Special consideration is given in this section to the lung clearance characteristics of cerium deposited in the respiratory tract because they are used as a model for other lanthanide elements. As discussed in the general lanthanide section there is relatively little relevant information for other lanthanides, but there are strong similarities in the chemical behaviour of this series of elements. Comparisons are made there between the lung clearance characteristics of different lanthanides deposited in the respiratory tract under similar conditions.

As described below, the parameter values for the rapid dissolution rate and bound fraction assessed from studies in which dogs inhaled 144Ce in a CsCl vector ($s_r = 0.44 \text{ d}^{-1}, f_b = 0.07; s_b = 0.021 \text{ d}^{-1}$) were applied in the analysis of the results of other cerium studies. Unless specific data indicated otherwise, s_r, s_b and f_b were fixed at these 'default' values. Thus, in general, only values of f_r and s_s were determined.

Cerium chloride (CeCl_3)

In the most comprehensive of several studies of 144Ce inhaled as chloride, Boecker and Cuddihy (1974) followed for 512 d the biokinetics in beagle dogs of carrier-free 144Ce inhaled in a caesium chloride (CsCl) vector aerosol, in 0.1N or 1N HCl, (to reduce colloid formation). The experiment was conducted to complement a life-span dose-effects study (Hahn et al., 1997), which also provides some measurements of tissue distribution at times up to 1600 d (Boecker et al., 1970a). Cuddihy et al. (1975, 1976) made additional measurements (including earlier times and more tissues) in dogs that inhaled similar aerosols. The results of these experiments are discussed here first because they were considered to provide the best available information on which to estimate the rapid dissolution rate and bound state parameter values for cerium. As well as being the most comprehensive studies in terms of duration: with both early

1 No stable cerium was added during the separation process.
and late measurements, and conducted in large animals, the use of carrier-free 144Ce in a CsCl vector was considered to represent best the behaviour of soluble cerium at tracer level.

(116) It was observed that ~60% of the initial body content of 144Ce cleared with a halftime less than 1 d; this was attributed to clearance of the upper respiratory tract (URT) by mucociliary action and swallowing, suggesting that the rapid dissolution rate was comparatively slow. There was rapid absorption of most of the initial lung deposit (ILD) during the first week, but about 10% was retained much longer. It was noted that the 144Ce concentration in the nasal turbinates was much higher than in other samples of skeleton (from 32 to 512 d). A biokinetic model for the retention of 144Ce was developed (Boecker and Cuddihy, 1974; Cuddihy et al., 1975; NCRP, 1978). It was assumed that there is relatively little absorption of cerium from the URT, based partly on the findings of Cuddihy and Ozog (1973) who observed low absorption following administration of cerium chloride directly onto the nasal membranes of hamsters (see below). The model included two compartments to represent relatively long-term lung retention, with 3.4% and 2.4% of the initial respiratory tract deposit being absorbed into blood at 0.02 d$^{-1}$ and 0.0012 d$^{-1}$ respectively.

(117) Cuddihy et al. (1975) followed the biokinetics of 144Ce up to 32 d in beagle dogs that inhaled 144Ce as 144CeCl$_3$ or as 144Ce in a CsCl vector (both in 0.1N HCl). Following inhalation as 144CeCl$_3$, lung retention of 144Ce was much greater than when inhaled in a CsCl vector: at 32 d, ~27% and ~4% respectively of the estimated ILD. Systemic uptake was correspondingly lower. They noted that Morrow et al. (1968, see below) observed even slower lung clearance, and had generated aerosols from solutions that had been treated to remove excess acid: this difference in aerosol preparation might have resulted in different biological behaviour.

(118) Analysis carried out here involved simultaneous fitting to the data from Boecker and Cuddihy (1974), and Cuddihy et al. (1975, 1976). Values of s_r, f_b, s_b, and s_s were assumed to be the same in each experiment, while f_f was allowed to vary. This was based on the assumption that similar materials were involved, but the extent of particle formation (and hence the value of f_f) varied with the mass concentration of cerium deposited. Most of the results could be fit well, with absorption parameter values of $s_r = 0.44$ d$^{-1}$, $f_b = 0.07$; $s_b = 0.021$ d$^{-1}$ and $s_s = 0.0015$ d$^{-1}$. Values of f_r were 0.94 and 0.96 for carrier-free 144Ce in a CsCl vector (Boecker and Cuddihy 1974; Cuddihy et al., 1975), giving assignment to Type F; 0.84 for 144Ce in a solution containing 0.3 mg CeCl$_3$ and 9.7 mg CsCl per ml (Cuddihy et al., 1976); and 0.52 for 144Ce in CeCl$_3$ (Cuddihy et al., 1975) both giving assignment to Type M. Fits that were less good (but with similar values of f_f) were obtained if it was assumed instead that the slowest component of lung clearance was due to the bound fraction and the intermediate component was due to particulate material, i.e., $s_b \sim 0.0015$ d$^{-1}$ ($f_f = 0.03$) and $s_s \sim 0.02$ d$^{-1}$.

(119) Measurements of activity in the trachea were reported by Boecker and Cuddihy (1974), and were underestimated by both models considered above (i.e. with parameter values $s_b \sim 0.02$ d$^{-1}$ and $s_s \sim 0.0015$ d$^{-1}$, or with $s_b \sim 0.0015$ d$^{-1}$ and $s_s \sim 0.02$ d$^{-1}$). The underestimation was less with the lower value of s_b, especially at later times.

(120) By definition, the particulate fraction is cleared by particle transport, whereas the bound fraction is not. Hence, clearance of a lung deposit in particulate form results in more activity in faeces and less in systemic tissues (liver and skeleton) than clearance of the same deposit in bound form. However, as particle transport from the alveolar region of the lung is so slow in dogs, it was not possible to distinguish clearly between the two models from these data.

I CRP, 1994a; Snipes et al., 1983), and so potentially differences can more easily be seen between particulate and bound fractions. In rodent studies with chloride and citrate in which
low values of $f_r (<0.5)$ were assessed, suggesting that material retained in the lung was mainly
in particulate form, values of s_s were estimated to be in the range 0.001 – 0.005 d$^{-1}$ (see below:
Cember and Watson, 1958; Morgan et al., 1970; Sturbaum, 1970; Lustgarten et al., 1974). It
was therefore assumed here that the intermediate component of lung retention was due to the
bound fraction i.e., $s_b = 0.021$ d$^{-1}$, and the slowest component of lung clearance was due to
particulate material.

The parameter values for the rapid dissolution rate and bound fraction assessed from
these dog studies ($s_r = 0.44$ d$^{-1}$, $f_b = 0.07$; $s_b = 0.021$ d$^{-1}$) were applied in the analysis of the
results of other cerium studies below. Thus, only values of f_r and s_s were determined.

Cuddihy et al. (1975) also measured dissolution \textit{in vitro} of 144Ce from filter samples
collected during inhalation exposures of the dogs. They found that for both chloride aerosol
forms, retention of 144Ce on filter samples in solvents that included sodium citrate (a
complexing agent) most closely resembled lung retention. Dissolution was much slower in a
saline solution, and negligible (up to ~16 d) in a serum simulant. They observed that cerium
readily precipitates in very dilute mixtures with the serum simulant and attributed this to the
formation of insoluble complexes with the phosphate present.

Further studies with 144CeCl$_3$ inhaled by dogs investigated the effectiveness of lung
lavage and DTPA (diethylenetriaminepentaacetic acid) at reducing lung content and radiation
effects (Pfleger et al., 1972a, 1972b; Muggenburg et al., 1972).

Cember and Watson (1958) followed for 56 d the biokinetics of 144Ce after
intratracheal instillation of 144CeCl$_3$ into rats. Lung clearance was slow, with ~50% ILD
remaining at 56 d. There was little absorption into blood: the amounts in liver and skeleton
combined being only ~2% ILD throughout the experiment. Analysis here assuming default
parameter values for cerium (see above) gave $f_r = 0.02$ and $s_s = 0.0015$ d$^{-1}$, and assignment to
Type M. (Note that the value of s_s is similar to that obtained in the dog inhalation experiments.)

Cember and Stemmer (1964) studied the radiation effects following intratracheal instillation of
144CeCl$_3$ into rats, but biokinetic data were not reported. However, they noted that 144Ce was
cleared more slowly from the lungs of rats when administered in soluble form (chloride) than in
an insoluble form (fluoride) (Cember and Watson, 1958), and discussed possible retention
mechanisms (see below on extent of binding of cerium).

Gensicke and Spode (1962) followed for 30 d the biokinetics of 144Ce following
inhalation of 141CeCl$_3$ (pH 3.5) by mice. Although there are measurements at eight times
between 1 hour and 30 d, the results are difficult to interpret. At 1 d, the amounts in liver and
skeleton combined amount to ~25% of that in the lungs. There was little further clearance from
the lungs, but amounts in liver and skeleton continued to increase. (It may be partly due to
variability in the data: the total activity in lungs plus systemic tissues does not show a clear
decrease with time.) Even for insoluble particles, clearance from the lungs of mice would
normally be readily observable over this period, suggesting that a considerable fraction is
bound. Similar studies were carried out by this research group with chlorides of 143Pr, 147Pm,
and 153Sm, and the results are compared in the general lanthanide section. The other lanthanides
administered behaved similarly to each other, and did not show the avid retention shown by
144Ce.

Morrow et al. (1968) followed for 40 d lung retention of 141Ce following inhalation
of 141CeCl$_3$ by dogs. Few details were given, but the authors reported that retention in the thorax
could be described by a two-component exponential function, with ~40% of the initial amount
in the thorax clearing with a half-time of 2.5 d, and the rest with a half-time more than 170 d,
suggesting Type M behaviour.
Sturbaum et al. (1970) followed for 260 d the biokinetics of 144Ce inhaled by Chinese hamsters as 144CeCl$_3$. About 80% of the initial total body deposit cleared in the first week: this was attributed to clearance of the URT and excretion in faeces. There was rapid absorption from the lungs. By 64 d, the lung activity had decreased to 3.5% ILD, while liver and skeleton increased to ~5% and 1.7% ILD respectively. The authors noted that since these did not equal the decrease in lung activity, there was continuing particle transport from the lungs. This suggests that at least some of the 144Ce retained in the lungs was in particulate form. Analysis here assuming default parameter values for cerium (see above) gave $f_r = 0.3$ and $s_r = 0.005$ d$^{-1}$, and assignment to Type M.

Morgan et al. (1970) followed (up to 128 d) the biokinetics of 144Ce inhaled by mice as 144CeCl$_3$, citrate or FAP. For the chloride, ~70% of the initial total body deposit cleared in the first week. There was substantial rapid uptake to blood, presumably from the lungs, so that about 10% of the remaining total body content (“sacrifice body burden”, SBB) was in liver from a few days onwards. There was also considerable long-term lung retention, with the fraction of SBB in lung decreasing from about 25% initially, to 10% at 128 d. Analysis here assuming default parameter values for cerium (see above) gave $f_r = 0.6$ and $s_r = 0.003$ d$^{-1}$, and assignment to Type M.

Cuddihy and Ozog (1973) deposited 144CeCl$_3$ directly onto the nasal membranes of Syrian hamsters and followed the biokinetics of the 144Ce for 4 hours. They estimated that in this time ~2% of the initial deposit had been absorbed. This was much less than for caesium, strontium and barium chlorides which were also administered. It is noted in the inhalation sections of those elements that their absorption was slower than observed in other experiments, but that the results may have been affected by the experimental techniques used, including the anaesthetic. About 50% of the 144Ce administered was retained in the head at 4 hours.

Ducousso and Pasquier (1974) investigated the rapid phase of absorption of 144Ce inhaled by monkeys as 144CeCl$_3$ in a vector of NaCl in 0.1N HCl solution. Alveolar deposition was maximised by inhaling small particles through an endotracheal tube. An external detector was positioned to measure activity predominantly in the alveolar region. The fraction absorbed (estimated by the decrease in lung activity, assuming that particle transport was negligible) in 1 hour decreased with increasing mass deposited, from ~15% ILD at 0.01 µg to ~3.4% ILD at 10 µg. (However, it was noted that the absolute mass absorbed increased.) Assuming a single absorption rate, 15% ILD absorbed in 1 hour suggests a value of ~4 d$^{-1}$. Alternatively, assuming this represents a rapid phase of absorption, it suggests values of $f_r ~0.1$ and $s_r >10$ d$^{-1}$. By 4 hours the amounts absorbed increased to ~19% at 0.01 µg and 4.3% ILD at 10 µg. (Broadly similar results were obtained for 140La: see the general lanthanide section.) Although these experiments were of short duration, they give measurements of the initial absorption in a primate, and so were taken into account in assessing the rapid dissolution rate for cerium for radiation protection purposes (see below).

Kanapilly and Sparling (1976) followed for 32 d the biokinetics in Syrian hamsters of 144Ce inhaled as 144CeCl$_3$ at pH 1.0, 2.9 or 5.0. There were no clear differences between the three exposures. Lung retention was ~25% ILD at 32 d, by which time the liver content was also ~25% ILD. The relatively slow absorption was attributed to the presence of carrier cerium. Aerosol samples obtained during exposures to pH 1 and pH 2.9 aerosols were subject to in vitro dissolution tests using a static method at 37°C, in three solvents. Dissolution in a synthetic ultrafiltrate (SUF) was much lower than in vivo, while dissolution in SUF + 2 x10$^{-4}$M DTPA and in 0.15M NaCl at pH 4 was higher.
Water-soluble forms of cerium and Type F cerium

Absorption parameter values for cerium chloride based on in vivo data are available from several studies. The absorption characteristics of cerium administered as cerium chloride appear to depend strongly on the methods of preparing and administering the material. In particular, the fraction dissolved rapidly seems to decrease with increasing mass administered and increasing pH. Although inhalation exposure to the chloride is unlikely, exposure to other water-soluble forms e.g. nitrate, is not. However, the only water-soluble forms of cerium studied in vivo were chloride and citrate. The behaviour of cerium following inhalation of citrate was similar to that of chloride (see below), which supports the application of the results obtained with chloride to other water-soluble forms.

As described above, the most comprehensive studies of cerium chloride deposited in the lungs involved inhalation by dogs. Analysis was carried out here by simultaneously fitting data from experiments in which carrier-free 144Ce was inhaled in a CsCl vector, in a mixture of CsCl and CeCl$_3$, or in CeCl$_3$ (Boecker and Cuddihy, 1974; Cuddihy et al., 1975, 1976). Values of s_r, s_b, and s_f were assumed to be the same in each experiment, while f_r was allowed to vary between them. The results could be fit well, with absorption parameter values of $s_r = 0.44$ d$^{-1}$, $f_r = 0.07$; $s_b = 0.021$ d$^{-1}$ and $s_f = 0.0015$ d$^{-1}$. These results were used to select the rapid dissolution rate and bound state parameter values for cerium (see below). Most of the data were for 144Ce inhaled in a CsCl vector, and thus these parameter values represent the behaviour of tracer-level cerium, as might arise as a result of slow dissolution of relatively insoluble materials in the lungs. For this material, the value of f_r obtained was ~ 0.95. It was, however, considered here that inhalation of water-soluble forms was better represented by inhalation of 144Ce in CeCl$_3$, for which the value of f_r obtained was 0.52. (Results of studies above in which 144Ce in CeCl$_3$ was inhaled by hamsters and mice gave f_r values of 0.3 and 0.6.) This value, with those for s_r and s_b above, were rounded to give specific parameter values of $f_r = 0.5$; $s_r = 1$ d$^{-1}$; and $s_b = 0.0015$ d$^{-1}$, which are used here for water-soluble forms of cerium.

Default Type F cerium (with dissolution parameter values: $f_r = 1$, $s_r = 1$ d$^{-1}$) is nevertheless retained as an option.

Cerium citrate

As noted above, Morgan et al. (1970) followed (up to 128 d) the biokinetics of 144Ce inhaled by mice as 144CeCl$_3$, citrate (pH not reported) or FAP. Whole body retention of citrate as a fraction of the estimated total initial deposit was somewhat higher for citrate than for chloride, but there were no clear differences in tissue distribution or excretion. Analysis here assuming parameter values assessed above for cerium ($s_r = 0.44$ d$^{-1}$; $f_r = 0.07$; $s_b = 0.021$ d$^{-1}$) gave $f_r = 0.8$ and $s_s = 0.001$ d$^{-1}$, and assignment to Type M. (However, the excretion data and some early tissue data were not well fitted.) Values are broadly similar to those estimated for the complementary chloride experiment ($f_r = 0.6$ and $s_s = 0.003$ d$^{-1}$).

Lustgarten et al. (1974, 1975) followed the biokinetics of 144Ce inhaled by rats and Syrian hamsters as citrate in a CsCl vector aerosol (pH not reported). A biokinetic model for the retention of 144Ce was developed (Lustgarten et al., 1976). At 128 d lung retention was $\sim 10\%$ ILD in both species: the main difference between them was that in the Syrian hamsters liver and skeleton both contained $\sim 10\%$ ILD, whereas in the rats, liver and skeleton contained $\sim 1\%$ and $\sim 10\%$ ILD, respectively. Analysis here assuming parameter values assessed above for cerium gave $f_r = 0.3$ and $s_s = 0.001$ d$^{-1}$ in rats and similar results in hamsters $f_r = 0.3$ and $s_s = 0.004$ d$^{-1}$, (and assignment to Type M for both).
Although absorption parameter values for cerium citrate based on \textit{in vivo} data were derived, as for cerium chloride, a wide range of values of f_r (0.3 – 0.8) was obtained in different studies. Furthermore, inhalation exposure to it is unlikely. Therefore, specific parameter values for cerium citrate are not used here. Instead, it is assigned to water-soluble forms of cerium. However, the results contributed to selection of the rapid dissolution rate and bound state parameter values for cerium, and to justifying application of cerium chloride results to other water-soluble forms.

\textit{Cerium hydroxide}

Thomas et al. (1972) followed for 670 d the biokinetics of ^{144}Ce inhaled by rats as hydroxide, heat treated at 150°C. Although this was expected to be a relatively insoluble form of cerium, by the time of the first measurement of tissue distribution (47 d) the liver content was greater than that of the lungs. (Measurements of tissue distribution were made as animals in a high exposure level group died.) Analysis here assuming parameter values assessed above for cerium ($s_r = 0.44 \text{d}^{-1}; f_b = 0.07; s_b = 0.021 \text{d}^{-1}$) gave $f_r = 0.8$ and $s_s = 0.0004 \text{d}^{-1}$ and assignment to Type M. The relatively high fraction absorbed rapidly suggests that hydroxide formation may not account for prolonged lung retention following deposition of cerium chloride or citrate.

Although absorption parameter values for cerium hydroxide based on \textit{in vivo} data were derived, inhalation exposure to it is unlikely. Therefore specific parameter values for cerium hydroxide are not used here. Instead, it is assigned to Type M.

\textit{Cerium fluoride (CeF$_3$)}

Cember and Watson (1958) followed for 180 d the biokinetics of ^{144}Ce after intratracheal instillation of $^{144}\text{CeF}_3$ into rats. About 25\% ILD cleared from the lungs in the first few days, with little (~1\% ILD) uptake into systemic organs. Lung clearance was faster than for $^{144}\text{CeCl}_3$ in a similar study (see above) with ~25\% ILD remaining at 56 d and ~12\% ILD at 180 d. The skeleton content increased to ~5\% ILD by 180 d. Analysis here assuming parameter values assessed above for cerium ($s_r = 0.44 \text{d}^{-1}; f_b = 0.07; s_b = 0.021 \text{d}^{-1}$) gave $f_r = 0.02$ and $s_s = 0.0014 \text{d}^{-1}$ and assignment to Type M. These values are very similar to those estimated for $^{144}\text{CeCl}_3$ studied by Cember and Watson (1958) (see above).

Ivanov and Gorel'chik (1966) followed lung retention and distribution within lung (but not transfer to other tissues) of ^{144}Ce following intratracheal instillation of a colloidal suspension (25 nm) of $^{144}\text{CeF}_3$ into rabbits. Insufficient information was reported to derive parameter values, but at 240 d, ~15\% ILD remained in the lungs, suggesting Type M or S behaviour.

Although absorption parameter values for cerium fluoride based on \textit{in vivo} data were derived, inhalation exposure to it is unlikely. Therefore specific parameter values for cerium fluoride are not used here. Instead, it is assigned to Type M.

\textit{Cerium dioxide (CeO$_2$)}

Stuart et al. (1964) followed for 480 d the biokinetics of ^{144}Ce inhaled by dogs as dioxide, prepared by addition of NaO$_2$ to CeCl$_3$ or by calcination of oxalate at 400°C. Tombropoulos et al. (1969) followed for 128 d the biokinetics of ^{144}Ce inhaled by dogs as dioxide, prepared by addition of NaO$_2$ to CeCl$_3$. For both studies insufficient information was
reported to derive parameter values, but at 128 d, and 8–16 months, the amounts retained in liver and skeleton were similar to or greater than in lungs, suggesting Type M behaviour.

Boecker et al. (1969) measured the tissue distribution of Ce at 8 and 260 d after inhalation by dogs as dioxide, heat treated at 1150°C. The results were very similar to those at these times in dogs that inhaled Ce-FAP in complementary experiments, for which parameter values assessed here were $f_r = 0.04$ and $s_s = 0.001$ d$^{-1}$ (see below). These give assignment to Type M, but are close to the criterion for Type S.

Thomas and McClellan (1972) followed for 380 d the biokinetics of Ce inhaled by Syrian hamsters as dioxide, heat treated at 1100°C. There was very little rapid absorption: at 32 d the lungs contained ~98% SBB, which decreased to ~90% SBB by 300 d, with corresponding increases in liver and skeleton. Analysis here assuming parameter values assessed above for cerium ($s_r = 0.44$ d$^{-1}$; $f_b = 0.07$; $s_b = 0.021$ d$^{-1}$) gave $f_r = 0.0012$ and $s_s = 0.0002$ d$^{-1}$ and assignment to Type S.

Hobbs et al. (1973, 1974, 1975) followed for 728 d the biokinetics of Ce inhaled by Syrian hamsters as dioxide, heat treated at 850°C. The hamsters were 28, 84 or 340 d old at the time of exposure. (Tissue distribution data were only reported up to 128 d, the study being mainly concerned with toxicity.) There was very little rapid absorption: at 16 d the lungs contained ~97% SBB, which decreased to ~80% SBB by 228 d, with corresponding increases in liver and skeleton. Analysis here assuming parameter values assessed above for cerium gave $f_r = 0.001$ and $s_s = 0.001$ d$^{-1}$ for immature Syrian hamsters and $f_r = 0.001$ and $s_s = 0.002$ d$^{-1}$ for young adult Syrian hamsters (both giving assignment to Type M).

Lundgren et al. (1974) followed for 431 d the biokinetics of Ce inhaled by mice as dioxide, heat treated at 1100°C. Insufficient information was given to determine both f_r and s_s. Analysis here, assuming that $f_r = 0.001$ (and other parameter values assessed above for cerium), gave $s_s = 0.001$ d$^{-1}$, indicating assignment to Type M.

Lundgren et al. (1980a, 1980b) followed for ~1 year the biokinetics of Ce inhaled by mice as dioxide, heat treated at 850°C. The mice were 70, 260 or 450 d old at the time of exposure. The studies investigated the effects of age and repeated exposure on the retention and toxicity of CeO$_2$ in mice. Analysis here of results for single exposures (assuming parameter values assessed above for cerium) gave:

- For the 70-d age group: $f_r = 0.0003$ and $s_s = 0.002$ d$^{-1}$.
- For the 260-d age group: $f_r = 0.004$ and $s_s = 0.005$ d$^{-1}$.
- For the 450-d age group: $f_r = 0.004$ and $s_s = 0.004$ d$^{-1}$.

There was no obvious effect of age on the value of either parameter and a single fit with all three datasets gave $f_r = 0.002$ and $s_s = 0.003$ d$^{-1}$. All these results give assignment to Type M.

Shiao-Shan et al. (1988) followed for 126 d the biokinetics of Ce after intratracheal instillation into rats of irradiated cerium dioxide (used as an "insoluble" material for comparison with dust containing 14C). Insufficient information was given to determine absorption parameter values. However, only trace amounts of Ce ($<10^{-4}$ of lung content) were found in liver and carcass, indicating assignment to Type S.

Lundgren et al. (1992) followed for 672 d the biokinetics of Ce inhaled by rats as dioxide, heat treated at 850°C. The studies investigated the effects of age and repeated exposure on the retention and toxicity of CeO$_2$ in rats. Insufficient information was given to determine
both f_r and s_s. Analysis here, assuming that $f_r = 0.001$ (and other parameter values assessed above for cerium), gave $s_s = 0.007 \text{ d}^{-1}$, indicating assignment to Type M.

Lundgren et al. (1996) followed for 448 d the biokinetics of ^{144}Ce inhaled by rats as dioxide, heat treated at 1500°C. Analysis here, assuming that $f_r = 0.001$ (and other parameter values assessed above for cerium), gave $s_s = 0.0005 \text{ d}^{-1}$ indicating assignment to Type S.

Mauderly et al. (1987) showed that exposure to cigarette smoke retarded lung clearance of ^{144}Ce in rats that had inhaled similar $^{144}\text{CeO}_2$ aerosols.

Absorption parameter values for cerium dioxide based on in vivo data are available from several studies. The results are variable, apparently depending partly on the method of preparation. Some results give assignment to Type S, others to Type M, but close to the criterion for assignment to Type S. Generally the values are very different from the default values for either Type M or Type S. Values of f_r could only be estimated for a few experiments, and these were ~ 0.001, less than the default value for Type S (0.01), and much less than the default value for Type M (0.2). Estimated values of s_s range from 0.0002 to 0.007 d^{-1} (geometric mean 0.001 d^{-1}), all higher than the default value for Type S (0.0001 d^{-1}) and similar to the default value for Type M (0.005 d^{-1}). Inhalation exposure to cerium dioxide is not unlikely. Specific parameter values of $f_r = 0.001$ and $s_s = 0.001 \text{ d}^{-1}$ are used here for cerium dioxide.

Irradiated fuel and other contaminated dusts associated with nuclear facilities.

Following an accidental release, cerium could be present in fragments of irradiated fuel, where the matrix is predominantly uranium oxide.

Rundo (1965) reported a retention half-time of not less than 2800 d for ^{141}Ce and ^{144}Ce studied during 6–850 d after accidental inhalation of irradiated uranium; the measurements were of whole-body radioactivity, but no evidence was found of movement from the chest. This suggests Type S behaviour of the cerium present.

Lang et al. (1994) followed the tissue distribution and retention of several radionuclides for 3 months after intratracheal instillation of irradiated UO_2 powder into rats. For ^{141}Ce, the amount in bone and liver together at 3 months was about 0.3% ILD, indicating assignment to Type S.

Glenn et al. (1979) carried out measurements on a worker following accidental exposure to airborne fission products, including ^{144}Ce–Pr. External measurements of whole body and chest activity were made for 792 d, although the former fell below the detection limit by 290 d. Fecal and urine measurements were reported, but the latter could not be used in analysis because of repeated treatment with DTPA. In vitro dissolution tests on samples taken from clothing suggest that $\sim 10\%$ of the ^{144}Ce was soluble and the rest insoluble. The results of estimated lung retention are consistent with assignment to Type M.

Mirell and Blahd (1989) made whole-body measurements of activity on seven people from about two weeks to several months after exposure to the initial Chernobyl reactor accident plume in Kiev, Ukraine. Biological retention half-times were similar for different radionuclides (17 d for $^{141/144}\text{Ce}$) and different from those expected for systemic retention, indicating that they were trapped in particles and metabolically inert, thus indicating Type M rather than Type F behaviour.

Stradling et al. (1989a, 1989b), Stradling and Moody (1995) followed the biokinetics of ^{144}Ce (and other radionuclides) for 360 d after intratracheal instillation into rats of a suspension of residues from a nuclear power plant cooling pond. For the ^{144}Ce present, tissue
2075 distributions at 28, 168 and 360 d were reported. At 28 d, the lung content had decreased to
2076 44% ILD and liver and carcass each contained ~2% ILD. Analysis here (limited by the few data
2077 points) gave approximate values of $f_r \sim 0.1$ and $s_s \sim 0.003$ d$^{-1}$, consistent with assignment to
2078 Type M.
2079 (161) Cuddihy et al. (1989) measured the in vitro dissolution of samples of particles
2080 released from the Chernobyl accident for up to 60 d. For all radionuclides measured, including
2081 144Ce, 10% dissolved in a few hours, and the rest with a half-time of 160 d. Hence $f_r = 0.1$, $s_r
2082 \sim 10$ d$^{-1}$, and $s_s = 0.004$ d$^{-1}$, giving assignment to Type M.
2083 (162) Cerium associated with irradiated fuel fragments is assigned here to Type S, based
2084 on the studies by Rundo (1965) and Lang et al. (1994). With regard to cerium associated with
2085 other, unspecified, contaminated dusts from nuclear facilities, specific absorption parameter
2086 values were derived from the results of one in vivo study, but were only approximate, and based
2087 on the studies above it is assigned to Type M.
2088
2089 Fused aluminosilicate particles (FAP)
2090 (163) FAP or “fused clay” particles have been extensively used as relatively insoluble
2091 particles in inhalation studies, both of biokinetics and of radiation effects. A natural clay
2092 mineral is labelled by ion exchange, and the labelled clay particles heated to about 1100°C, to
2093 form aluminosilicate glass microspheres in which the label is incorporated. It has been
2094 demonstrated that when cerium is incorporated into FAP, only a small fraction may be rapidly
2095 absorbed, while the remainder is retained within the particles and absorbed slowly.
2096 (164) Boecker et al. (1969, 1970b) followed for 512 d the biokinetics in beagle dogs of
2097 144Ce-FAP. The study was conducted to complement a life-span dose-effects study (Hahn et al.,
2098 1999, 2001), which also provides some measurements of tissue distribution at times up to 1300
2099 d (Boecker et al., 1971). Biokinetic models for the retention of 144Ce were developed (Cuddihy
2100 and Boecker, 1975; Shyr et al., 1991). Analysis here assuming parameter values assessed above
2101 for cerium ($s_r = 0.44$ d$^{-1}; f_b = 0.07; s_b = 0.021$ d$^{-1}$) gave $f_r = 0.04$ and $s_s = 0.001$ d$^{-1}$. These give
2102 assignment to Type M, but are close to the criterion for Type S.
2103 (165) Further studies with dogs investigated the effects of age at exposure and multiple
2104 exposures (Boecker et al., 1973; Hahn et al., 1973; Boecker et al., 1974a). Results were not
2105 analysed here, but there did not appear to be a marked difference in absorption from lungs to
2106 blood between dogs exposed at 3 months old (immature) or at 18 months (young adult),
2107 although, as expected, there was greater deposition in the skeleton of the immature dogs. Other
2108 studies investigated the effectiveness of lung lavage at reducing lung content and radiation
2109 effects (Boecker et al., 1974b; Felicetti et al., 1975).
2110 (166) Studies of the biokinetics of 144Ce following inhalation of 144Ce-FAP have also been
2111 conducted in mice. As noted above, Morgan et al. (1970) followed the biokinetics (up to 128 d)
2112 of 144Ce inhaled by mice as 144CeCl$_3$, citrate or FAP. For the 144Ce-FAP, there was little
2113 absorption from the lungs; the liver content reached about 1% of the remaining total body
2114 content ("sacrifice body burden", SBB) of 144Ce within a few days, with little further change,
2115 while the lung content was still about 80% SBB at 128 d. Analysis here assuming parameter
2116 values assessed above for cerium gave $f_r = 0.03$ and $s_s = 0.0002$ d$^{-1}$ and assignment to Type S.
2117 (167) Thomas et al. (1973) measured the tissue distribution of 144Ce at 32 and 64 d after
2118 inhalation by mice of 144Ce-clay particles produced at different temperatures. For particles
2119 formed at 90, 200 or 500°C, the lung content was about 10% SBB at 64 d, and the liver ~30%,
2120 SBB. For particles formed at 900 or 1150°C, the lung content was about 85% SBB at 64 d, and
the liver ~7% SBB. Analysis here, assuming parameter values assessed above for cerium, gave values of f_r in the range 0.05–0.5 and of s_s ~0.1 d$^{-1}$ for particles formed at 90–500°C; and values of f_r <0.05 and of s_s ~0.003 d$^{-1}$ for particles formed at 900–1150°C. All these results give assignment to Type M.

(168) Although absorption parameter values for cerium-labelled FAP based on in vivo data were derived, they were variable, some giving assignment to Type M, others to Type S. Inhalation exposure to it is unlikely. Therefore specific parameter values for cerium-labelled FAP are not used here, nor is it assigned to a default Type.

Polystyrene (PSL)

(169) Radiolabelled polystyrene (PSL) particles have been used extensively as relatively insoluble particles in inhalation studies (see e.g. inhalation sections on cobalt and strontium in OIR Part 2). 141Ce-labelled PSL has been used to study particle clearance from the lungs in rats and dogs (e.g. Snipes and Clem, 1981; Wolff et al., 1989; Oberdörster et al, 1992). Wolff et al. (1989) followed lung retention in dogs up to 36 d after administration and noted that there was little loss of the label: only trace levels were found in other tissues. Oberdörster et al. (1992) followed lung retention in rats up to 200 d and noted that fecal excretion almost exactly complemented lung clearance. The results indicate Type S behaviour.

Nuclear weapons fallout.

(170) During the early 1960s, measurements were made of radionuclides in human lungs due to fall-out from atmospheric nuclear weapons tests. For further information see the zirconium section in OIR Part 2, and the plutonium section in this report. Schönfeld et al. (1960) detected $^{141+144}$Ce (with 95Zr-Nb and 103Ru) in post mortem lung samples, but only found 137Cs in liver and muscle. Liebscher et al. (1961) reported 144Ce concentrations in lymph nodes between 10 and 60 times higher than in lungs. Wegst et al. (1964) showed that $^{141+144}$Ce was present in the lungs in particulate form. Irlweck et al. (1980) measured 144Ce and 239Pu activities in the lungs: they reported that the two radionuclides appeared to show similar lung deposition and clearance characteristics. Overall these results indicate Type M or S behaviour.

Unspecified compounds.

(171) Paul et al. (1998, 2000) investigated in vitro dissolution of several elements, including cerium, on samples of airborne dust collected from monazite and rare earth processing. They also made measurements on urine and blood samples from workers exposed to such dusts. However insufficient information was reported to enable dissolution characteristics to be assessed.

Rapid dissolution rate for cerium

(172) As described above, studies of the biokinetics following deposition of relatively soluble forms of cerium (chloride and citrate) in the respiratory tract generally indicate that there is little absorption from the URT, and hence that $s_s << 100$ d$^{-1}$. Studies of the biokinetics in beagle dogs of 144Ce inhaled in a caesium chloride (CsCl) vector aerosol (to reduce colloid formation) or as 144CeCl$_3$, both in 0.1N or 1N HCl, give values of s_s of 0.44 d$^{-1}$. For 144Ce inhaled by monkeys as 144CeCl$_3$ (in a vector of NaCl in 0.1N HCl solution) the initial lung clearance suggests a value for s_s of at least ~4 d$^{-1}$. A rounded value of 1 d$^{-1}$ is applied here to all
Type F forms of cerium. Because it is lower than the general default value of 3 d⁻¹ for Type M and S materials, it is also applied to Type M and S forms of cerium.

Extent of binding of cerium to the respiratory tract

(173) When relatively soluble forms of cerium (chloride, citrate) are deposited in the respiratory tract, absorption has in all cases been found to be incomplete. The question of whether the cerium is retained in particulate or bound form has been discussed for about 50 years, and remains unresolved. It is considered in detail here, because other lanthanides, for which there is little or no relevant information, might be expected to behave in a similar way to cerium, and so conclusions drawn for cerium are, by analogy, applied to them. Relevant comments from the literature are summarised here in chronological order. While most relate to retention of cerium in the lungs, some are specifically concerned with retention of cerium in conducting airways – the nasal passage and trachea. Particulate materials are rapidly cleared from these airways, and so retention in them indicates that binding may well be occurring.

(174) Cember and Stemmer (1964) discussed lung retention of cerium and other "...soluble materials that might form an insoluble precipitate in the biochemical milieu of the lung, or bind to the tissue protein in the lung...". They noted that earlier studies had shown slower clearance of soluble cerium chloride than of insoluble cerium fluoride. This suggests binding rather than, or in addition to, precipitate formation. They also reported that protein (human serum albumin) is capable of binding relatively large quantities of cerium.

(175) Kanapilly et al. (1973) noted that: "...materials that are soluble in water may undergo hydrolysis at the relatively constant pH of physiological fluids. Other properties of the physiological solvent which may be important in determining the solubility of a material are the concentrations of chelating agents, precipitate forming constituents such as phosphates and carbonates and non-reacting ionic materials." To examine the relationship between the lung retention of an inhaled polyvalent radionuclide and its \textit{in vitro} dissolution and hydrolysis at neutral pH, the \textit{in vitro} dissolution of 144Ce from CeCl₃ + CsCl aerosol particles in saline solution (0.154 M NaCl at pH 7.2) was determined. The solvent flowed through a filter sandwich containing the particles at 3 ml min⁻¹. After 140 ml solvent had flowed through, ~50% of the 144Ce remained. This was attributed to the "formation of hydrolytic products of 144Ce which may be insoluble particles or capable of adsorbing on the membrane filters." They speculated that the lung retention observed by Boecker et al. (1970a) after inhalation of 144CeCl₃ by dogs might be attributed to the hydrolysis of 144Ce.

(176) Ducousso and Pasquier (1974) investigated the rapid phase of absorption of 144Ce inhaled by monkeys as 144CeCl₃ in a vector of NaCl in 0.1N HCl solution (see above). They observed that as the ILD (mass) increased, the relative absorption decreased. In discussing the results, the authors considered that there was competition between diffusion of ionic cerium into the blood; hydrolysis of ionic cerium; and uptake by proteins, especially albumin. They noted that the higher the concentration of cerium in the alveolar fluid, the more rapid would be the formation of hydroxide, reducing absorption.

(177) Boecker and Cuddihy (1974) reported measurements of 144Ce in the trachea (+larynx) of ~0.2% SBB from 2 to 512 d after inhalation by dogs of 144CeCl₃ in a CsCl vector. Since particle transport of material deposited in these airways would be almost complete by 2 d, and this is more than expected from material in transit from distal airways, this suggests a bound fraction in the trachea and larynx, but no information on the location of the activity was given. While it is possible that it is located in the epithelium, it could be further from the...
surface and the target cells. For example in the case of cobalt (see cobalt section in OIR Part 2),
there is strong evidence for a bound fraction, which can be quantified, but autoradiography
showed that it was mainly located in airway cartilage.

(178) As described above, Cuddihy et al. (1975) observed that lung retention of \(^{144}\text{Ce}\) was
greater following inhalation as \(^{144}\text{CeCl}_3\), than as a tracer in a CsCl vector. They also measured
dissolution \textit{in vitro} of \(^{144}\text{Ce}\) from filter samples collected during the inhalation exposures. As
noted elsewhere, this "carrier effect" suggests the formation of insoluble particles. They
observed that cerium readily precipitates in the serum simulant used, and attributed this to the
formation of insoluble complexes with the phosphate present.

(179) Cuddihy et al. (1976) observed that following inhalation by dogs of \(^{144}\text{Ce}\) as a tracer
in a CsCl vector, the concentration in nasal turbinates was higher at all times (2 h to 32 d) than
in any other tissue. However, no comment was made on the mechanism of retention.

(180) Kanapilly (1977) discussed possible mechanisms for the retention kinetics in the lung
of inhaled, water-soluble trivalent materials, with special reference to lanthanum and cerium.
He argued that the greater lung retention observed with increasing stable cerium carrier present
suggested particulate formation (p 97): "Carrier effect, such as the larger fractional retention for
longer periods with higher carrier concentration, may indicate particulate formation of the
Ce(III) in the alveoli. If protein binding or adsorption onto cellular surfaces is the major
mechanism of retention of Ce(III) in the alveoli, no differences in retention pattern with respect
to carrier concentrations should be expected unless saturation of the binding sites occurs. If this
saturation does occur, lower fractional retention may be expected with higher carrier
concentrations. The observed higher retention with higher carrier concentration thus indicates
precipitation of Ce(III) in the alveoli."

(181) Benjamin et al. (1979) discussed the large number of nasal carcinomas in dogs that
inhaled \(^{144}\text{CeCl}_3\) or \(^{91}\text{YCl}_3\) but not \(^{90}\text{SrCl}_2\). One difference in dosimetry noted was that cerium
and yttrium are retained on bone surfaces whereas strontium goes to bone volume. However,
there was also unusually high retention of \(^{144}\text{Ce}\) and \(^{91}\text{Y}\) in the nasal turbinate tissues. Some of
this was related to radionuclide deposited on bone surfaces, but there also appeared to be
radionuclide associated with turbinate epithelium. They observed that autoradiographs of nasal
turbinate tissue sections from dogs killed 8 d after exposure to \(^{144}\text{CeCl}_3\) suggested that the \(^{144}\text{Ce}\)
was associated with foci of nasal epithelium. Dogs exposed to \(^{144}\text{Ce}\) or \(^{91}\text{Y}\) also had long-term
pulmonary retention of a small fraction of the ILD, which might be related to the long-term
retention of these radionuclides being associated with the nasal cavity epithelium, which does
not appear to be the case with \(^{90}\text{Sr}\). This long term retention of relatively soluble \(^{144}\text{CeCl}_3\) and
\(^{91}\text{YCl}_3\) also contrasts with the rapid and more complete nasopharyngeal clearance observed for
insoluble particles inhaled by dogs.

(182) Boecker et al. (1986) discussed further the induction of nasal tumours in dogs
following inhalation of \(^{144}\text{CeCl}_3\) or \(^{91}\text{YCl}_3\), but noted that some also arose following inhalation
of \(^{90}\text{SrCl}_2\) and injection of \(^{144}\text{Ce}\) or \(^{90}\text{Sr}\).

(183) Galle et al. (1992) examined lung sections from rats 3 hours after exposure to a
submicron aerosol of a 1% solution of CeCl\(_3\) (5 hrs per day for 5 weeks). They observed
lysosomes in the alveolar macrophages containing dense deposits, in which both cerium and
phosphorus were detected by microanalysis. The authors suggested that the cerium was
precipitated as phosphate, as they had previously observed in renal lysosomes.

(184) Hahn et al. (1997) pointed out that a notable finding of the life-span study of the
effects of irradiation by \(^{144}\text{Ce}\) following inhalation of \(^{144}\text{CeCl}_3\) by dogs was the relatively high
incidence of tumours which appeared to arise in the mucosa lining the nasal turbinate bones.
However, it was not clear whether the high concentration of 144Ce, presumably retained near the site of deposition, was located in the epithelium or in the underlying bone.

Thus, there is evidence supporting both mechanisms of retention of cerium in the respiratory tract: formation of relatively insoluble particles, and retention in a bound state. Indeed, it seems quite possible that both are involved, perhaps with particle formation becoming increasingly important as the mass deposited increases, as suggested by Ducousso and Pasquier (1974) and Kanapilly (1977).

As described above, the most comprehensive study of the biokinetics of cerium following its inhalation in a relatively soluble form: 144Ce inhaled in a CsCl vector by dogs (Boecker and Cuddihy, 1974; Cuddihy et al., 1975, 1976) showed two long-term lung retention components of similar magnitude, with absorption rates of 0.02 d$^{-1}$ and 0.0012 d$^{-1}$. Analysis carried out here showed that most of the results could be fit well, assuming that the faster component represented bound material and the slower component particulate material, with absorption parameter values: $f_b = 0.07$; $s_b = 0.021$ d$^{-1}$ and $s_s = 0.0015$ d$^{-1}$. Fits that were less good were obtained if it was assumed instead that the slowest component of lung clearance was bound and the intermediate component was particulate: $s_b \sim 0.0015$ d$^{-1}$ ($f_b = 0.03$) and $s_s \sim 0.02$ d$^{-1}$. Measurements of 144Ce retained in the trachea were fit better by assuming the slower rate of uptake from the bound state. However, the results of rodent studies with chloride and citrate suggested that material retained in the lung in particulate form was absorbed at the slower rate. On that basis it was assessed here that bound state parameter values were $f_b = 0.07$ and $s_b = 0.02$ d$^{-1}$ and these values were adopted here for cerium.

As described above, there is evidence of retention of cerium deposited in relatively soluble form in both the ET and BB regions. There is evidence of some retention in the nasal epithelium, but there is no information on where it might be retained in the trachea. The bound fraction of 0.07 is therefore applied in the ET region as well as in the AI region, but not in the BB and bb regions.

Table 4.2 Absorption parameter values for inhaled and ingested cerium.

<table>
<thead>
<tr>
<th>Inhaled particulate materials</th>
<th>Absorption valuesa</th>
<th>parameter valuesb,c</th>
<th>Absorption from the alimentary tract, f_A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific parameter valuesd</td>
<td>Absorption from the alimentary tract, f_A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water soluble forms, including chloride and citrated</td>
<td>f_i</td>
<td>s_i (d$^{-1}$)</td>
<td>s_s (d$^{-1}$)</td>
</tr>
<tr>
<td>Dioxide</td>
<td>0.001</td>
<td>1</td>
<td>0.0015</td>
</tr>
<tr>
<td>Dioxide</td>
<td>0.001</td>
<td>1</td>
<td>0.001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default parameter valuesd,e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorption Type</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>Mf</td>
</tr>
<tr>
<td>S</td>
</tr>
</tbody>
</table>
Ingested material

<table>
<thead>
<tr>
<th>All compounds</th>
<th>5×10^{-4}</th>
</tr>
</thead>
</table>

a. It is assumed that for cerium a bound fraction $f_b = 0.07$ with an uptake rate $s_b = 0.02 \text{ d}^{-1}$ is applied to material in the ET and AI regions, and associated lymph nodes LN$_{ET}$ and LN$_{AI}$. It is assumed that $f_b = 0.0$ for material deposited in the BB and bb regions. The values of s_i for Type F, M and S forms of cerium (1 d$^{-1}$) are element-specific.

b. For inhaled material deposited in the respiratory tract and subsequent cleared by particle transport to the alimentary tract, the default f_A values for inhaled materials are applied: i.e., the (rounded) product of f_i for the absorption Type (or specific value where given) and the f_A value for ingested soluble forms of cerium (5×10^{-4}).

c. See text for summary of information on which parameter values are based, and on ranges of parameter values observed in different studies. For both water soluble forms of cerium, and cerium dioxide, specific parameter values are used for dissolution in the lungs, but a default value of f_A (footnote b).

d. Materials (e.g. cerium fluoride) are generally listed here where there is sufficient information to assign to a default absorption Type, but not to give specific parameter values (see text).

e. Default Type M is recommended for use in the absence of specific information on which the exposure material can be assigned to an Absorption Type, e.g. if the form is unknown, or if the form is known but there is no information available on the absorption of that form from the respiratory tract.

f. Activity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject to reabsorption to blood. The default absorption fraction f_A for the secreted activity is the reference f_A ($=5 \times 10^{-5}$) for ingestion of the radionuclide.

4.2.2. Ingestion

The fractional absorption of cerium in rats was reported to be less than 10^{-3} (Durbin et al., 1956). Similar low values of absorption have also been reported in pigs (McClellan et al., 1965), goats (Ekman and Åberg, 1962) and cattle (Miller et al., 1967). In man, data from a case of accidental inhalation also indicated that absorption from the gastrointestinal tract is very small (Sill et al., 1969).

Taylor and Leggett (1998) reviewed the available information on the absorption of cerium, promethium and neodymium in humans and, noting that the reported values fell within the same range as those observed for the actinides thorium, neptunium, plutonium, americium and curium, proposed that the same absorption value should be applied.

In Publication 30 (ICRP, 1979), an f_1 of 3×10^{-4} was recommended for all compounds of cerium. In Publication 68 (ICRP, 1994b), a value of 5×10^{-4} was adopted by analogy with trivalent actinides and this f_A value is adopted in this report for every element of the lanthanide family.

4.2.3. Systemic distribution, retention and excretion of cerium

4.2.3.1. Data

Ewaldsson and Magnussson (1964) performed an autoradiographic study of the distribution of 144Ce and 147Pm in pregnant and non-pregnant female mice following their intravenous injection as chlorides. Blood levels of both radionuclides declined rapidly, with promethium appearing to leave the blood more readily than cerium. There were similarities but
also noticeable differences in the tissue distributions of the two radionuclides. Shortly after injection, the liver contained much of the administered quantity of both radionuclides. Cerium was uniformly distributed in liver tissue, while promethium showed a somewhat irregular distribution. The skeletal distribution patterns were similar for the two radionuclides. As observed by Durbin (1962) in rats, activity accumulated in the periosteum and endosteum of bone but not in the cortex. The accumulation of both radionuclides was remarkably high in the dental pulp.

Stuart (1964) studied the biokinetics and adverse effects of 147Pm in dogs following inhalation or intravenous injection of 147Pm perchlorate. Activity reaching the systemic circulation deposited primarily in the liver and skeleton. At 2 weeks after inhalation the mean liver and bone contents in two dogs were 40% and 35%, respectively, of the total body burden. At 2 wk after injection, the mean liver and bone contents in two dogs were 47% and 43%, respectively, of the total body burden. The distribution and retention of 147Pm showed little change between the first and second months.

Stuart and Gaven (1968) studied the behavior and adverse effects of 147Pm following its acute inhalation as promethium oxide (Pm$_2$O$_3$). At 5 mo after inhalation the average liver and bone contents in two dogs represented about 50% and 40%, respectively, of the total systemic burden. At 12-15 mo the average liver and bone content in two dogs were each about 45% of the total systemic burden. The contents of soft tissues other than liver represented about 5-8% of the total systemic burden at 5-15 mo.

McClellan et al. (1965) studied the biokinetics of 144Ce in miniature swine following its oral or intravenous administration as chloride. At 10 d after oral administration, activity was detectable in the skeleton, liver, and kidneys but amounted to less than 0.01% of the administered amount due to low fractional absorption to blood. At 10 d after intravenous administration, the skeleton, liver, and kidneys contained on average about 40%, 35%, and 0.4%, respectively, of the administered amount.

Richmond and London (1966) determined whole-body retention of 144Ce in adult dogs over 1050 d following intravenous administration of 144CeCl$_3$. An exponential curve fit to whole-body retention data indicated a biological half-time of about 10 y (3283 – 3873 d).

Cuddihy et al. (1975) developed a biokinetic model for systemic Ce as a fit to data for dogs exposed by inhalation to 144Ce aerosols. The model describes the systemic behavior of cerium in terms of compartments named Blood, Urine, Intestinal Contents, Liver 1 (relatively fast removal), Liver 2 (relatively slow removal), Skeleton 1 (fast), Skeleton 2 (slow), Soft Tissue 1 (fast), and Soft Tissue 2 (slow). Absorbed cerium is removed from Blood with a half-time of about 25 min, with about 2% going to Urine, 12.5% to the Intestinal Contents, 35.5% to Liver 1, 27% to Skeleton 1, and 23% to Soft Tissue 1. Cerium moves from Liver 1 to Liver 2 at 0.1 d$^{-1}$, Liver 1 to Blood at 0.04 d$^{-1}$, Skeleton 1 to Skeleton 2 at 0.1 d$^{-1}$, Skeleton 1 to Blood at 0.04 d$^{-1}$, Soft Tissue 1 to Soft Tissue 2 at 0.2 d$^{-1}$, Soft Tissue 1 to Blood at 1 d$^{-1}$, and long-term compartments of tissues back to the corresponding short-term compartments at 0.0001 d$^{-1}$.

Hahn et al. (1997) studied the biokinetics and adverse effects of 144Ce in dogs following acute inhalation of 144CeCl$_3$. Absorbed 144Ce accumulated largely in the liver and skeleton and was removed from these tissues with an effective half-time approaching the physical half-life of 144Ce, indicating little net biological removal during the observation period.

Thomas et al. (1989) reviewed published data on the Ce and Pu content of the gonads and total body for several animal species. They reduced collected data to fractional concentrations in gonads, i.e., to ratios of the concentration of Ce or Pu in gonads to its concentration in the total body. Logarithmic regression lines were used to relate fractional Pu or
Ce concentration in testes or ovaries to body weight of the animals and to predict fraction Pu or Ce concentrations in human gonads. The authors concluded that: (1) extrapolation of their regression lines to reference body weights of adult human males and females yields human values that agree reasonably well with the gonadal deposition fraction of 10^{-5} g$^{-1}$ recommended in ICRP Publication 30 (1979) and later ICRP documents, assuming permanent retention in gonads; (2) there is reasonably good agreement between the fractional concentrations of Ce and those of Pu in testes or ovaries; (3) fractional concentrations of gonadal Ce and Pu are reasonable substitutes for human gonadal concentrations of other elements with principal III and IV oxidation states.

4.2.3.2. Biokinetic model

The biokinetic model for systemic cerium applied in this report is described in Section 2.2.3.2.

4.2.3.3. Treatment of progeny

The treatment of radioactive progeny of cerium produced in systemic compartments or absorbed to blood after production in the respiratory or gastrointestinal tract is described in Section 2.2.3.3.

4.3. Individual monitoring

139Ce

Measurements of 139Ce are performed by in vivo lung measurement technique for routine monitoring. Measurements of 139Ce concentrations in urine and faeces may be used to determine intakes of the radionuclide. In vivo whole body measurement is used as additional technique for special investigation. The main technique is gamma spectrometry.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Monitoring Technique</th>
<th>Method of Measurement</th>
<th>Typical Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>139Ce</td>
<td>Urine Bioassay</td>
<td>γ-ray spectrometry</td>
<td>2 Bq/L</td>
</tr>
<tr>
<td>139Ce</td>
<td>Faecal Bioassay</td>
<td>γ-ray spectrometry</td>
<td>2 Bq/24h</td>
</tr>
<tr>
<td>139Ce</td>
<td>Lung Measurementa</td>
<td>γ-ray spectrometry</td>
<td>5 Bq</td>
</tr>
<tr>
<td>139Ce</td>
<td>Whole-body Measurementb</td>
<td>γ-ray spectrometry</td>
<td>70 Bq</td>
</tr>
</tbody>
</table>

a Measurement system comprised of two Broad Energy Germanium Detectors (BEGe) for counting time of 36 minutes and chest wall thickness of 2.54 cm.

b Measurement system comprised of two Broad Energy Germanium Detectors (BEGe) and counting time of 15 minutes.

141Ce

Measurements of 141Ce are performed by in vivo lung measurement technique for routine monitoring. Measurements of 141Ce concentrations in urine and faeces may be used to
Table 4.4. Monitoring techniques for 141Ce.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Monitoring Technique</th>
<th>Method of Measurement</th>
<th>Typical Detection Limit</th>
<th>Achievable detection limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>141Ce</td>
<td>Urine Bioassay</td>
<td>γ-ray spectrometry</td>
<td>9 Bq/L</td>
<td></td>
</tr>
<tr>
<td>141Ce</td>
<td>Faecal Bioassay</td>
<td>γ-ray spectrometry</td>
<td>9 Bq/24h</td>
<td></td>
</tr>
<tr>
<td>141Ce</td>
<td>Lung Measurement a</td>
<td>γ-ray spectrometry</td>
<td>8 Bq</td>
<td>4 Bq</td>
</tr>
<tr>
<td>141Ce</td>
<td>Whole-body Measurement b</td>
<td>γ-ray spectrometry</td>
<td>150 Bq</td>
<td>100 Bq</td>
</tr>
</tbody>
</table>

a Measurement system comprised of two Broad Energy Germanium Detectors (BEGe), counting time of 36 minutes and chest wall thickness of 2.54 cm.

b Measurement system comprised of two Broad Energy Germanium Detectors (BEGe) and counting time of 15 minutes.

144Ce

(204) Measurements of 144Ce are performed by in vivo lung measurement technique for routine monitoring. Measurements of 144Ce concentrations in urine and faeces may be used to determine intakes of the radionuclide. In vivo whole body measurement is used as additional technique for special investigation. The main technique is gamma spectrometry.

Table 4.5. Monitoring techniques for 144Ce.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Monitoring Technique</th>
<th>Method of Measurement</th>
<th>Typical Detection Limit</th>
<th>Achievable detection limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>144Ce</td>
<td>Urine Bioassay</td>
<td>γ-ray spectrometry</td>
<td>40 Bq/L</td>
<td>5 Bq/L</td>
</tr>
<tr>
<td>144Ce</td>
<td>Faecal Bioassay</td>
<td>γ-ray spectrometry</td>
<td>40 Bq/24h</td>
<td></td>
</tr>
<tr>
<td>144Ce</td>
<td>Lung Measurement a</td>
<td>γ-ray spectrometry</td>
<td>20 Bq</td>
<td>10 Bq</td>
</tr>
<tr>
<td>144Ce</td>
<td>Whole-body Measurement b</td>
<td>γ-ray spectrometry</td>
<td>600 Bq</td>
<td>250 Bq</td>
</tr>
</tbody>
</table>

a Measurement system comprised of two Broad Energy Germanium detectors (BEGe), counting time of 36 minutes and chest wall thickness of 2.54 cm.

b Measurement system comprised of two Broad Energy Germanium detectors (BEGe) and counting time of 15 minutes.

4.4. Dosimetric data for cerium

Dosimetric data will be provided in the final version of the document.
REFERENCES

5. PRASEODYMIUM (Z = 59)

5.1. Chemical Forms in the Workplace

Praseodymium is an element of the lanthanide series which occurs mainly in oxidation states III and IV.

Praseodymium may be encountered in a variety of chemical and physical forms, including oxides, hydroxides, and inorganic salts (chlorides, fluorides, iodides, sulphates, sulphides, carbonates and citrates), but also tellurides, selenides and nitrides. Praseodymium is most commonly obtained from bastnäsite and monazite.

Praseodymium isotopes (e.g. ^{143}Pr) are fission products.

Table 5.1. Isotopes of praseodymium addressed in this report.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Physical half-life</th>
<th>Decay mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr-134</td>
<td>11 m</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Pr-134m</td>
<td>17 m</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Pr-135</td>
<td>24 m</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Pr-136</td>
<td>13.1 m</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Pr-137</td>
<td>1.28 h</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Pr-138m</td>
<td>2.12 h</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Pr-139</td>
<td>4.41 h</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Pr-142</td>
<td>19.12 h</td>
<td>EC, B-</td>
</tr>
<tr>
<td>Pr-142m</td>
<td>14.6 m</td>
<td>IT</td>
</tr>
<tr>
<td>Pr-143a</td>
<td>13.57 d</td>
<td>B-</td>
</tr>
<tr>
<td>Pr-144</td>
<td>17.28 m</td>
<td>B-</td>
</tr>
<tr>
<td>Pr-145</td>
<td>5.98 h</td>
<td>B-</td>
</tr>
<tr>
<td>Pr-146</td>
<td>24.15 m</td>
<td>B-</td>
</tr>
<tr>
<td>Pr-147</td>
<td>13.4 m</td>
<td>B-</td>
</tr>
</tbody>
</table>

aDose coefficients and bioassay data for this radionuclide are given in the printed copy of this report. Data for other radionuclides listed in this table are given in the accompanying electronic annexes.

5.2. Routes of Intake

5.2.1. Inhalation

Absorption Types and parameter values

No information was found on the behaviour of inhaled praseodymium (Pr) in man, except for ^{144}Pr as the short-lived (half-life 17 minutes) progeny of the important fission product cerium-144 (half-life 284 d), which is covered in the cerium inhalation section. Information on absorption from the respiratory tract is available from experimental studies of praseodymium chloride. The studies reported were of short duration because they used ^{143}Pr, which has a half-life of only 13.7 d.
As described in the general lanthanide section, absorption parameter values based on cerium are applied in this document to the other lanthanides. Absorption parameter values and Types, and associated f_A values for particulate forms of lanthanides, including praseodymium, are given in Table 2.4 of the general lanthanide section.

Water-soluble forms of praseodymium

Moskalev et al. (1972) followed the biokinetics of 143Pr (and other lanthanides, see general lanthanide section) for 32 d after deposition in the lungs of rats. However, few details are given. Fig. 135 of Moskalev et al. (1972) shows retention (presumably in the lungs) of praseodymium falling to ~10% "of given dose" by 32 d. Analysis was carried out here (i.e. by the Task Group) assuming that $s_r = 0.44 \, \text{d}^{-1}$, $f_b = 0.07$, $s_b = 0.021 \, \text{d}^{-1}$, and $s_s = 0.0015 \, \text{d}^{-1}$, based on analysis of the results of studies of cerium chloride inhaled by dogs – see general lanthanide section. The results fit well with $f_r \approx 0.7$ (which would give assignment to Type M), in broad agreement with the value of 0.5 chosen for water-soluble forms of lanthanides.

Praseodymium chloride (PrCl_3)

Gensicke and Nitschke (1964) followed the biokinetics of 143Pr up to 14 d in mice that inhaled 143Pr chloride (pH 3.5). There was moderate transfer from lungs to blood and systemic tissues. Lung content dropped to ~60% of the initial lung deposit (ILD) at 1 d and ~40% ILD at 14 d. The contents of liver and skeleton each increased to ~7% ILD at 1 d and ~10% ILD at 14 d. Analysis was carried out here assuming that $s_r = 0.44 \, \text{d}^{-1}$, $f_b = 0.07$, $s_b = 0.021 \, \text{d}^{-1}$, and $s_s = 0.0015 \, \text{d}^{-1}$ (see above). The results fit well with $f_r = 0.4$, (which would give assignment to Type M) in broad agreement with the value of 0.5 chosen for water-soluble forms of lanthanides. Similar studies were carried out by this research group with chlorides of 144Ce, 147Pm, and 153Sm (see general lanthanide section).

Although specific parameter values for praseodymium chloride based on *in vivo* data could be derived, inhalation exposure to it is unlikely. Instead, it is assigned to water-soluble forms of lanthanides (see general lanthanide section, Table 3).

5.2.2. Ingestion

The fractional absorption of praseodymium in rats was reported to be less than 5 x 10^{-4} (Hamilton, 1948; Moskalev et al., 1972).

In *Publication 30* (ICRP, 1979), an f_1 of 3×10^{-4} was recommended for all compounds of praseodymium. In *Publication 68* (ICRP, 1994), a value of 5×10^{-4} was adopted by analogy with trivalent actinides and this f_A value is adopted in this report for every element of the lanthanide family.

5.2.3. Systemic distribution, retention and excretion of praseodymium

5.2.3.1. Data

The absorption and distribution of inhaled liquid 143Pr aerosols were investigated in mice. Absorbed activity was stored mainly in the liver and skeleton, with low activity concentrations in the other investigated organs. The systemic biokinetics of 143Pr was broadly...
similar to that observed in similar studies involving 144Ce, but excretion was faster for 143Pr than for 144Ce (Gensicke and Henneberger, 1964).

5.2.3.2. Biokinetic model

The biokinetic model for systemic praseodymium applied in this report is described in Section 2.2.3.2.

5.2.3.3. Treatment of progeny

The treatment of radioactive progeny of praseodymium produced in systemic compartments or absorbed to blood after production in the respiratory or gastrointestinal tract is described in section 2.2.3.3.

5.3. Individual monitoring

Information of detection limit for individual measurement techniques is not available.

5.4. Dosimetric data for praseodymium

Dosimetric data will be provided in the final version of the document.

REFERENCES

6. NEODYMIUM (Z = 60)

6.1. Chemical Forms in the Workplace

Neodymium is an element of the lanthanide series which occurs mainly in oxidation state III. Neodymium may be encountered in a variety of chemical and physical forms, including oxides, hydroxides, and inorganic salts (chlorides, fluorides, iodides, sulphates, sulphides and carbonates), but also carbides, phosphides and nitrides. Neodymium is most commonly obtained from bastnäsite and monazite.

Neodymium glass solid-state lasers are used in extremely high energy multiple beam systems for inertial confinement fusion.

Neodymium isotopes (e.g. \(^{147}\)Nd) are fission products.

Table 6.1. Isotopes of neodymium addressed in this report.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Physical half-life</th>
<th>Decay mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nd-135</td>
<td>12.4 m</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Nd-136</td>
<td>50.65 m</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Nd-137</td>
<td>38.5 m</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Nd-138</td>
<td>5.04 h</td>
<td>EC</td>
</tr>
<tr>
<td>Nd-139</td>
<td>29.7 m</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Nd-139m</td>
<td>5.50 h</td>
<td>EC, B+, IT</td>
</tr>
<tr>
<td>Nd-140</td>
<td>3.37 d</td>
<td>EC</td>
</tr>
<tr>
<td>Nd-141</td>
<td>2.49 h</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Nd-144</td>
<td>2.29E+15 y</td>
<td>A</td>
</tr>
<tr>
<td>Nd-147(^a)</td>
<td>10.98 d</td>
<td>B-</td>
</tr>
<tr>
<td>Nd-149</td>
<td>1.728 h</td>
<td>B-</td>
</tr>
<tr>
<td>Nd-151</td>
<td>12.44 m</td>
<td>B-</td>
</tr>
<tr>
<td>Nd-152</td>
<td>11.4 m</td>
<td>B-</td>
</tr>
</tbody>
</table>

*Dose coefficients and bioassay data for this radionuclide are given in the printed copy of this report. Data for other radionuclides listed in this table are given in the accompanying electronic annexes.

6.2. Routes of Intake

6.2.1. Inhalation

Absorption Types and parameter values

Studies have been reported of lung retention in man following chronic inhalation exposure to stable 'rare earth' (lanthanide) elements, including neodymium (see general lanthanide section). No reports of experimental studies of neodymium were found. As described in the general lanthanide section, absorption parameter values based on cerium are applied in this document to the other lanthanides. Absorption parameter values and Types, and associated \(f_A\) values for particulate forms of lanthanides, including neodymium, are given in Table 2.4.
Absorption parameter values for inhaled and ingested lanthanides of the general lanthanide section.

6.2.2. Ingestion

(224) McAughey (1996) using a dual stable isotope technique, measured the absorption of Nd in eight adults (four males and four females): the observed f_1 values ranged between $\leq 1.4 \times 10^{-4}$ and 3.6×10^{-3}, with a medium value of 5×10^{-4}.

(225) In *Publication 30* (ICRP, 1979), an f_1 of 3×10^{-4} was recommended for all compounds of neodymium. In *Publication 68* (ICRP, 1994), a value of 5×10^{-4} was adopted by analogy with trivalent actinides and this f_A value is adopted in this report for every element of the lanthanide family.

6.2.3. Systemic distribution, retention and excretion of neodymium

6.2.3.1. Data

(226) In rats (Durbin, 1960, 1962), neodymium had somewhat lower liver uptake and higher urinary excretion than its neighbours in the periodic chart and thus did not closely fit the trend indicated by the collective data for the lanthanides, i.e., a gradual, continuous change with ionic radius in deposition fractions in major repositories. However, the rate of urinary excretion of neodymium during the first week after injection into human subjects (Roth et al., 1995) was similar to that observed in human subjects injected with promethium (Palmer et al., 1970) and was much lower than that measured in rats (Durbin, 1960, 1962). The mean faecal to urinary excretion ratio over the first 7 d (~0.11) and mean whole-body retention of absorbed neodymium after 7 d (94 ± 3%) in the human subjects were also similar to values determined for promethium in human subjects.

6.2.3.2. Biokinetic model

(227) The biokinetic model for systemic neodymium applied in this report is described in Section 2.2.3.2.

6.2.3.3. Treatment of progeny

(228) The treatment of radioactive progeny of neodymium produced in systemic compartments or absorbed to blood after production in the respiratory or gastrointestinal tract is described in Section 2.2.3.3.

6.3. Individual monitoring

147Nd

(229) Measurements of 147Nd are performed by *in vivo* lung measurement technique for routine monitoring. Measurements of 147Nd concentrations in urine may be used to determine intakes of the radionuclide. The main technique is gamma spectrometry.

Table 6.2. Monitoring techniques for 147Nd.
Isotope Monitoring Technique Method of Measurement Typical Detection Limit

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Monitoring Technique</th>
<th>Method of Measurement</th>
<th>Typical Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>147Nd</td>
<td>Urine Bioassay</td>
<td>γ-ray spectrometry</td>
<td>15 Bq/L</td>
</tr>
<tr>
<td>147Nd</td>
<td>Lung Measurementa</td>
<td>γ-ray spectrometry</td>
<td>10 Bq</td>
</tr>
</tbody>
</table>

a Measurement system comprised of two Broad Energy Germanium Detectors (BEGe), counting time of 36 minutes and chest wall thickness of 2.54 cm.

6.4. Dosimetric data for neodymium

Dosimetric data will be provided in the final version of the document.

REFERENCES

7. PROMETHIUM (Z = 61)

7.1. Chemical Forms in the Workplace

Promethium is an element of the lanthanide series which occurs mainly in oxidation state III. All of its isotopes are radioactive.

Promethium may be encountered in a variety of chemical and physical forms, including oxides, hydroxides, and inorganic salts (chlorides, fluorides, sulphates, sulphides and carbonates). Promethium is used in luminous paint and atomic batteries. Promethium is most commonly obtained from bastnäsite and monazite.

Promethium isotopes (e.g. 147Pm) are fission products.

Table 7.1. Isotopes of promethium addressed in this report.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Physical half-life</th>
<th>Decay mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pm-141</td>
<td>20.9 m</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Pm-143</td>
<td>265 d</td>
<td>EC</td>
</tr>
<tr>
<td>Pm-144</td>
<td>363 d</td>
<td>EC</td>
</tr>
<tr>
<td>Pm-145</td>
<td>17.7 y</td>
<td>EC, A</td>
</tr>
<tr>
<td>Pm-146</td>
<td>5.53 y</td>
<td>EC, B-</td>
</tr>
<tr>
<td>Pm-147a</td>
<td>2.623 y</td>
<td>B-</td>
</tr>
<tr>
<td>Pm-148</td>
<td>5.368 d</td>
<td>B-</td>
</tr>
<tr>
<td>Pm-148m</td>
<td>41.29 d</td>
<td>B-, IT</td>
</tr>
<tr>
<td>Pm-149</td>
<td>53.08 h</td>
<td>B-</td>
</tr>
<tr>
<td>Pm-150</td>
<td>2.68 h</td>
<td>B-</td>
</tr>
<tr>
<td>Pm-151</td>
<td>28.40 h</td>
<td>B-</td>
</tr>
</tbody>
</table>

aDose coefficients and bioassay data for this radionuclide are given in the printed copy of this report. Data for other radionuclides listed in this table are given in the accompanying electronic annexes.

7.2. Routes of Intake

7.2.1. Inhalation

Absorption Types and parameter values

No information was found on the behaviour of inhaled promethium (Pm) in man. Information on absorption from the respiratory tract is available from experimental studies of promethium as chloride and oxide.

As described in the general lanthanide section, absorption parameter values based on cerium are applied in this document to the other lanthanides. Absorption parameter values and Types, and associated f_A values for particulate forms of lanthanides, including promethium, are given in Table 2.4. Absorption parameter values for inhaled and ingested lanthanides of the general lanthanide section.
Promethium perchlorate

Stuart (1964) measured the tissue distribution of 147Pm at 28 and 56 d in two dogs that inhaled 147Pm perchlorate. In both dogs, the amounts of 147Pm in the lungs at 20 d were \sim30–40% of that at 2 d, and amounts in lung, liver and skeleton when sacrificed were \sim10%, 40%, 35% of the total in the body (Sacrifice Body Burden, SBB), respectively. There is insufficient information to assess parameter values, and there was tissue damage that might have affected the biokinetics, but the results indicate Type M behaviour.

Promethium chloride (PmCl_3)

Gensicke and Nitschke (1965) followed the biokinetics of 147Pm up to 30 d in mice that inhaled 147PmCl$_3$ (pH 3.5). There was moderate transfer from lungs to blood and systemic tissues. Lung content dropped to \sim70% of the initial lung deposit (ILD) at 1 d and \sim20% ILD at 14 d. The contents of liver and skeleton increased to \sim15% and \sim5% ILD respectively at 1 d, after which the liver content fell and the skeleton content remained fairly constant. In a complementary study, Hölzer and Gensicke (1965) studied the distribution of 147Pm within organs by autoradiography, up to 120 d after inhalation.

Gensicke et al. (1973) investigated the effect of hexametaphosphate (used as decorporation agent) on retention of 147Pm in mice that inhaled 147PmCl$_3$ administered as described by Gensicke and Nitschke (1965). Data on the control group provide information on the biokinetics of 147Pm. Up to 30 d results were similar to those in the earlier study. At 200 d, there was \sim2% ILD remaining in the lungs, \sim2% ILD in liver and \sim10% ILD in the skeleton.

Analysis was carried out here (i.e. by the Task Group) to the combined results of both studies, assuming that $s_r = 0.44 \text{ d}^{-1}$, $f_b = 0.07$, $s_b = 0.021 \text{ d}^{-1}$, and $s_s = 0.0015 \text{ d}^{-1}$, based on analysis of the results of studies of cerium chloride inhaled by dogs – see general lanthanide section. The results fit well with $f_r = 0.3$ (which would give assignment to Type M), in broad agreement with the value of 0.5 chosen for water-soluble forms of lanthanides.

Similar studies were carried out by this research group with chlorides of 144Ce, 143Pr, and 153Sm (see general lanthanide section).

Although specific parameter values for promethium chloride based on in vivo data could be derived, inhalation exposure to it is unlikely. Instead, promethium chloride is assigned to water-soluble forms of lanthanides (see general lanthanide section, Table 2.4).

Promethium oxide (Pm_2O_3)

Stuart (1966, 1968) followed the biokinetics of 147Pm and 148mPm up to at least 50 d in dogs that inhaled calcined 147Pm$_2$O$_3$ that had been neutron-irradiated to produce 148mPm: a hard gamma-emitter, as a tracer for whole body counting. Forty to 50% of the total initial deposit was cleared in the first week, mainly to faeces. Whole body counts beyond 5 or 6 d reflected only radioactive decay. Urinary excretion was higher than expected for an 'insoluble' compound, and it was inferred that the neutron irradiation led to more rapid dissolution than expected. The observed pulmonary retention half-time of 4–5 months is much less than expected for an 'insoluble' material in dogs.

Stuart (1967, 1968) followed the biokinetics of 147Pm and 148mPm up to 12 months in dogs that inhaled calcined 147Pm$_2$O$_3$ that had been re-calcined after neutron irradiation to produce 148mPm. The urinary excretion was typical of relatively insoluble materials and for the first few days it was about one order of magnitude lower than for the calcined material. The
lung measurements at five and ten months indicated a retention half-time of the order of about one year or longer. There is insufficient information to estimate absorption parameter values: the results suggest Type M or S behaviour.

Samarium oxide (Sm$_2$O$_3$)

(243) Shipler et al. (1976) followed the biokinetics of 145Sm and 143Pm up to 30 d in rats and beagle dogs that inhaled stable Sm$_2$O$_3$ labelled with 145Sm$_2$O$_3$ and 143Pm$_2$O$_3$. The particles were formed by thermal degradation of the oxalates at 750°C for rats and 1170°C for dogs. (The authors considered that some material may have been converted to hydroxide.) The objective was to provide information to develop guidance on bioassay for 147Pm$_2$O$_3$. Promethium-143 was used as the tracer because, unlike 147Pm, it has photon emissions suitable for external counting. Because of the low mass of 143Pm and the absence of a stable isotope of promethium, Sm$_2$O$_3$ was used as a carrier. Ratios of 145Sm to 143Pm were similar in most tissue and excreta samples to those in the aerosol suspension, indicating that absorption from lungs to blood and systemic biokinetics of the two elements were similar. In both species a large fraction of the initial deposit cleared in faeces in the first few days, attributed to clearance from the upper respiratory tract. Subsequent lung clearance was slow, but the 143Pm content of liver averaged ~18% of the initial lung deposit (ILD) in dogs and ~4% ILD in rats. Analysis carried out here (i.e. by the Task Group), showed that the results for both dogs and rats could be fit well with absorption parameter values of $f_r = 0.04$, $s_r = 1.1 \ \text{d}^{-1}$, and $s_s = 0.004 \ \text{d}^{-1}$. Assuming (based on cerium, see general lanthanide section) that $s_r = 0.44 \ \text{d}^{-1}$, $f_b = 0.07$; $s_b = 0.021 \ \text{d}^{-1}$, most results fit well with $f_r = 0.05$, and $s_s = 0.005 \ \text{d}^{-1}$. Both sets of values give assignment to Type M.

Fused aluminosilicate particles (FAP)

(244) FAP or “fused clay” particles have been extensively used as relatively insoluble particles in inhalation studies, both of biokinetics and of radiation effects (see, e.g. cerium section). Snipes et al. (1975, 1977) studied the effect of lung lavage on the distribution within the lungs of FAP labelled with 147Pm and 169Yb, at times up to 56 d after inhalation by dogs. No biokinetic data were reported, but the ability to measure the effectiveness of lung lavage, and particle distributions in lung sections by autoradiography, demonstrated that the material did not dissolve readily in the lungs. Herbert et al. (1987, 1988) investigated effects of lung irradiation in rats for 18 months after inhalation of FAP labelled with 147Pm and 169Yb (the latter as a tracer for in vivo measurements). Little biokinetic information was reported. However, effective lung retention half-times were ~5 d for 58% ILD and 150 d for 42% ILD, showing that the material was relatively insoluble.

7.2.2. Ingestion

(245) Early studies by Hamilton (1948) and Moskalev (1959) showed total retention of <5x10$^{-4}$ for adult rats. Studies performed by Sullivan et al. (1984) with 147Pm administered as chloride to rats suggested values of 7 x 10$^{-5}$ for adult rats.

(246) Palmer et al. (1970) studied the oral absorption of 143PmCl$_3$ in two adult males and the f_1 has been estimated to 10$^{-5}$.

(247) In Publication 30 (ICRP, 1979), an f_1 of 3 x 10$^{-4}$ was recommended for all compounds of promethium. In Publication 68 (ICRP, 1994), a value of 5 x 10$^{-4}$ was adopted by
analogy with trivalent actinides and this f_A value is adopted in this report for every element of
the lanthanide family.

7.2.3. Systemic distribution, retention and excretion of promethium

7.2.3.1. Data

Palmer et al. (1970) studied the biokinetics of 143Pm in six human volunteers following its intravenous administration as chloride. Approximately 25% of the injected amount remained in blood after 30 min, 15% after 1 h, and 2–3% after 5 h. About half of the injected activity accumulated in the liver within a few minutes. Most of the remaining activity deposited in bone within the next 5 h. Measurements of whole-body retention and urinary and faecal excretion are summarised in Figs. 7.1 to 7.3. More than 10% of the injected amount was excreted within the first 20 d. The retention half-time of the amount remaining in the body after the first 1-2 mo could not be determined due to the relatively short observation period but was estimated to be substantially greater than 1000 d. The urinary excretion rate was greater than the faecal excretion rate until about the seventh day, at which time the rates were about equal. Daily faecal samples were stopped after the seventh day, but measurements on the 15th day suggested that the faecal excretion rate was greater than the urinary excretion rate at that time. The excretion rates observed in the human subjects were similar to those observed by the investigators in experiments involving pigs and dogs, except that the urinary excretion rate was noticeably greater in the human subjects than in the laboratory animals on the first day. The pattern of decline in the urinary excretion rate of Pm over the first several weeks in the human subjects and large laboratory animals suggests a slow return to blood from tissues. A relatively high rate of faecal excretion in the human subjects during the first two weeks but only slow loss from the body thereafter suggests an initially high rate of secretion into the gastrointestinal tract but substantially slower secretion thereafter.
Fig. 7.1. Whole-body retention of intravenously injected ^{143}Pm as observed in six human subjects (Palmer et al., 1970) and derived from the model used in this report. The vertical lines represent observed ranges of values.

Fig. 7.2. Urinary excretion of intravenously injected ^{143}Pm as observed in six human subjects (Palmer et al., 1970) and derived from the model used in this report.

Fig. 7.3. Faecal excretion of intravenously injected ^{143}Pm as observed in six human subjects (Palmer et al., 1970) and derived from the model used in this report.
McConnon and Cole (1971) compared the behavior of intravenously injected PmCl₃ in swine and normal human subjects. No major differences were seen in the systemic biokinetics of Pm in the two species. In beagle dogs exposed to $^{147}\text{Pm}_3\text{O}_3$ by inhalation, about 40–50% of the total body burden was in the lungs, 3% in TB lymph nodes, 25% in liver, and 20% in bone at five months after exposure (Stuart, 1967).

McClellan et al. (1965) studied the biokinetics of ^{147}Pm following its oral and intravenous administration as chloride. At 10 d after oral administration, activity was detectable in the skeleton, liver, kidneys, and spleen but amounted to less than 0.001% of the administered amount due to low fractional absorption to blood. At 10 d after intravenous administration the skeleton, liver, kidneys, and spleen contained on average about 40%, 40%, 0.3%, and 0.1%, respectively, of the administered amount.

The distribution of ^{147}Pm was investigated in mice following inhalation of $^{147}\text{PmCl}_3$ liquid aerosols (Gensicke and Nitschke, 1965; Hölzer and Gensicke, 1965). Activity was quickly absorbed to blood or transferred to the gastrointestinal contents. Absorbed activity accumulated primarily in the liver and skeleton. Activity was distributed homogeneously in the liver. In the femur, activity was found mainly in the osteoblastic tissue of the perichondrium and on the surfaces of the primary spongiosa.

Priest (2007) compared the distributions of three trivalent elements with a similar ionic radius following their intravenous administration to rats. Activity concentrations were determined in the liver, kidneys, femur, spleen, and gastrointestinal tract at 1, 4, 14, and 32 d. The distributions of the two ions with the same cubic ionic radius (111 pm), promethium and curium, were indistinguishable. The distribution of americium, which has a slightly larger ionic radius (111.5 pm), was similar to, but distinguishable from, the distributions of promethium and curium.

Biokinetic model

The biokinetic model for systemic promethium applied in this report is described in Section 2.2.3.2.

Treatment of progeny

The treatment of radioactive progeny of promethium produced in systemic compartments or absorbed to blood after production in the respiratory or gastrointestinal tract is described in section 2.2.3.3.

Individual monitoring

Measurements of ^{147}Pm concentrations in urine and faeces are used to determine intakes of the radionuclide.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Monitoring Technique</th>
<th>Method of Measurement</th>
<th>Typical Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{147}Pm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dosimetric data will be provided in the final version of the document.

REFERENCES

Gensicke, F., Nitschke, H.W., 1965. Metabolism of radiopromethium (\(^{147}\)Pm) following inhalation of liquid aerosols in mice [Der Stoffwechsel von Radiopromethium (\(^{147}\)Pm) nach Inhalation von Flüssigkeitsaerosolen bei Mäusen.] Strahlentherapie, 128, 288–295.

8. SAMARIUM (Z=62)

8.1. Chemical Forms in the Workplace

Samarium is an element of the lanthanide series which occurs mainly in oxidation states II and III. Samarium may be encountered in a variety of chemical and physical forms, including oxides, hydroxides, and inorganic salts (chlorides, fluorides, iodides, sulphates, sulphides and carbonates) but also tellurides, selenides and organometallic compounds. Samarium is most commonly obtained from bastnäsite and monazite.

\(^{149}\)Sm is a strong neutron absorber added to the control rods of nuclear reactors and \(^{153}\)Sm is commonly used in the treatment of cancer.

Samarium isotopes (e.g. \(^{151}\)Sm, \(^{153}\)Sm) are fission products.

Table 8.1. Isotopes of samarium addressed in this report.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Physical half-life</th>
<th>Decay mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sm-140</td>
<td>14.82 m</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Sm-141</td>
<td>10.2 m</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Sm-141m</td>
<td>22.6 m</td>
<td>EC, B+, IT</td>
</tr>
<tr>
<td>Sm-142</td>
<td>72.49 m</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Sm-145</td>
<td>340 d</td>
<td>EC</td>
</tr>
<tr>
<td>Sm-146</td>
<td>1.03E+8 y</td>
<td>A</td>
</tr>
<tr>
<td>Sm-147</td>
<td>1.06E+11 y</td>
<td>A</td>
</tr>
<tr>
<td>Sm-148</td>
<td>7E+15 y</td>
<td>A</td>
</tr>
<tr>
<td>Sm-151</td>
<td>90 y</td>
<td>B-</td>
</tr>
<tr>
<td>Sm-153(^a)</td>
<td>46.50 h</td>
<td>B-</td>
</tr>
<tr>
<td>Sm-155</td>
<td>22.3 m</td>
<td>B-</td>
</tr>
<tr>
<td>Sm-156</td>
<td>9.4 h</td>
<td>B-</td>
</tr>
</tbody>
</table>

\(^a\)Dose coefficients and bioassay data for this radionuclide are given in the printed copy of this report. Data for other radionuclides listed in this table are given in the accompanying electronic annexes.

8.2. Routes of Intake

8.2.1. Inhalation

Absorption Types and parameter values

Studies have been reported of lung retention in man following chronic inhalation exposure to stable ‘rare earth’ (lanthanide) elements, including samarium (Sm) (see general lanthanide section). Information on absorption from the respiratory tract is available from experimental studies of samarium as chloride and oxide.

As described in the general lanthanide section, absorption parameter values based on cerium are applied in this document to the other lanthanides. Absorption parameter values and
Types, and associated f_A values for particulate forms of lanthanides, including samarium, are given in Table 2.4 of the general lanthanide section.

Samarium chloride (SmCl$_3$)

(262) Gensicke and Nitschke (1970) followed the biokinetics of 153Sm up to 7 d in mice that inhaled 153SmCl$_3$ ($2 \times 10^{-6} \text{ mg/kBq at pH 3.5}$). Because of the short half-life of 153Sm (2.0 d) measurements were restricted to 7 d. Over this period lung retention followed a single exponential function with a half-time of about 11 d. The contents of liver and skeleton increased to ~3% and ~6% ILD respectively at 7 d.

(263) Analysis was carried out here (i.e. by the Task Group), assuming that $s_r = 0.44 \text{ d}^{-1}$, $f_b = 0.07$, and $s_b = 0.0015 \text{ d}^{-1}$, based on analysis of the results of studies of cerium chloride inhaled by dogs – see general lanthanide section. The results fit well with $f_r = 0.4$ (which would give assignment to Type M), in broad agreement with the value of 0.5 chosen for water-soluble forms of lanthanides.

(264) Similar studies were carried out by this research group with chlorides of 144Ce, 143Pr, and 147Pm (see general lanthanide section).

(265) Although specific parameter values for samarium chloride based on in vivo data could be derived, inhalation exposure to it is unlikely. Instead, samarium chloride is assigned to water-soluble forms of lanthanides (see general lanthanide section, Table 2.4).

Samarium oxide (Sm$_2$O$_3$)

(266) Shipler et al. (1976) followed the biokinetics of 145Sm and 143Pm up to 30 d in rats and beagle dogs that inhaled stable Sm$_2$O$_3$ labelled with 145Sm$_2$O$_3$ and 143Pm$_2$O$_3$. The particles were formed by thermal degradation of the oxalates at 750°C for rats and 1170°C for dogs. (The authors considered that some material may have been converted to hydroxide.) The objective was to provide information to develop guidance on bioassay for 147Pm$_2$O$_3$. Promethium-143 was used as the tracer because, unlike 147Pm, it has photon emissions suitable for external counting. Because of the low mass of 143Pm and the absence of a stable isotope of promethium, Sm$_2$O$_3$ was used as a carrier. Ratios of 145Sm to 143Pm were similar in most tissue and excreta samples to those in the aerosol suspension, indicating that absorption from lungs to blood and systemic biokinetics of the two elements were similar. In both species a large fraction of the initial deposit cleared in faeces in the first few days, attributed to clearance from the upper respiratory tract. Subsequent lung clearance was slow, but the 145Sm content of liver averaged ~15% of the initial lung deposit (ILD) in dogs and ~3% ILD in rats.

Analysis carried out here (i.e. by the Task Group), showed that the results for both dogs and rats could be fit well with absorption parameter values of $f_r = 0.04$, $s_r = 1.1 \text{ d}^{-1}$, and $s_b = 0.004 \text{ d}^{-1}$ ($f_b = 0.07$ and $s_b = 0.021 \text{ d}^{-1}$). Assuming (based on cerium - see general lanthanide section) that $s_r = 0.44 \text{ d}^{-1}$, $f_b = 0.07$ and $s_b = 0.021 \text{ d}^{-1}$, most results fit well with $f_r = 0.05$, and $s_s = 0.005 \text{ d}^{-1}$. Both sets of values give assignment to Type M.

(267) Shinohara et al. (2009) measured the distribution of samarium in mice at 1 and 28 d after protracted inhalation of stable Sm$_2$O$_3$ (7 hours per day, 5 days per week) for one or four weeks. In both groups the highest concentration at 1 d after the end of exposure was in the lungs; between 1 and 28 d concentrations in lungs, liver, kidney and spleen fell, while the concentration in bone increased. Analysis carried out here, assuming (based on cerium) that $s_r = 0.44 \text{ d}^{-1}$, $f_b = 0.07$ and $s_b = 0.021 \text{ d}^{-1}$ showed that most of the results could be fit well with absorption parameter values of $f_r \sim 0.1$, and $s_s = 0.02 \text{ d}^{-1}$, giving assignment to Type M.
Shinohara et al. (2010) carried out similar experiments with cerium oxide, and compared the results with those for samarium reported by Shinohara et al. (2009). The authors noted that there was relatively little deposition of cerium in systemic organs (liver, bone, etc.) compared to samarium, and concluded that the behaviour of inhaled cerium was different from that of samarium, although their chemical properties are similar. However, no information was given on the method of preparation of either material, and so it is not clear to what extent that might account for the differences observed.

8.2.2. Ingestion

Experiments on the acute toxicity of samarium nitrate and oxide to the rat (Bruce et al., 1963) and studies on absorption of SmCl$_3$ in man as a non-absorbable faecal marker of iron (Fairweather et al., 1997) indicate that the fractional absorption of samarium from the gastrointestinal tract is very small. In Publication 30 (ICRP, 1979), an f_i of 3×10^{-4} was recommended for all compounds of samarium. In Publication 68 (ICRP, 1994), a value of 5×10^{-4} was adopted by analogy with trivalent actinides and this f_A value is adopted in this report for every element of the lanthanide family.

8.2.3. Systemic distribution, retention and excretion of samarium

8.2.3.1. Data

Shipler et al. (1976) compared the kinetics of 145Sm and 143Pm in rats and dogs exposed by inhalation to an aerosol containing 145Sm$_2$O$_3$ and 143Pm$_2$O$_3$. The animals were sacrificed at 0, 14, and 30 days after exposure. Quantitative analysis for several tissues and excreta indicate that the two radionuclides behaved virtually identically in each of these animal species.

8.2.3.2. Biokinetic model

The biokinetic model for systemic samarium applied in this report is described in Section 2.2.3.2.

8.2.3.3. Treatment of progeny

The treatment of radioactive progeny of samarium produced in systemic compartments or absorbed to blood after production in the respiratory or gastrointestinal tract is described in Section 2.2.3.3.

8.3. Individual monitoring

153Sm

Measurements of 153Sm are performed by in vivo lung measurement technique for routine monitoring. Measurements of 153Sm concentrations in urine may be used to determine intakes of the radionuclide. In vivo whole body measurement is used as an additional technique for special investigations. The main technique is gamma spectrometry.
Table 8.2. Monitoring Techniques for 153Sm.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Monitoring Technique</th>
<th>Method of Measurement</th>
<th>Typical Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>153Sm</td>
<td>Urine Bioassay</td>
<td>γ-ray spectrometry</td>
<td>20 Bq/L</td>
</tr>
<tr>
<td>153Sm</td>
<td>Lung Measurementa</td>
<td>γ-ray spectrometry</td>
<td>8 Bq</td>
</tr>
<tr>
<td>153Sm</td>
<td>Whole-body Measurementb</td>
<td>γ-ray spectrometry</td>
<td>170 Bq</td>
</tr>
</tbody>
</table>

* Measurement system comprised of two Broad Energy Germanium detectors (BEGe), counting time of 36 minutes and chest wall thickness of 2.54 cm.

b Measurement system comprised of two Broad Energy Germanium detectors (BEGe) and counting time of 15 minutes.

8.4. Dosimetric data for samarium

Dosimetric data will be provided in the final version of the document.

REFERENCES

9. EUROPIUM (Z = 63)

9.1. Chemical Forms in the Workplace

(Equation 275) Europium is an element of the lanthanide series which occurs mainly in oxidation states II and III.

(Equation 276) Europium may be encountered in a variety of chemical and physical forms, including oxides, hydroxides, and inorganic salts (chlorides, fluorides, iodides, sulphates, sulphides and carbonates). Europium is most commonly obtained from bastnäsite and monazite.

(Equation 277) Europium is used in nuclear reactor control rods. Europium isotopes (e.g. \(^{155}\text{Eu}\)) are fission products.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Physical half-life</th>
<th>Decay mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eu-145</td>
<td>5.93 d</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Eu-146</td>
<td>4.61 d</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Eu-147</td>
<td>24.1 d</td>
<td>EC, B+, A</td>
</tr>
<tr>
<td>Eu-148</td>
<td>54.5 d</td>
<td>EC, B+, A</td>
</tr>
<tr>
<td>Eu-149</td>
<td>93.1 d</td>
<td>EC</td>
</tr>
<tr>
<td>Eu-150</td>
<td>36.9 y</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Eu-150m</td>
<td>12.8 h</td>
<td>B-, EC, B+</td>
</tr>
<tr>
<td>Eu-152(^a)</td>
<td>13.537 y</td>
<td>EC, B+, B-</td>
</tr>
<tr>
<td>Eu-152m</td>
<td>9.312 h</td>
<td>B-, EC, B+</td>
</tr>
<tr>
<td>Eu-152n</td>
<td>96 m</td>
<td>IT</td>
</tr>
<tr>
<td>Eu-154(^a)</td>
<td>8.593 y</td>
<td>B-, EC</td>
</tr>
<tr>
<td>Eu-154m</td>
<td>46.0 m</td>
<td>IT</td>
</tr>
<tr>
<td>Eu-155(^b)</td>
<td>4.761 y</td>
<td>B-</td>
</tr>
<tr>
<td>Eu-156</td>
<td>15.19 d</td>
<td>B-</td>
</tr>
<tr>
<td>Eu-157</td>
<td>15.18 h</td>
<td>B-</td>
</tr>
<tr>
<td>Eu-158</td>
<td>45.9 m</td>
<td>B-</td>
</tr>
<tr>
<td>Eu-159</td>
<td>18.1 m</td>
<td>B-</td>
</tr>
</tbody>
</table>

\(^a\) Dose coefficients and bioassay data for this radionuclide are given in the printed copy of this report. Data for other radionuclides listed in this table are given in the accompanying electronic annexes.

9.2. Routes of Intake

9.2.1. Inhalation

Absorption Types and parameter values

(Equation 278) Studies have been reported of lung retention in man following chronic inhalation exposure to stable 'rare earth' (lanthanide) elements, including europium (Eu) (see general
lanthanide section). One study was found on the behaviour of europium radioisotopes in man following accidental inhalation. Information on absorption from the respiratory tract is available from experimental studies of europium as chloride, nitrate and oxide.

As described in the general lanthanide section, absorption parameter values based on cerium are applied in this document to the other lanthanides. Absorption parameter values and Types, and associated f_A values for particulate forms of lanthanides, including europium, are given in Table 2.4 of the general lanthanide section.

Water-soluble forms of europium

Moskalev et al. (1972) followed the biokinetics of 152Eu (and other lanthanides, see general lanthanide section) for at least 32 d after deposition in the lungs of rats. However, few details are given. Fig. 135 of Moskalev et al. (1972) shows retention (presumably in the lungs) of europium falling to ~3% "of given dose" by 32 d. Analysis was carried out here (i.e. by the Task Group) assuming that $s_r = 0.44 \text{ d}^{-1}$, $f_b = 0.07$; $s_b = 0.021 \text{ d}^{-1}$, and $s_s = 0.0015 \text{ d}^{-1}$, based on analysis of the results of studies of cerium chloride inhaled by dogs – see general lanthanide section. The results fit well with $f_r > 0.95$, (which would give assignment to Type F), higher than the value of 0.5 chosen for water-soluble forms of lanthanides.

Europium chloride (EuCl_3)

Berke and Vorwald (1964) administered $^{152-154}$Eu chloride by inhalation to rats and mice in single or repetitive short (30-minute) exposures. However, no results were reported, except that it was noted that clearance of $^{152-154}$Eu from the lung and whole body was similar for chloride and oxide (see below). It was also noted that the information was published in a Masters Degree thesis (Willard, 1963). The biological behavior of Eu152 as the nitrate and oxide (following inhalation and after intraperitoneal and subcutaneous injections) M.S. thesis, Wayne State Univ., Detroit, Michigan.) Unfortunately, the Task Group was unable to obtain a copy.

Results were given for three groups of rats that repeatedly inhaled $^{152-154}$Eu chloride (7 hours/d and 5 d/week) for six months. In one group, retention in lungs and other major organs was followed for an additional six months after exposure. Analysis was carried out here on the results of two exposures simultaneously, assuming that $s_r = 0.44 \text{ d}^{-1}$, $f_b = 0.07$; $s_b = 0.021 \text{ d}^{-1}$, and $s_s = 0.0015 \text{ d}^{-1}$ (see above). The results fit well with $f_r = 0.9$, which would give assignment to Type F. Further information on the third group was given by Berke et al. (1968) and was analysed here with other results reported in that paper.

Berke et al. (1968) followed whole body and lung retention of $^{152-154}$Eu for 700 d after inhalation by rats of $^{152-154}$Eu chloride (5 d/week for 6 months) at two exposure levels. Analysis was carried out here on the results of both exposures simultaneously, assuming that $s_r = 0.44 \text{ d}^{-1}$, $f_b = 0.07$; $s_b = 0.021 \text{ d}^{-1}$, and $s_s = 0.0015 \text{ d}^{-1}$ (see above). The results fit well with $f_r = 0.8$, which would give assignment to Type M.

Berke (1970) measured tissue distributions of $^{152-154}$Eu at times up to 365 d after intratracheal instillation of $^{152-154}$Eu chloride into dogs. No details are given, but it was noted that: "One of the most surprising observations was the very long retention time in lung tissue, only 10-15% of the activity being cleared in a one year period while absorption into soft tissue and bone was minimal." This is considerably greater retention than observed following inhalation by rats.
(285) Although absorption parameter values for europium chloride based on in vivo data were derived, the results from different studies varied considerably. Furthermore, inhalation exposure to it is unlikely. Therefore specific parameter values for europium chloride are not used here. Instead, it is assigned to water-soluble forms of lanthanides (see general lanthanide section, Table 2.4).

(286) *Europium nitrate (Eu(NO$_3$)$_3$)*

Suzuki et al. (1969) followed the biokinetics of $^{152-154}$Eu for 55 d after inhalation by rats of $^{152-154}$Eu nitrate. There was very little clearance from the lungs after the first few days and very little absorption to blood, ~0.5% initial lung deposit (ILD) in both liver and skeleton. The authors concluded that inhaled europium nitrate was absorbed very little (~1%) from the lung and gut, even though europium nitrate is a soluble compound. Analysis carried out here, assuming (based on cerium, see above) that $s_r = 0.44$ d$^{-1}$, $f_b = 0.07$ and $s_b = 0.021$ d$^{-1}$, gave $f_r = 0.005$, and $s_s = 0.0012$ d$^{-1}$, and assignment to Type M. This absorption is much lower than generally found for water-soluble forms of lanthanides, including europium (see above), but it is not unique. As described in the cerium section, absorption is very variable, tending to decrease with increasing mass administered and increasing pH, but it is not clear why it should be so low in this case.

(287) Although absorption parameter values for europium nitrate based on in vivo data were derived, the results differed greatly from those generally found for water-soluble forms of lanthanides. Furthermore, inhalation exposure to it is unlikely. Therefore specific parameter values for europium nitrate are not used here. Instead, it is assigned to water-soluble forms of lanthanides (see general lanthanide section, Table 2.4).

(288) *Europium oxide (Eu$_2$O$_3$)*

Berke and Vorwald (1964) administered $^{152-154}$Eu oxide by inhalation to rats and mice in single or repetitive short (30-minute) exposures. Results were reported for mice up to ~50 d after a single exposure: lung retention fell to ~50% ILD by 50 d; the amount in liver was ~10% of that in the lungs over most of the period. Results are reported for rats during ~65 d of repeated exposure. Activities in all organs measured increased steadily at similar rates, with the total activity in skeleton, liver and kidneys reaching ~45% of that in the lungs. Analysis carried out here, assuming (based on cerium, including Type M default values for s_r and s_s) that $s_r = 1$ d$^{-1}$, $f_b = 0.07$, and $s_b = 0.021$ d$^{-1}$ and $s_s = 0.005$ d$^{-1}$, gave $f_r = 0.4$, consistent with assignment to Type M.

(289) Ziemer et al. (1968) followed whole-body retention and excretion of $^{152-154}$Eu for 200 d after accidental inhalation by two men of europium oxide labelled with $^{152-154}$Eu (and other isotopes) by neutron irradiation. About 80-90% of the initial respiratory tract deposits were cleared within 48 hr via the alimentary tract. Subsequently urine to fecal ratios of europium activity were close to one. Analysis carried out here, assuming (based on cerium) that $s_r = 1$ d$^{-1}$, $f_b = 0.07$, $s_b = 0.021$ d$^{-1}$ and $s_s = 0.005$ d$^{-1}$, gave $f_r = 0.3$, suggesting Type M behaviour. Johnson and Ziemer (1971) followed whole-body retention and excretion of $^{152-154}$Eu for 30 d after inhalation by rats of europium oxide labelled with $^{152-154}$Eu by neutron irradiation. They measured the tissue distribution of $^{152-154}$Eu at 30 d, but found only traces (not quantified) in tissues measured other than lungs. Analysis carried out here, assuming (based on cerium) that $s_r = 1$ d$^{-1}$, $f_b = 0.07$, $s_b = 0.021$ d$^{-1}$ and $s_s = 0.005$ d$^{-1}$, gave $f_r = 0.2$, suggesting Type M behaviour.
Although absorption parameter values for europium oxide based on in vivo data were derived, the results from different studies varied considerably. Furthermore, inhalation exposure to it is unlikely. Therefore specific parameter values for europium oxide are not used here. Instead, it is assigned to Type M.

Fly ash
Griffis et al. (1981) measured whole body retention and tissue distribution in rats of several radionuclides, including 152Eu, at times up to 127 d after inhalation by rats of neutron-activated fly ash. The activities of 152Eu, 134Cs, 54Mn and 60Co in the lungs decreased significantly with time relative to 46Sc and 59Fe indicating that some elements, including europium, may be preferentially dissolved from the fly ash particles in vivo, and indicating assignment to Type M.

9.2.2. Ingestion
The fractional absorption of europium, administered as EuCl$_3$ from the gastrointestinal tract of the rat was reported in the range 2×10^{-3} to 3×10^{-3} (Berke, 1970). Other experiments on rats (Durbin et al., 1956; Moskalev et al., 1972) also indicate that the gastrointestinal absorption of various compounds of europium were in this order of magnitude.

The urinary excretion of europium, administered as EuCl$_3$ in a wide range of mass from 10^2 µg to 40 g from the gastrointestinal tract of rats, was reported in the range 7.8×10^{-5} to 1.6×10^{-2} with an average value of 3×10^{-3} (Ohnishi et al., 2011).

In Publication 30 (ICRP, 1979), an f_1 of 3×10^{-4} was recommended for all compounds of europium. In Publication 68 (ICRP, 1994), a value of 5×10^{-4} was adopted by analogy with trivalent actinides and this f_A value is adopted in this report for every element of the lanthanide family.

9.2.3. Systemic distribution, retention and excretion of europium

9.2.3.1. Data
Berke (1968) studied the systemic behavior of $^{152-154}$Eu in rats following its intravenous administration as chloride. Activity cleared quickly from the circulation and accumulated primarily in the skeleton, with elevated concentration also seen in the liver and kidneys. Skeletal tissues contained about 85% of the body burden at 252 d and virtually the entire body burden at 445 d. After the first few days excretion was primarily via the gastrointestinal tract. Whole-body retention could be described as a sum of two exponential terms indicating biological half-times of 4.4 d and 3.5 y.

9.2.3.2. Biokinetic model
The biokinetic model for systemic europium applied in this report is described in Section 2.2.3.2.

9.2.3.3. Treatment of progeny
The treatment of radioactive progeny of europium produced in systemic compartments or absorbed to blood after production in the respiratory or gastrointestinal tract is described in Section 2.2.3.3.
9.3. Individual monitoring

^{152}\text{Eu}

Measurements of 152Eu are performed by in vivo lung measurement technique for routine monitoring. Measurements of 152Eu concentrations in urine and faeces may be used to determine intakes of the radionuclide. In vivo skeleton measurement (knee geometry) and whole body measurement may be used as additional bioassay techniques. The main technique is gamma spectrometry.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Monitoring Technique</th>
<th>Method of Measurement</th>
<th>Typical Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>152Eu</td>
<td>Urine Bioassay</td>
<td>γ-ray spectrometry</td>
<td>16 Bq/L</td>
</tr>
<tr>
<td>152Eu</td>
<td>Faecal Bioassay</td>
<td>γ-ray spectrometry</td>
<td>16 Bq/24h</td>
</tr>
<tr>
<td>152Eu</td>
<td>Lung Measurementa</td>
<td>γ-ray spectrometry</td>
<td>10 Bq</td>
</tr>
<tr>
<td>152Eu</td>
<td>Whole-body Measurementb</td>
<td>γ-ray spectrometry</td>
<td>200 Bq</td>
</tr>
<tr>
<td>152Eu</td>
<td>Skeleton Measurement (knee)c</td>
<td>γ-ray spectrometry</td>
<td>4 Bq</td>
</tr>
</tbody>
</table>

a Measurement system comprised of two Broad Energy Germanium Detectors (BEGe), counting time of 36 minutes and chest wall thickness of 2.54 cm.

b Measurement system comprised of two Broad Energy Germanium Detectors (BEGe) and counting time of 15 minutes.

c Measurement system comprised of two Broad Energy Germanium Detectors (BEGe), counting time of 36 minutes.

^{154}Eu

Measurements of 154Eu are performed by in vivo lung measurement technique for routine monitoring. Measurements of 154Eu concentrations in urine and faeces may be used to determine intakes of the radionuclide. In vivo skeleton measurement (knee geometry) and whole body measurement may be used as additional bioassay technique. The main technique is gamma spectrometry.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Monitoring Technique</th>
<th>Method of Measurement</th>
<th>Typical Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>154Eu</td>
<td>Urine Bioassay</td>
<td>γ-ray spectrometry</td>
<td>10 Bq/L</td>
</tr>
<tr>
<td>154Eu</td>
<td>Faecal Bioassay</td>
<td>γ-ray spectrometry</td>
<td>16 Bq/24h</td>
</tr>
<tr>
<td>154Eu</td>
<td>Lung Measurementa</td>
<td>γ-ray spectrometry</td>
<td>7 Bq</td>
</tr>
<tr>
<td>154Eu</td>
<td>Whole-body</td>
<td>γ-ray spectrometry</td>
<td>150 Bq</td>
</tr>
</tbody>
</table>

Table 9.4. Monitoring Techniques for 155Eu.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Monitoring Technique</th>
<th>Method of Measurement</th>
<th>Typical Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>155Eu</td>
<td>Urine Bioassay</td>
<td>γ-ray spectrometry</td>
<td>10 Bq/L</td>
</tr>
<tr>
<td>155Eu</td>
<td>Faecal Bioassay</td>
<td>γ-ray spectrometry</td>
<td>16 Bq/24h</td>
</tr>
<tr>
<td>155Eu</td>
<td>Lung Measurement</td>
<td>γ-ray spectrometry</td>
<td>10 Bq</td>
</tr>
<tr>
<td>155Eu</td>
<td>Whole-body Measurement</td>
<td>γ-ray spectrometry</td>
<td>210 Bq</td>
</tr>
<tr>
<td>155Eu</td>
<td>Skeleton Measurement (knee)</td>
<td>γ-ray spectrometry</td>
<td>6 Bq</td>
</tr>
</tbody>
</table>

*Measurement system comprised of 2 Broad Energy Germanium Detectors (BEGe), counting time of 36 minutes and chest wall thickness of 2.54 cm.

REFERENCES

10. GADOLINIUM (Z = 64)

10.1. Chemical Forms in the Workplace

(301) Gadolinium is an element of the lanthanide which occurs mainly in oxidation state III.

(302) Gadolinium may be encountered in a variety of chemical and physical forms, including oxides, hydroxides, and inorganic salts (chlorides, fluorides, iodides, sulphates, sulphides and carbonates). Gadolinium is most commonly obtained from bastnäsíte and monazite.

(303) Gadolinium as a metal or salt has exceptionally high absorption of neutrons and therefore is used for shielding in neutron radiography and in nuclear reactors. Chelated organic gadolinium complexes are commonly used as intravenously administered contrast agents in medical magnetic resonance imaging.

(304) Gadolinium isotopes (e.g. 153Gd) are fission products.

Table 10.1. Isotopes of gadolinium addressed in this report.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Physical half-life</th>
<th>Decay mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gd-145</td>
<td>23.0 m</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Gd-146</td>
<td>48.27 d</td>
<td>EC</td>
</tr>
<tr>
<td>Gd-147</td>
<td>38.1 h</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Gd-148</td>
<td>74.6 y</td>
<td>A</td>
</tr>
<tr>
<td>Gd-149</td>
<td>9.28 d</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Gd-150</td>
<td>1.79E+6 y</td>
<td>A</td>
</tr>
<tr>
<td>Gd-151</td>
<td>124 d</td>
<td>EC, A</td>
</tr>
<tr>
<td>Gd-152</td>
<td>1.08E+14 y</td>
<td>A</td>
</tr>
<tr>
<td>Gd-153a</td>
<td>240.4 d</td>
<td>EC</td>
</tr>
<tr>
<td>Gd-159</td>
<td>18.479 h</td>
<td>B-</td>
</tr>
</tbody>
</table>

aDose coefficients and bioassay data for this radionuclide are given in the printed copy of this report. Data for other radionuclides listed in this table are given in the accompanying electronic annexes.

10.2. Routes of Intake

10.2.1. Inhalation

Absorption Types and parameter values

(305) Information on absorption from the respiratory tract is available from experimental studies of gadolinium (Gd) as chloride, citrate and oxide, including one volunteer experiment.

(306) As described in the general lanthanide section, absorption parameter values based on cerium are applied in this document to the other lanthanides. Absorption parameter values and Types, and associated f_A values for particulate forms of lanthanides, including gadolinium, are given in Table 2.4 of the general lanthanide section.
Water-soluble forms of gadolinium

Moskalev et al. (1972) followed the biokinetics of \(^{153}\)Gd (and other lanthanides, see general lanthanide section) for at least 32 d after deposition in the lungs of rats. However, few details are given. Fig. 135 of Moskalev et al. (1972) shows retention (presumably in the lungs) of gadolinium falling to \(< 10\% \) "of given dose" at 1 hour, which was much lower than that of the other lanthanides administered (\(< 75\% \)). Retention fell to \(< 1\% \) by 32 d. Analysis was carried out here (i.e. by the Task Group) assuming that \(s_r = 0.44 \, \text{d}^{-1}, f_b = 0.07; s_b = 0.021 \, \text{d}^{-1}, \) and \(s_s = 0.0015 \, \text{d}^{-1}, \) based on analysis of the results of studies of cerium chloride inhaled by dogs – see general lanthanide section. The results fit well with \(f_r \approx 0.9 \) (assuming that there was much greater deposition in the bronchial tree, and hence more rapid clearance to the alimentary tract than for the other lanthanides). This would give assignment to Type F, and is higher than the value of 0.5 chosen for water-soluble forms of lanthanides.

Gadolinium chloride (\(\text{GdCl}_3\))

Zalikin (1972) followed the biokinetics of \(^{153}\)Gd for 128 d after intratracheal instillation into rats of \(^{153}\)Gd-labelled \(\text{GdCl}_3\) \((^{153}\text{GdCl}_3)\) at pH 3.0–4.5 (and citrate, see below), described as "unweighable" – presumably carrier-free. (This might be the same work as summarised by Moskalev et al. (1972) see above, but it is not certain.) Lung clearance was rapid: the lung content falling to \(< 20\% \) of the initial lung deposit (ILD) at 1 d, but with some long-term retention, giving \(< 3\% \) ILD at 16 d, and \(< 0.5\% \) at 128 d. Much of the clearance was by absorption to blood: with liver and skeleton containing \(< 15\% \) ILD and 25\% ILD respectively at 1 d. Retention of activity in the trachea was also reported (but not its location within the trachea). It fell from \(< 3\% \) ILD at the first measurement (30 minutes) to \(< 0.3\% \) ILD at 1 d, and remained at \(< 0.3–0.5\% \) ILD throughout the rest of the experiment.

Analysis was carried out here, assuming that \(s_r = 0.44 \, \text{d}^{-1}, f_b = 0.07; s_b = 0.021 \, \text{d}^{-1}, \) and \(s_s = 0.0015 \, \text{d}^{-1}, \) (see above). The results fit reasonably well with \(f_r = 1, \) but the amount transferred to systemic tissues at \(t = 1 \, \text{d} \) is underestimated. As there are data available at early times (30 minutes, 1, 6 and 24 hours) analysis was also carried out with all absorption parameter values allowed to vary. (The chloride and citrate data were fit simultaneously, with only the value of \(f_r \) allowed to differ.) A better fit was obtained with \(f_r = 0.96, s_r = 3.5 \, \text{d}^{-1}, f_b = 0.08; s_b = 0.24 \, \text{d}^{-1}, \) and \(s_s = 0.0015 \, \text{d}^{-1}. \) Both sets of parameter values would give assignment to Type F.

Yoneda et al. (1995) followed the biokinetics of gadolinium for 174 d following intratracheal instillation of stable gadolinium chloride \((10 – 100 \, \mu\text{g})\) into rats. The gadolinium was mainly retained in the lung with a biological half-time of 136 d (determined with an ILD of 50 \, \mu\text{g}). Clearance from the lungs was much slower than observed in the radiotracer studies described above. The authors inferred that the gadolinium was retained in the lung in an insoluble form. However, the clearance was also slower than would be expected for insoluble particles in rats (ICRP, 2002), suggesting that there was considerable binding of gadolinium to lung structures. Similar observations were reported for stable yttrium and lanthanum compared to tracer level radionuclides (see general lanthanide section).

Gadolinium citrate

Zalikin (1972) followed the biokinetics of \(^{153}\)Gd for 256 d after intratracheal instillation into rats of \(^{153}\)Gd-labelled gadolinium citrate at pH 4.5–6.0, described as
"unweighable" – presumably carrier-free. Lung clearance was faster than for the chloride (see above): the lung content falling to ~10% ILD at 1 d, but with some long-term retention, giving ~2% ILD at 16 d, and ~0.2% at 128 d. Much of the clearance was by absorption to blood: with liver and skeleton both containing ~40% ILD at 1 d. Retention of activity in the trachea was also reported (but not its location within the trachea). It was in the range ~0.3–0.5% ILD from the first measurement (1 d) to the last (128 d).

Analysis was carried out here assuming that $s_r = 0.44 \text{d}^{-1}$, $f_b = 0.07$; $s_b = 0.021 \text{d}^{-1}$, and $s_s = 0.0015 \text{d}^{-1}$ (see above). The results fit reasonably well with $f_r = 1$, but the amount transferred to systemic tissues at early times ($t < 1$ d) is underestimated. As there are data available at early times for citrate (30 minutes, 1, 6 and 24 hours) analysis was also carried out simultaneously, with only the value of f_r allowed to differ.) A better fit was obtained with $f_r = 1$, $s_r = 3.5 \text{d}^{-1}$, $f_b = 0.08$; $s_b = 0.24 \text{d}^{-1}$, with s_s fixed at 0.0015 d$^{-1}$. Both sets of parameter values would give assignment to Type F.

Gadolinium oxide (GdO_3

Stradling et al. (2000, 2002) gave interim summaries of the results of an interspecies comparison of the lung clearance of ^{153}Gd-labelled gadolinium oxide ($^{153}\text{Gd}_2\text{O}_3$) particles. More detailed reports on some of the experiments have been published (Hodgson et al., 2003; Pellow et al., 2016; Shutt et al., 2016). Monodisperse particles were prepared from ^{153}Gd-labelled gadolinium nitrate droplets which were dried and heated at 800°C to produce the oxide. This method was chosen to produce a porous material with a moderate dissolution rate in the lungs to facilitate its measurement and hence comparisons of rates between species, and determination of the effects of other factors (particle size, method of administration). It was not intended to represent any specific material to which workers might be exposed.

In some of the earlier reports provisional estimates of the dissolution parameters f_r, s_r, and s_s were made by the authors assuming $f_b = 0.0$. Analyses were carried out here on the full data sets (Pellow et al., 2016; Shutt et al., 2016) assuming that $f_b = 0.07$ and $s_b = 0.021 \text{d}^{-1}$ (see above), and results are given in Table 10.2. It was confirmed that assuming that $f_b = 0.0$ instead of assuming $f_b = 0.07$ and $s_b = 0.021 \text{d}^{-1}$ had little effect on the estimated values of f_r, s_r, and s_s.

There were five experiments with rats: inhalation and intratracheal instillation of 2.2-μm MMAD (mass median aerodynamic diameter) particles and instillation of three other sizes. To facilitate investigation of the effects of particle size and/or method of administration on dissolution, a simultaneous fit was carried out here of the five rat data sets, in which s_r and s_s were estimated as optimised parameters shared across the data sets, while f_r was estimated individually for each data set.

Table 10.2. Dissolution parameter values for Gd in $^{153}\text{Gd}_2\text{O}_3$ particles derived here assuming that $f_b = 0.07$ and $s_b = 0.021 \text{d}^{-1}$.

<table>
<thead>
<tr>
<th>Study</th>
<th>Specie</th>
<th>Administration</th>
<th>MMAD, μm</th>
<th>f_r</th>
<th>s_r, d$^{-1}$</th>
<th>s_s, d$^{-1}$</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preliminary</td>
<td>Rat'</td>
<td>Instillation</td>
<td>1.14</td>
<td>0.1</td>
<td>0.34</td>
<td>0.007</td>
<td>Stradling et al. 2000</td>
</tr>
<tr>
<td></td>
<td>Rat'</td>
<td>Instillation</td>
<td>1.86</td>
<td>0.0</td>
<td>0.34</td>
<td>0.007</td>
<td>Stradling et al. 2000</td>
</tr>
</tbody>
</table>

(312) Analysis was carried out here assuming that $s_r = 0.44 \text{d}^{-1}$, $f_b = 0.07$; $s_b = 0.021 \text{d}^{-1}$, and $s_s = 0.0015 \text{d}^{-1}$ (see above). The results fit reasonably well with $f_r = 1$, but the amount transferred to systemic tissues at early times ($t < 1$ d) is underestimated. As there are data available at early times for citrate (30 minutes, 1, 6 and 24 hours) analysis was also carried out simultaneously, with only the value of f_r allowed to differ.) A better fit was obtained with $f_r = 1$, $s_r = 3.5 \text{d}^{-1}$, $f_b = 0.08$; $s_b = 0.24 \text{d}^{-1}$, with s_s fixed at 0.0015 d$^{-1}$. Both sets of parameter values would give assignment to Type F.

Gadolinium oxide (GdO_3)
A preliminary study was carried out in which the biokinetics of 153Gd was followed for 180 d after intratracheal instillation into rats of 153Gd$_2$O$_3$ particles with MMAD 1.14 and 1.86 μm. A graphical summary of data for the 1.14 μm MMAD particles (Stradling et al., 2000) shows that ~30% ILD cleared during the first day, mainly to feces. By 60 d, lung retention had fallen to ~15% ILD and the amount in the "carcass" (all tissues except lung and alimentary tract) had increased to ~15% ILD. The results confirmed that the material was moderately soluble and therefore suitable for the main intercomparison study. About 10% ILD dissolved rapidly and the rest at a rate of ~0.01 d$^{-1}$ (Table 10.2).

The main study was carried out with a separate batch of 153Gd$_2$O$_3$ (MMAD 2.2 μm). The particles were administered by inhalation to two human volunteers and 36 rats, by intubation (inhalation via an endotracheal tube) to four dogs, and by intratracheal instillation to 45 rats: the biokinetics of 153Gd was followed for about 6 months. For all species studied, complementary experiments were carried out in which the biokinetics of 153Gd was followed after intravenous injection of 153Gd citrate (Bailey et al., 1997, 1999; Stradling et al., 2000; Taylor and Leggett, 2003). In-vitro dissolution tests were carried out using canine alveolar macrophages and a solvent.

The two volunteers inhaled the 153Gd$_2$O$_3$ with 51Cr-labelled polystyrene latex (PSL) particles with the same aerodynamic diameter (Shutt et al., 2002, 2016). Measurements of 51Cr-PSL enabled particle deposition and particle transport rates from the lung to be determined and thus allow more precise determination of the absorption of 153Gd. Measurements of 153Gd in whole body, chest, liver, skull and excreta were made at times up to 180 d.

To study intracellular particle dissolution, canine alveolar macrophages were cultured with the 153Gd$_2$O$_3$: the dissolution rate was 0.011 d$^{-1}$ of the initially phagocytised particle mass. In-vitro dissolution using Gamble's solution was very slow, with less than 0.1% dissolved in 30 d (Bailey et al., 1999).

In a later study, Pellow et al. (2005) followed the biokinetics of 153Gd for 180 d after intratracheal instillation into rats of 153Gd$_2$O$_3$ particles (prepared in the same way) with median geometric diameters of 0.36 μm and 1.52 μm (MMAD 0.65 μm and 2.37 μm respectively), to investigate the effect of specific surface area on particle dissolution in the lungs. For both particle sizes ~50% ILD cleared during the first day, mainly to feces; with ~1% and ~0.4% ILD

<table>
<thead>
<tr>
<th>Inter-species</th>
<th>Man</th>
<th>Inhalation</th>
<th>Comparison</th>
<th>Dog</th>
<th>Inhalation</th>
<th>2.2</th>
<th>0.5</th>
<th>0.3</th>
<th><0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.007</td>
</tr>
<tr>
<td>Rata</td>
<td></td>
<td>Instillation</td>
<td></td>
<td></td>
<td></td>
<td>2.2</td>
<td>0.1</td>
<td>0.3</td>
<td>0.007</td>
</tr>
<tr>
<td>Surface area</td>
<td>Rata</td>
<td>Instillation</td>
<td></td>
<td></td>
<td></td>
<td>0.65</td>
<td>0.3</td>
<td>0.3</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>Rata</td>
<td>Instillation</td>
<td></td>
<td></td>
<td></td>
<td>2.37</td>
<td>0.0</td>
<td>0.3</td>
<td>0.007</td>
</tr>
</tbody>
</table>

a The fast and slow dissolution rates were estimated to be $s_f = 0.34$ d$^{-1}$ and $s_s = 0.007$ d$^{-1}$ as optimised shared parameters in a simultaneous fit using data from all five experiments with rats. Note that rats used by Pellow et al. (2005) were Sprague Dawley, while those used in the other experiments were HMT strain.
deposited in liver, for the 0.36 μm and 1.52 μm particles respectively. By 84 d, lung retention had fallen to ~2% and 5% ILD respectively.

(320) The estimated parameter values given in Table 10.2 are all consistent with assignment to Type M.

(321) Ball and van Gelder (1966) and Abel and Talbot (1967) investigated the toxicity, in mice and guinea pigs respectively, of stable gadolinium oxide following chronic inhalation. No useful biokinetic data were reported, but the text indicates that the material was relatively insoluble.

Polystyrene (PSL)

(322) Radiolabelled polystyrene (PSL) particles have been used extensively as relatively insoluble particles in inhalation studies (see e.g. inhalation section on cerium in this report).

Oberdörster et al. (1997) followed lung retention of 10-µm diameter \(^{153}\)Gd-labelled PSL for 180 d following intratracheal instillation into mice. The estimated alveolar retention half time of 103 d was longer than observed for 3-µm diameter \(^{85}\)Sr-labelled PSL in a complementary experiment (33 d), and indicates Type S behaviour.

10.2.2. Ingestion

(323) The fractional absorption of gadolinium, administered as \(^{153}\)GdCl\(_3\) in a wide range of mass from 2 x 10\(^{-2}\) µg to 4 x 10\(^{-2}\) g from the gastrointestinal tract of rats, was reported in the range 7.6 x 10\(^{-5}\) to 2 x 10\(^{-4}\) (Ramounet et al., 2000).

(324) In Publication 30 (ICRP, 1979), an \(f_1\) of 3 x 10\(^{-4}\) was recommended for all compounds of gadolinium. In Publication 68 (ICRP, 1994), a value of 5 x 10\(^{-4}\) was adopted by analogy with trivalent actinides. An \(f_A\) value of 5 x 10\(^{-4}\) is applied here.

10.2.3. Systemic distribution, retention and excretion of gadolinium

10.2.3.1. Data

(325) The systemic behavior of \(^{155}\)Gd was studied in human subjects after injection and inhalation (Shutt et al., 2001; Shutt and Etherington, 2002). The findings regarding the early distribution, retention, and excretion are reasonably consistent with data for rats (Durbin, 1960; Ando et al., 1989). For example, the human data indicate relatively low uptake by the liver (~15% of the injected amount), relatively high urinary excretion, and relatively low faecal excretion. Estimates of cumulative urinary and faecal excretion suggest that urinary excretion may account for 80-90% of total losses of absorbed Gd. External measurements indicate that about one-fourth of the injected amount was excreted over the first 3 weeks, but only 5-10% was excreted during the next 7-8 months. Measurements of whole-body retention following intravenous administration of \(^{153}\)Gd to the human subjects are summarised in Fig. 10.1.

(326) Zalikin (1974) investigated the biokinetics of \(^{153}\)Gd in female rats following its intravenous or intratracheal administration. For intravenously injected activity they estimated that about 16% of the administered activity remained in blood at 30 min, 4.5% at 1 h, and 0.4% at one day. Most of the injected activity accumulated in the liver (~42%) and skeleton (~32%). Activity was removed from the liver over a period of days or weeks, with only 15% remaining after 8 d and 1.5% remaining after 64 d. The skeleton accumulated activity more slowly than
the liver and also released the activity much more slowly than the liver. The maximum skeletal content was about 47% of the injected amount at 4 d. The skeletal content declined to about 41% at 64 d and 35% at 256 d. The kidneys contained about 6.5% of the injected amount at 6 h, 4.8% at 1 d, 2.5% at 8 d, 1.6% at 16 d, and 0.5% at 256 d.

10.2.3.2. Biokinetic model

The biokinetic model for systemic gadolinium applied in this report is described in Section 2.2.3.2.

10.2.3.3. Treatment of progeny

The treatment of radioactive progeny of gadolinium produced in systemic compartments or absorbed to blood after production in the respiratory or gastrointestinal tract is described in Section 2.2.3.3.

Fig. 10.1. Whole-body retention of intravenously injected 153Gd as observed in two human subjects (Shutt and Etherington, 2002) and derived from the model used in this report.

10.3. Individual monitoring

153Gd

In vivo lung measurements of 153Gd are used to determine intakes of the radionuclide for routine monitoring. Measurements of 153Gd concentrations in urine and faeces may be used to determine intakes of the radionuclide. In vivo whole body measurement may be used as additional technique for special investigation. The main technique is gamma spectrometry.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Monitoring</th>
<th>Method of</th>
<th>Typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>153Gd</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Technique Measurement Detection Limit

<table>
<thead>
<tr>
<th>Technique</th>
<th>Measurement</th>
<th>Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>153Gd</td>
<td>Urine Bioassay</td>
<td>γ-ray spectrometry</td>
</tr>
<tr>
<td>153Gd</td>
<td>Faecal Bioassay</td>
<td>γ-ray spectrometry</td>
</tr>
<tr>
<td>153Gd</td>
<td>Lung Bioassay</td>
<td>γ-ray spectrometry</td>
</tr>
<tr>
<td>153Gd</td>
<td>Whole-body Measurementa</td>
<td>γ-ray spectrometry</td>
</tr>
</tbody>
</table>

a Measurement system comprised of two Broad Energy Germanium Detectors (BEGe), counting time of 36 minutes and chest wall thickness of 2.54 cm.

b Measurement system comprised of two Broad Energy Germanium Detectors (BEGe) and counting time of 15 minutes.

10.4. Dosimetric data for gadolinium

Dosimetric data will be provided in the final version of the document.

REFERENCES

11. TERBIUM (Z = 65)

11.1. Chemical Forms in the Workplace

Terbium is an element of the lanthanide series which occurs mainly in oxidation states III and IV.

Terbium may be encountered in a variety of chemical and physical forms, including oxides, hydroxides, and inorganic salts (chlorides, fluorides, iodides, sulphates, sulphides and carbonates). Terbium is most commonly obtained from bastnäsite and monazite.

Table 11.1. Isotopes of terbium addressed in this report.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Physical half-life</th>
<th>Decay mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tb-147</td>
<td>1.64 h</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Tb-148</td>
<td>60 m</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Tb-149</td>
<td>4.118 h</td>
<td>EC, B+, A</td>
</tr>
<tr>
<td>Tb-150</td>
<td>3.48 h</td>
<td>EC, B+, A</td>
</tr>
<tr>
<td>Tb-151</td>
<td>17.609 h</td>
<td>EC, B+, A</td>
</tr>
<tr>
<td>Tb-152</td>
<td>17.5 h</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Tb-153</td>
<td>2.34 d</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Tb-154</td>
<td>21.5 h</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Tb-155</td>
<td>5.32 d</td>
<td>EC</td>
</tr>
<tr>
<td>Tb-156</td>
<td>5.35 d</td>
<td>EC</td>
</tr>
<tr>
<td>Tb-156m</td>
<td>24.4 h</td>
<td>IT</td>
</tr>
<tr>
<td>Tb-156n</td>
<td>5.3 h</td>
<td>IT</td>
</tr>
<tr>
<td>Tb-157</td>
<td>71 y</td>
<td>EC</td>
</tr>
<tr>
<td>Tb-158</td>
<td>180 y</td>
<td>EC, B-</td>
</tr>
<tr>
<td>Tb-160a</td>
<td>72.3 d</td>
<td>B-</td>
</tr>
<tr>
<td>Tb-161</td>
<td>6.906 d</td>
<td>B-</td>
</tr>
<tr>
<td>Tb-163</td>
<td>19.5 m</td>
<td>B-</td>
</tr>
</tbody>
</table>

*Dose coefficients and bioassay data for this radionuclide are given in the printed copy of this report. Data for other radionuclides listed in this table are given in the accompanying electronic annexes.

11.2. Routes of Intake

11.2.1. Inhalation

Absorption Types and parameter values

Studies have been reported of lung retention in man following chronic inhalation exposure to stable 'rare earth' (lanthanide) elements, including terbium (Tb) (see general
lanthanide section). Information on absorption from the respiratory tract is available from experimental studies of terbium as oxide, including one volunteer experiment.

As described in the general lanthanide section, absorption parameter values based on cerium are applied in this document to the other lanthanides. Absorption parameter values and Types, and associated f_A values for particulate forms of lanthanides, including terbium, are given in Table 2.4 of the general lanthanide section.

Water-soluble forms of terbium

Moskalev et al. (1972) followed the biokinetics of 160Tb (and other lanthanides, see general lanthanide section) for at least 32 d after deposition in the lungs of rats. However, few details are given. Fig. 135 of Moskalev et al. (1972) shows retention (presumably in the lungs) of terbium falling to ~3% "of given dose" by 32 d. Analysis was carried out here (i.e. by the Task Group) assuming that $s_t = 0.44$ d$^{-1}$, $f_b = 0.07$; $s_b = 0.021$ d$^{-1}$, and $s_s = 0.0015$ d$^{-1}$, based on analysis of the results of studies of cerium chloride inhaled by dogs – see general lanthanide section. The results fit well with $f_r > 0.95$, (which would give assignment to Type F), higher than the value of 0.5 chosen for water-soluble forms of lanthanides.

Terbium oxide (Tb_2O_7)

An interspecies comparison was conducted of the lung clearance of 160Tb-labelled terbium oxide (160Tb$_2$O$_7$) particles (Kreyling et al., 1998; Hodgson et al., 2003). Monodisperse particles were prepared from stable terbium nitrate droplets which were dried and heated at 800°C to produce the oxide. This method was chosen to produce a porous material with a moderate dissolution rate in the lungs to facilitate its measurement and hence comparisons of rates between species, and determination of the effects of other factors (method of administration). It was not intended to represent any specific material to which workers might be exposed, but it was noted that the results might be relevant to other lanthanide oxides. After characterisation, the oxide particles were neutron-irradiated to produce the 160Tb label.

A preliminary study was carried out in which the biokinetics of 160Tb were followed for 84 d after intratracheal instillation into rats of 160Tb$_2$O$_7$ particles (produced as described above, but heat treated at 1000°C) with mass median aerodynamic diameters (MMAD) of 1.2 and 1.8 μm (Hodgson et al., 1994). For both particle sizes, during the first day ~10–20% of the initial lung deposit (ILD) cleared, mainly to faeces, with ~2% ILD transferred to the "carcass" (all tissues except lung and alimentary tract). By 84 d, ~20% ILD remained in the lung and the content of the carcass had increased to ~20% ILD. The results confirmed that the material was moderately soluble and therefore suitable for the main intercomparison study.

The main study was carried out with a separate batch of 160Tb$_2$O$_7$ (MMAD 1.28 μm). The particles were administered by inhalation to four human volunteers, seven rhesus monkeys, three dogs and 45 rats, and by intratracheal instillation to 45 rats: brief descriptions are given in the following paragraphs. Complementary experiments were carried out in which the biokinetics of 160Tb were followed after intravenous injection of 160Tb citrate or nitrate in one monkey, two dogs and 32 rats.

Guilmette et al. (1996) reported results of measurements of retention in the lungs, liver and skeleton of rhesus monkeys up to 180 d after inhalation of the 160Tb$_2$O$_7$. Lung retention accounted for ~60% of the initial body burden (IBB), indicating that up to ~40% IBB cleared rapidly from the upper respiratory tract (URT) to faeces. By 14 d, ~40% IBB remained in the lungs, falling to ~10% IBB at 180 d. (Assuming that the ILD was 60% IBB, these values...
correspond to ~70% ILD and 15% ILD, respectively.) Amounts in liver and skeleton increased to ~6% and 36% IBB (10% and 60% ILD) by 14 d, with little change thereafter. It was assessed that clearance from the alveolar region was mainly by absorption to blood, with 36% IBB clearing with a half time of 9 d and 24% with a half time of 136 d. (340) It was assessed here (assuming that $f_b = 0.07$ and $s_b = 0.021 \text{d}^{-1}$, based on cerium, see general lanthanide section) that $f_r = 0.58$, $s_r = 2 \text{d}^{-1}$ and $s_s = 0.0063 \text{d}^{-1}$.

In the human study (Newton, 2003), measurements of 160Tb in the chest and lower legs (as a measure of skeletal deposit) were made with external detectors at times up to 112–177 d in the four subjects. Further details were given by Hodgson et al. (2003). Whole-body retention was measured at times up to 338–420 d. Urine and faeces were collected for the first 3 days and occasionally thereafter. From the results, estimates were made of lung retention, which were subject to considerable uncertainty because of interference in the chest measurements from systemic 160Tb, especially at later times. During the first 2–3 d, between ~3% and 30% ILD cleared to faeces, presumably representing activity deposited in the URT. Activity was detected in the skeleton immediately after the inhalation exposure and increased steadily throughout the period of measurements. By 120 d, an estimated ~15% ILD remained in the lungs, while whole body retention was in the range 50–80% ILD. It was assessed that most of the systemic activity was in the skeleton, which would therefore have contained ~35–60% ILD. It was also assessed by the authors that clearance from the alveolar region was mainly by absorption to blood at an average rate of ~0.006 d$^{-1}$.

Hodgson et al. (2003) reported details of the experiments in dogs and rats. The biokinetics of 160Tb were followed for 240 d after inhalation (intubation via an endotracheal tube) by three dogs. Tissue distributions were obtained at 3 d and 240 d. Measurements of 160Tb in the lungs, liver and pelvis were made with external detectors throughout the experiment, as were measurements of excreta. There was considerable rapid absorption: by 3 d, lung, liver and skeleton contained ~45%, 10% and 30% ILD respectively. Absorption continued at a lower rate, so that by 240 d the amounts were ~10%, 10% and 50% ILD respectively. Absorption parameter values fit by the authors (assuming $f_b = 0.0$) to results for the two dogs sacrificed at 240 d were similar:

Dog 347: $f_r = 0.49$, $s_r = 1.8 \text{d}^{-1}$ and $s_s = 0.0074 \text{d}^{-1}$

Dog 349: $f_r = 0.51$, $s_r = 1.1 \text{d}^{-1}$ and $s_s = 0.0063 \text{d}^{-1}$

It was assessed here (simultaneous fit to the data for the two dogs, assuming that $f_b = 0.07$ and $s_b = 0.021 \text{d}^{-1}$) that $f_r = 0.32$, $s_r = 0.12 \text{d}^{-1}$, and $s_s = 0.006 \text{d}^{-1}$.

(344) It was assessed here (simultaneous fit to the data for the two dogs, assuming that $f_b = 0.07$ and $s_b = 0.021 \text{d}^{-1}$) that $f_r = 0.54$, $s_r = 1.0 \text{d}^{-1}$, $s_s = 0.0067 \text{d}^{-1}$. It was noted that the assumption of $f_b = 0.07$ and $s_b = 0.021 \text{d}^{-1}$, rather than $f_b = 0$ made little difference to the values determined for f_r, s_r and s_s.

(345) The biokinetics of 160Tb in rats was followed for 200 d after inhalation and intratracheal instillation of 160Tb$_4$O$_7$. (A complementary experiment was carried out in which the biokinetics of 160Tb in rats was followed for 7 d after instillation of a suspension of the particles into the stomach. Results were variable, but indicated that fractional absorption was low, of the order of 0.1%.) The biokinetics following administration to the respiratory tract was broadly similar to those observed in the other species, although the rapid phase seemed slower than in the dogs. Absorption parameter values fit by the authors (assuming $f_b = 0.0$) to the results were similar for the two methods of administration:
In analysis carried out here (assuming that $f_b = 0.07$ and $s_b = 0.021 \text{ d}^{-1}$) independent estimates were made for inhalation and instillation administration:

Rat inhalation: $f_r = 0.61$, $s_r = 0.15 \text{ d}^{-1}$ and $s_s = 0.0068 \text{ d}^{-1}$

Rat instillation: $f_r = 0.43$, $s_r = 0.14 \text{ d}^{-1}$ and $s_s = 0.0060 \text{ d}^{-1}$

Independent estimates of the value of the parameter f_r, for inhalation and instillation, with optimised shared values $s_r = 0.12 \text{ d}^{-1}$ and $s_s = 0.0054 \text{ d}^{-1}$, gave 0.74 and 0.49 respectively.

All these parameter values are consistent with assignment to Type M. Although absorption parameter values for terbium oxide based on in vivo data were derived, the material was designed to be moderately soluble. Therefore specific parameter values for terbium oxide are not used here. Instead, it is assigned to Type M.

11.2.2. Ingestion

The fractional absorption of terbium from the gastrointestinal tract of rats has been variously reported to be less than 10^{-3} (Durbin et al., 1956) and less than 5×10^{-4} (Moskalev et al., 1972).

In Publication 30 (ICRP, 1979), an f_1 of 3×10^{-4} was recommended for all compounds of terbium. In Publication 68 (ICRP, 1994), a value of 5×10^{-4} was adopted by analogy with trivalent actinides and this f_A value is adopted in this report for every element of the lanthanide family.

11.2.3. Systemic distribution, retention and excretion of terbium

11.2.3.1. Data

The lanthanides, Tb, Dy, Ho, Er, Tm, Yb, and Lu, all showed similar biokinetics in rats (Durbin, 1960, 1962; Moskalev et al., 1974; Ando et al., 1989). Compared with Gd, which neighbors Tb in the period table, these seven elements showed higher deposition in the skeleton (roughly 60%), lower deposition in the liver (roughly 10%), and similar cumulative loss in urine (15-28%) through day 4.

Newton (2003) studied the whole-body retention, distribution, and urinary and faecal excretion of ^{160}Tb in four healthy men following acute inhalation of ^{160}Tb-labelled terbium oxide particles. Within a year after exposure most of the retained activity had become systemic, with the principal deposit in bone. Measurements of total-body retention after 1 y suggested a clearance half-time on the order of 5 y.

Zalikin and Tronova (1971) investigated the biokinetics of terbium in rats following intravenous injection of ^{160}Tb in chloride or citrate solutions and ^{161}Tb in a chloride solution. Up to 15% of the administered amount remained in blood at 30 min, 6% at 1 h, and 0.26% at 1 d. Activity accumulated rapidly in the liver and more slowly in the skeleton. The maximum liver content was 26% of the administered amount at 6 h. Thereafter the liver content gradually declined to about 0.3% at 64 d. The skeletal content gradually increased to a maximum of about 40% by the second day and remained at that level throughout the 64-d period of observation. A relatively high activity concentration was also observed in the kidneys, which contained about 5.0% of the administered amount at 6 h, 2.7% at 1 d, 1.8% at 8 d, and 0.5% at 64 d.
11.2.3.2. Biokinetic model

The biokinetic model for systemic terbium applied in this report is described in Section 2.2.3.2.

11.2.3.3. Treatment of progeny

The treatment of radioactive progeny of terbium produced in systemic compartments or absorbed to blood after production in the respiratory or gastrointestinal tract is described in Section 2.2.3.3.

11.3. Individual monitoring

Information of detection limit for individual measurement techniques is not available.

11.4. Dosimetric data for terbium

Dosimetric data will be provided in the final version of the document.

REFERENCES

12. DYSPROSIUM (Z = 66)

12.1. Chemical Forms in the Workplace

Dysprosium is an element of the lanthanide series which occurs mainly in oxidation states III and IV. Dysprosium may be encountered in a variety of chemical and physical forms, including oxides, hydroxides, and inorganic salts (chlorides, fluorides, iodides, sulphates, sulphides and carbonates). Dysprosium is most commonly obtained from bastnäsite and monazite.

Dysprosium is used for its high thermal neutron absorption cross-section in making control rods in nuclear reactors. 165Dy is a fission product.

Table 12.1. Isotopes of dysprosium addressed in this report.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Physical half-life</th>
<th>Decay mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dy-151</td>
<td>17.9 m</td>
<td>EC, B+, A</td>
</tr>
<tr>
<td>Dy-152</td>
<td>2.38 h</td>
<td>EC, A</td>
</tr>
<tr>
<td>Dy-153</td>
<td>6.4 h</td>
<td>EC, B+, A</td>
</tr>
<tr>
<td>Dy-154</td>
<td>3.0E+6 y</td>
<td>A</td>
</tr>
<tr>
<td>Dy-155</td>
<td>9.9 h</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Dy-157</td>
<td>8.14 h</td>
<td>EC</td>
</tr>
<tr>
<td>Dy-159a</td>
<td>144.4 d</td>
<td>EC</td>
</tr>
<tr>
<td>Dy-165</td>
<td>2.334 h</td>
<td>B-</td>
</tr>
<tr>
<td>Dy-166</td>
<td>81.6 h</td>
<td>B-</td>
</tr>
</tbody>
</table>

*Dose coefficients and bioassay data for this radionuclide are given in the printed copy of this report. Data for other radionuclides listed in this table are given in the accompanying electronic annexes.

12.2. Routes of Intake

12.2.1. Inhalation

Absorption Types and parameter values

No reports were found of experimental studies on the behaviour of dysprosium (Dy) following deposition in the respiratory tract, nor of its retention in the lung following accidental intake. As described in the general lanthanide section, absorption parameter values based on cerium are applied in this document to the other lanthanides, including dysprosium. Absorption parameter values and Types, and associated f_A values for particulate forms of lanthanides, including dysprosium, are given in Table 2.4. of the general lanthanide section.

12.2.2. Ingestion

There is no relevant data available concerning ingestion of dysprosium, but the fractional absorption from the gastrointestinal tract of rats for several similar lanthanides has
been variously reported to be less than 10^{-3} (Durbin et al., 1956) and less than 5×10^{-4} (Moskalev et al., 1972).

(360) In Publication 30 (ICRP, 1979), an f_1 of 3×10^{-4} was recommended for all compounds of dysprosium. In Publication 68 (ICRP, 1994), a value of 5×10^{-4} was adopted by analogy with trivalent actinides and this f_A value is adopted in this report for every element of the lanthanide family.

12.2.3. Systemic distribution, retention and excretion of dysprosium

12.2.3.1. Data

(361) The lanthanides, Tb, Dy, Ho, Er, Tm, Yb, and Lu showed broadly similar biokinetics in rats (Durbin, 1960, 1962; Moskalev et al., 1974; Ando et al., 1989). Roughly 60% of the activity entering blood deposited in the skeleton and roughly 10% deposited in the liver. Cumulative loss in urine through day 4 amounted to about 15-28% of the amount reaching blood.

12.2.3.2. Biokinetic model

(362) The biokinetic model for systemic dysprosium applied in this report is described in Section 2.2.3.2.

12.2.3.3. Treatment of progeny

(363) The treatment of radioactive progeny of dysprosium produced in systemic compartments or absorbed to blood after production in the respiratory or gastrointestinal tract is described in Section 2.2.3.3.

12.3. Individual monitoring

159Dy

(364) *In vivo* lung measurements of 159Dy are used to determine intakes of the radionuclide for routine monitoring. Measurements of 159Dy concentrations in urine and faeces may be used to determine intakes of the radionuclide. *In vivo* whole body measurement may be used as additional technique for special investigation. The main technique is gamma spectrometry.

Table 12.2. Monitoring Techniques for 159Dy.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Monitoring Technique</th>
<th>Method of Measurement</th>
<th>Typical Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>159Dy</td>
<td>Urine Bioassay</td>
<td>γ-ray spectrometry</td>
<td>6 Bq/L</td>
</tr>
<tr>
<td>159Dy</td>
<td>Faecal Bioassay</td>
<td>γ-ray spectrometry</td>
<td>8 Bq/24h</td>
</tr>
<tr>
<td>159Dy</td>
<td>Lung Measurement(^a)</td>
<td>γ-ray spectrometry</td>
<td>4 Bq</td>
</tr>
<tr>
<td>159Dy</td>
<td>Whole-body Measurement(^a)</td>
<td>γ-ray spectrometry</td>
<td>70 Bq</td>
</tr>
</tbody>
</table>

\(^a\) Measurement system comprised of two Broad Energy Germanium Detectors (BEGe), counting time of 36 minutes and chest wall thickness of 2.54 cm.
Measurement system comprised of two Broad Energy Germanium Detectors (BEGe) and counting time of 15 minutes.

12.4. Dosimetric data for dysprosium

Dosimetric data will be provided in the final version of the document.

REFERENCES

13. HOLMIUM (Z = 67)

13.1. Chemical Forms in the Workplace

Holmium is an element of the lanthanide which occurs mainly in oxidation state III.

Holmium may be encountered in a variety of chemical and physical forms, including oxides, hydroxides, and inorganic salts (chlorides, fluorides, iodides, sulphates, sulphides and carbonates). Holmium is most commonly obtained from gadolinite and monazite.

Holmium is used in solid-state YAG lasers and for its high thermal neutron absorption cross-section in making control rods in nuclear reactors.

Table 13.1. Isotopes of holmium addressed in this report.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Physical half-life</th>
<th>Decay mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ho-154</td>
<td>11.76 m</td>
<td>EC, B+, A</td>
</tr>
<tr>
<td>Ho-155</td>
<td>48 m</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Ho-156</td>
<td>56 m</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Ho-157</td>
<td>12.6 m</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Ho-159</td>
<td>33.05 m</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Ho-160</td>
<td>25.6 m</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Ho-161</td>
<td>2.48 h</td>
<td>EC</td>
</tr>
<tr>
<td>Ho-162</td>
<td>15.0 m</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Ho-162m</td>
<td>67.0 m</td>
<td>IT, EC, B+</td>
</tr>
<tr>
<td>Ho-163</td>
<td>4570 y</td>
<td>EC</td>
</tr>
<tr>
<td>Ho-164</td>
<td>29 m</td>
<td>EC, B-</td>
</tr>
<tr>
<td>Ho-164m</td>
<td>38.0 m</td>
<td>IT</td>
</tr>
<tr>
<td>Ho-166</td>
<td>26.80 h</td>
<td>B-</td>
</tr>
<tr>
<td>Ho-166m</td>
<td>1.20E+3 y</td>
<td>B-</td>
</tr>
<tr>
<td>Ho-167</td>
<td>3.1 h</td>
<td>B-</td>
</tr>
</tbody>
</table>

*Dose coefficients and bioassay data for this radionuclide are given in the printed copy of this report. Data for other radionuclides listed in this table are given in the accompanying electronic annexes.

13.2. Routes of Intake

13.2.1. Inhalation

Absorption Types and parameter values

No reports were found of experimental studies on the behaviour of holmium (Ho) following deposition in the respiratory tract, nor of its retention in the lung following accidental intake. As described in the general lanthanide section, absorption parameter values based on cerium are applied in this document to the other lanthanides, including holmium. Absorption
parameter values and Types, and associated f_{α} values for particulate forms of lanthanides, including holmium, are given in Table 2.4 of the general lanthanide section.

13.2.2. Ingestion

There is no relevant data available concerning ingestion of holmium, but the fractional absorption from the gastrointestinal tract of rats for several similar lanthanides has been variously reported to be less than 10^{-3} (Durbin et al., 1956) and less than 5×10^{-4} (Moskalev et al., 1972).

In Publication 30 (ICRP, 1979), an f_{α} of 3×10^{-4} was recommended for all compounds of holmium. In Publication 68 (ICRP, 1994), a value of 5×10^{-4} was adopted by analogy with trivalent actinides and this f_{α} value is adopted in this report for every element of the lanthanide family.

13.2.3. Systemic distribution, retention and excretion of holmium

13.2.3.1. Data

The lanthanides, Tb, Dy, Ho, Er, Tm, Yb, and Lu showed broadly similar biokinetics in rats (Durbin, 1960, 1962; Moskalev et al., 1974; Ando et al., 1989). Roughly 60% of the activity entering blood deposited in the skeleton and roughly 10% deposited in the liver. Cumulative loss in urine through day 4 amounted to about 15-28% of the amount reaching blood.

13.2.3.2. Biokinetic model

The biokinetic model for systemic holmium applied in this report is described in Section 2.2.3.2.

13.2.3.3. Treatment of progeny

The treatment of radioactive progeny of holmium produced in systemic compartments or absorbed to blood after production in the respiratory or gastrointestinal tract is described in Section 2.2.3.3.

13.3. Individual monitoring

166Ho

In vivo lung measurements of 166Ho are used to determine intakes of the radionuclide for routine monitoring. Measurements of 166Ho concentrations in urine and faeces may be used to determine intakes of the radionuclide. In vivo whole body measurement may be used as additional technique for special investigation. The main technique is gamma spectrometry.

Table 13. 2. Monitoring techniques for 166Ho.
<table>
<thead>
<tr>
<th>Isotope</th>
<th>Assay Type</th>
<th>Method</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>166Ho</td>
<td>Urine Bioassay</td>
<td>γ-ray spectrometry</td>
<td>4 Bq/L</td>
</tr>
<tr>
<td>166Ho</td>
<td>Faecal Bioassay</td>
<td>γ-ray spectrometry</td>
<td>14 Bq/24h</td>
</tr>
<tr>
<td>166Ho</td>
<td>Lung Measurement</td>
<td>γ-ray spectrometry</td>
<td>5 Bq</td>
</tr>
<tr>
<td>166Ho</td>
<td>Whole-body Measurement</td>
<td>γ-ray spectrometry</td>
<td>100 Bq</td>
</tr>
</tbody>
</table>

* Measurement system comprised of two Broad Energy Germanium Detectors (BEGe), counting time of 36 minutes and chest wall thickness of 2.54 cm.

b Measurement system comprised of two Broad Energy Germanium Detectors (BEGe) and counting time of 15 minutes.

13.4. Dosimetric data for holmium

Dosimetric data will be provided in the final version of the document.

REFERENCES

14. ERBIUM (Z = 68)

14.1. Chemical Forms in the Workplace

Erbium is an element of the lanthanide series which occurs mainly in oxidation state III.

Erbium may be encountered in a variety of chemical and physical forms, including oxides, hydroxides, and inorganic salts (chlorides, fluorides, iodides, sulphates, sulphides and carbonates). Erbium is most commonly obtained from gadolinite and monazite.

Erbium is used in solid-state YAG lasers and for its high thermal neutron absorption cross-section in making control rods in nuclear reactors.

Table 14. 1. Isotopes of erbium addressed in this report.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Physical half-life</th>
<th>Decay mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Er-156</td>
<td>19.5 m</td>
<td>EC</td>
</tr>
<tr>
<td>Er-159</td>
<td>36 m</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Er-161</td>
<td>3.21 h</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Er-163</td>
<td>75.0 m</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Er-165</td>
<td>10.36 h</td>
<td>EC</td>
</tr>
<tr>
<td>Er-169a</td>
<td>9.40 d</td>
<td>B-</td>
</tr>
<tr>
<td>Er-171</td>
<td>7.516 d</td>
<td>B-</td>
</tr>
<tr>
<td>Er-172</td>
<td>49.3 h</td>
<td>B-</td>
</tr>
</tbody>
</table>

*Dose coefficients and bioassay data for this radionuclide are given in the printed copy of this report. Data for other radionuclides listed in this table are given in the accompanying electronic annexes.

14.2. Routes of Intake

14.2.1. Inhalation

Absorption Types and parameter values

No reports were found of experimental studies on the behaviour of erbium (Er) following deposition in the respiratory tract, nor of its retention in the lung following accidental intake. As described in the general lanthanide section, absorption parameter values based on cerium are applied in this document to the other lanthanides, including erbium. Absorption parameter values and Types, and associated f_A values for particulate forms of erbium are given in Table 2.4 of the general lanthanide section.

14.2.2. Ingestion

There is no relevant data available concerning ingestion of erbium, but the fractional absorption from the gastrointestinal tract of rats for several similar lanthanides has been variously reported to be less than 10^{-3} (Durbin et al., 1956) and less than 5×10^{-4} (Moskalev et al., 1972).
(380) In *Publication 30* (ICRP, 1979), an \(f_A \) of \(3 \times 10^{-4} \) was recommended for all compounds of erbium. In *Publication 68* (ICRP, 1994), a value of \(5 \times 10^{-4} \) was adopted by analogy with trivalent actinides and this \(f_A \) value is adopted in this report for every element of the lanthanide family.

14.2.3. Systemic distribution, retention and excretion of erbium

14.2.3.1. Data

(381) The lanthanides, Tb, Dy, Ho, Er, Tm, Yb, and Lu showed broadly similar biokinetics in rats (Durbin, 1960, 1962; Moskalev et al., 1974; Ando et al., 1989). Roughly 60% of the activity entering blood deposited in the skeleton and roughly 10% deposited in the liver. Cumulative loss in urine through day 4 amounted to about 15-28% of the amount reaching blood.

14.2.3.2. Biokinetic model

(382) The biokinetic model for systemic erbium applied in this report is described in Section 2.2.3.2.

14.2.3.3. Treatment of progeny

(383) The treatment of radioactive progeny of erbium produced in systemic compartments or absorbed to blood after production in the respiratory or gastrointestinal tract is described in Section 2.2.3.3.

14.3. Individual monitoring

Information of detection limit for individual measurement techniques is not available.

14.4. Dosimetric data for erbium

Dosimetric data will be provided in the final version of the document.

REFERENCES

Ann. ICRP 24(4).

15. THULIUM (Z = 69)

15.1. Chemical Forms in the Workplace

Thulium is an element of the lanthanide series which occurs mainly in oxidation state III. Thulium may be encountered in a variety of chemical and physical forms, including oxides, hydroxides, and inorganic salts (chlorides, fluorides, iodides, sulphates, sulphides and carbonates). Thulium is most commonly obtained from monazite.

Thulium is used as the radiation source in portable x-ray devices and in solid-state YAG lasers.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Physical half-life</th>
<th>Decay mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tm-161</td>
<td>30.2 m</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Tm-162</td>
<td>21.70 m</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Tm-163</td>
<td>1.810 h</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Tm-165</td>
<td>30.06 h</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Tm-166</td>
<td>7.70 h</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Tm-167</td>
<td>9.25 d</td>
<td>EC</td>
</tr>
<tr>
<td>Tm-168</td>
<td>93.1 d</td>
<td>EC, B+, B-</td>
</tr>
<tr>
<td>Tm-170</td>
<td>128.6 d</td>
<td>B-, EC</td>
</tr>
<tr>
<td>Tm-171'</td>
<td>1.92 y</td>
<td>B-</td>
</tr>
<tr>
<td>Tm-172</td>
<td>63.6 h</td>
<td>B-</td>
</tr>
<tr>
<td>Tm-173</td>
<td>8.24 h</td>
<td>B-</td>
</tr>
<tr>
<td>Tm-175</td>
<td>15.2 m</td>
<td>B-</td>
</tr>
</tbody>
</table>

*Dose coefficients and bioassay data for this radionuclide are given in the printed copy of this report. Data for other radionuclides listed in this table are given in the accompanying electronic annexes.

15.2. Routes of Intake

15.2.1. Inhalation

Absorption Types and parameter values

Studies were found on the behaviour of thulium radioisotopes (Tm) in man following accidental inhalation. Information on absorption from the respiratory tract is available from experimental studies of thulium as oxide. As described in the general lanthanide section, absorption parameter values based on cerium are applied in this document to the other lanthanides. Absorption parameter values and Types, and associated f_A values for particulate forms of lanthanides, including thulium, are given in Table 2.4. of the general lanthanide section.
15.2.2. Ingestion

The fractional absorption of thulium from the gastrointestinal tract of rats has been variously reported to be less than 10^{-3} (Durbin et al., 1956) and less than 5×10^{-4} (Moskalev et al., 1972).
In Publication 30 (ICRP, 1979), an f_1 of 3×10^{-4} was recommended for all compounds of thulium. In Publication 68 (ICRP, 1994), a value of 5×10^{-4} was adopted by analogy with trivalent actinides and this f_A value is adopted in this report for every element of the lanthanide family.

15.2.3. Systemic distribution, retention and excretion of thulium

15.2.3.1. Data
The lanthanides, Tb, Dy, Ho, Er, Tm, Yb, and Lu showed broadly similar biokinetics in rats (Durbin, 1960, 1962; Moskalev et al., 1974; Ando et al., 1989). Roughly 60% of the activity entering blood deposited in the skeleton and roughly 10% deposited in the liver. Cumulative loss in urine through day 4 amounted to about 15-28% of the amount reaching blood.

15.2.3.2. Biokinetic model
The biokinetic model for systemic thulium applied in this report is described in Section 2.2.3.2.

15.2.3.3. Treatment of progeny
The treatment of radioactive progeny of thulium produced in systemic compartments or absorbed to blood after production in the respiratory or gastrointestinal tract is described in Section 2.2.3.3.

15.3. Individual monitoring
Information of detection limit for individual measurement techniques is not available.

15.4. Dosimetric data for thulium
Dosimetric data will be provided in the final version of the document.

REFERENCES

16. YTTERBIUM (Z = 70)

16.1. Chemical Forms in the Workplace

Ytterbium is an element of the lanthanide series which occurs mainly in oxidation states II and III. Ytterbium may be encountered in a variety of chemical and physical forms, including oxides, hydroxides, and inorganic salts (chlorides, fluorides, iodides, sulphates, sulphides and carbonates). Ytterbium is most commonly obtained from xenotime and monazite. Ytterbium is used as a doping material in solid-state lasers.

Table 16.1. Isotopes of ytterbium addressed in this report.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Physical half-life</th>
<th>Decay mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yb-162</td>
<td>18.87 m</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Yb-163</td>
<td>11.05 m</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Yb-164</td>
<td>75.8 m</td>
<td>EC</td>
</tr>
<tr>
<td>Yb-166</td>
<td>56.7 h</td>
<td>EC</td>
</tr>
<tr>
<td>Yb-167</td>
<td>17.5 m</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Yb-169<sup>a</sup></td>
<td>32.026 d</td>
<td>EC</td>
</tr>
<tr>
<td>Yb-175</td>
<td>4.185 d</td>
<td>B-</td>
</tr>
<tr>
<td>Yb-177</td>
<td>1.911 h</td>
<td>B-</td>
</tr>
<tr>
<td>Yb-178</td>
<td>74 m</td>
<td>B-</td>
</tr>
</tbody>
</table>

^aDose coefficients and bioassay data for this radionuclide are given in the printed copy of this report. Data for other radionuclides listed in this table are given in the accompanying electronic annexes.

16.2. Routes of Intake

16.2.1. Inhalation

Absorption Types and parameter values

Studies have been reported of lung retention in man following chronic inhalation exposure to stable ‘rare earth’ (lanthanide) elements, including ytterbium (Yb) (see general lanthanide section). Information on absorption from the respiratory tract is available from experimental studies of ytterbium, in water-soluble form and as oxide. Ytterbium-169 (half-life 32 d) has often been used as a gamma-emitting label for relatively insoluble particles (plutonium oxide, fused aluminosilicate) in inhalation experiments.

As described in the general lanthanide section, absorption parameter values based on cerium are applied in this document to the other lanthanides. Absorption parameter values and Types, and associated \(f_A \) values for particulate forms of lanthanides, including ytterbium, are given in Table 2.4. of the general lanthanide section.

Water-soluble forms of ytterbium
(402) Moskalev et al (1972) followed the biokinetics of \(^{169}\text{Yb}\) (and other lanthanides, see general lanthanide section) for at least 32 d after deposition in the lungs of rats. However, few details are given. Fig. 135 of Moskalev et al (1972) shows retention (presumably in the lungs) of ytterbium falling to \(~1\%\) "of given dose" by 32 d. Analysis was carried out here (i.e., by the Task Group) assuming that \(s_r = 0.44 \text{ d}^{-1}\), \(s_b = 0.07\); \(s_s = 0.021 \text{ d}^{-1}\), and \(s_s = 0.0015 \text{ d}^{-1}\), based on analysis of the results of studies of cerium chloride inhaled by dogs – see general lanthanide section. The results fit well with \(f_r > 0.95\), (which would give assignment to Type F), higher than the value of 0.5 chosen for water-soluble forms of lanthanides.

(403) Rhoads and Sanders (1985) followed the biokinetics of \(^{169}\text{Yb}\) in rats for 30 d after intratracheal instillation of \(^{169}\text{Yb}\)-labelled oxide \((^{169}\text{Yb}_2\text{O}_3)\), prepared from chloride solution calcined at 750°C. Lung retention was represented by a single exponential function with a half-time of 21 d. The authors stated that there was minimal transfer of ytterbium to other tissues because of the low solubility of the oxide in the lung. However, the amount in the skeleton varied between 0.3 and 7% of the initial lung deposit (ILD) in measurements made at times ranging from immediately after administration to 30 d, but with no clear trend with time, indicating Type M or S behaviour.

(404) Lundgren and McClellan (1975, 1976) administered stable \(\text{Yb}_2\text{O}_3\) or \(^{169}\text{Yb}_2\text{O}_3\) by inhalation to Syrian hamsters and mice as controls in studies of the biological effects of repeated inhalation exposure to \(^{239}\text{PuO}_2\). The particles were prepared by thermal degradation of the hydroxide at 1100°C. (The \(^{239}\text{PuO}_2\) was also labelled with \(^{169}\text{Yb}\) to provide a gamma-emitting label to enable the \(^{239}\text{PuO}_2\) deposits to be estimated by external counting, see below). The tissue distribution of \(^{169}\text{Yb}\) was determined at times up to 364 d in hamsters (Lundgren et al., 1977), but results were not reported.

(405) Ytterbium-169 has been used as a gamma-emitting label for \(^{239}\text{PuO}_2\) in inhalation studies, to enable the \(^{239}\text{PuO}_2\) deposits to be estimated by external counting (Diel et al., 1981). For example, Lundgren and McClellan (1975, 1976) administered \(^{239}\text{PuO}_2\) labelled with \(^{169}\text{Yb}\) by inhalation to Syrian hamsters and mice in studies of the biological effects of repeated inhalation exposure to \(^{239}\text{PuO}_2\). The particles were prepared by thermal degradation at 1100°C of plutonium hydroxide to which \(^{169}\text{Yb}\) and stable ytterbium had been added. Lundgren et al. (1977) reported that the ratio \(\text{Yb}/\text{Pu}\) in the lungs of hamsters remained constant up to 128 d, indicating that the \(^{169}\text{Yb}\) label was firmly retained.

(406) FAP or “fused clay” particles have been extensively used as relatively insoluble particles in inhalation studies, both of biokinetics and of radiation effects (see, e.g. cerium section).

(407) Snipes et al (1975, 1977) studied the effect of lung lavage on the distribution within the lungs of FAP labelled with \(^{147}\text{Pm}\) and \(^{169}\text{Yb}\), at times up to 56 d after inhalation by dogs. No biokinetic data were reported, but the ability to measure the effectiveness of lung lavage, and particle distributions in lung sections by autoradiography, demonstrated that the material did not dissolve readily in the lungs. Herbert et al. (1987, 1988) investigated effects of lung irradiation
in rats for 18 months after inhalation of FAP labelled with 147Pm and 169Yb (the latter as a tracer for \textit{in vivo} measurements). Little biokinetic information was reported. However, effective lung retention half-times were ~5 d for 58% of the initial lung deposit (ILD) and 150 d for 42% ILD, showing that the material was relatively insoluble.

(408) Raabe et al. (1988) used monodisperse 169Yb-FAP to measure regional deposition of particles as a function of size in mice, Syrian hamsters, rats, guinea pigs and rabbits. Tissue distributions of 169Yb were measured immediately after exposure and at 20 h. The authors noted that apart from the respiratory and alimentary tracts, internal organs were essentially free of 169Yb, verifying the inherent insolubility of the aerosol particles and the label (but did not report the measurements themselves). The results thus indicate Type M or S behaviour.

16.2.2. Ingestion

(409) The fractional absorption of ytterbium from the gastrointestinal tract of rats has been reported to be less than 5×10^{-3} (Moskalev et al., 1972).

(410) In \textit{Publication 30} (ICRP, 1979), an f_1 of 3×10^{-4} was recommended for all compounds of ytterbium. In \textit{Publication 68} (ICRP, 1994), a value of 5×10^{-4} was adopted by analogy with trivalent actinides and this f_A value is adopted in this report for every element of the lanthanide family.

16.2.3. Systemic distribution, retention and excretion of ytterbium

16.2.3.1. Data

(411) The lanthanides, Tb, Dy, Ho, Er, Tm, Yb, and Lu showed broadly similar biokinetics in rats (Durbin, 1960, 1962; Moskalev et al., 1974; Ando et al., 1989). Roughly 60% of the activity entering blood deposited in the skeleton and roughly 10% deposited in the liver. Cumulative loss in urine through day 4 amounted to about 15-28% of the amount reaching blood.

16.2.3.2. Biokinetic model

(412) The biokinetic model for systemic ytterbium applied in this report is described in Section 2.2.3.2.

16.2.3.3. Treatment of progeny

(413) The treatment of radioactive progeny of ytterbium produced in systemic compartments or absorbed to blood after production in the respiratory or gastrointestinal tract is described in Section 2.2.3.3.

16.3. Individual monitoring

169Yb

(414) \textit{In vivo} lung measurements of 169Yb are used to determine intakes of the radionuclide for routine monitoring. Measurements of 169Yb concentrations in faeces may be used to determine intakes of the radionuclide. \textit{In vivo} whole body measurement may be used as an additional technique for special investigation. The main technique is gamma spectrometry.
Table 16.2. Monitoring techniques for 169Yb.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Monitoring Technique</th>
<th>Method of Measurement</th>
<th>Typical Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>169Yb</td>
<td>Faecal Bioassay</td>
<td>γ-ray spectrometry</td>
<td>10 Bq/24h</td>
</tr>
<tr>
<td>169Yb</td>
<td>Lung Measurementa</td>
<td>γ-ray spectrometry</td>
<td>6 Bq</td>
</tr>
<tr>
<td>169Yb</td>
<td>Whole-body Measurementb</td>
<td>γ-ray spectrometry</td>
<td>140 Bq</td>
</tr>
</tbody>
</table>

a Measurement system comprised of two Broad Energy Germanium Detectors (BEGe), counting time of 36 minutes and chest wall thickness of 2.54 cm.

b Measurement system comprised of two Broad Energy Germanium Detectors (BEGe) and counting time of 15 minutes.

16.4. Dosimetric data for ytterbium
Dosimetric data will be provided in the final version of the document.

REFERENCES

17. LUTETIUM (Z = 71)

17.1. Chemical Forms in the Workplace
Lutetium is an element of the lanthanide series which occurs mainly in oxidation state III. Lutetium may be encountered in a variety of chemical and physical forms, including oxides, hydroxides, and inorganic salts (chlorides, fluorides, iodides, sulphates, sulphides, oxalates and carbonates). Lutetium is most commonly obtained from monazite. Lutetium-177 is used for radionuclide therapy on neuroendocrine tumours.

Table 17.1. Isotopes of lutetium addressed in this report.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Physical half-life</th>
<th>Decay mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lu-165</td>
<td>10.74 m</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Lu-167</td>
<td>51.5 m</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Lu-169</td>
<td>34.06 h</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Lu-170</td>
<td>2.012 d</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Lu-171</td>
<td>8.24 d</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Lu-172</td>
<td>6.70 d</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Lu-173</td>
<td>1.37 y</td>
<td>EC</td>
</tr>
<tr>
<td>Lu-174</td>
<td>3.31 y</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Lu-174m</td>
<td>142 d</td>
<td>IT, EC</td>
</tr>
<tr>
<td>Lu-176</td>
<td>3.85E+10 y</td>
<td>B-</td>
</tr>
<tr>
<td>Lu-176m</td>
<td>3.635 h</td>
<td>B-, EC</td>
</tr>
<tr>
<td>Lu-177(^a)</td>
<td>6.647 d</td>
<td>B-</td>
</tr>
<tr>
<td>Lu-177m</td>
<td>160.4 d</td>
<td>B-, IT</td>
</tr>
<tr>
<td>Lu-178</td>
<td>28.4 m</td>
<td>B-</td>
</tr>
<tr>
<td>Lu-178m</td>
<td>23.1 m</td>
<td>B-</td>
</tr>
<tr>
<td>Lu-179</td>
<td>4.59 h</td>
<td>B-</td>
</tr>
</tbody>
</table>

\(^a\)Dose coefficients and bioassay data for this radionuclide are given in the printed copy of this report. Data for other radionuclides listed in this table are given in the accompanying electronic annexes.

17.2. Routes of Intake

17.2.1. Inhalation
Absorption Types and parameter values
Studies have been reported of lung retention in man following chronic inhalation exposure to stable 'rare earth' (lanthanide) elements, including lutetium (see general lanthanide section). No reports of experimental studies of lutetium were found. As described in the general lanthanide section, absorption parameter values based on cerium are applied in this document to
the other lanthanides. Absorption parameter values and Types, and associated f_A values for particulate forms of lanthanides, including lutetium, are given in Table 2.4. of the general lanthanide section.

17.2.2. Ingestion

(418) There is no relevant data available concerning ingestion of lutetium, but the fractional absorption from the gastrointestinal tract of rats for several similar lanthanides has been variously reported to be less than 10^{-3} (Durbin et al., 1956) and less than 5×10^{-4} (Moskalev et al., 1972).

(419) In Publication 30 (ICRP, 1979), an f_A of 3×10^{-4} was recommended for all compounds of lutetium. In Publication 68 (ICRP, 1994), a value of 5×10^{-4} was adopted by analogy with trivalent actinides and this f_A value is adopted in this report for every element of the lanthanide family.

17.2.3. Systemic distribution, retention and excretion of lutetium

17.2.3.1. Data

(420) The lanthanides, Tb, Dy, Ho, Er, Tm, Yb, and Lu showed broadly similar biokinetics in rats (Durbin, 1960, 1962; Moskalev et al., 1974; Ando et al., 1989). Roughly 60% of the activity entering blood deposited in the skeleton and roughly 10% deposited in the liver. Cumulative loss in urine through day 4 amounted to about 15-28% of the amount reaching blood.

17.2.3.2. Biokinetic model

(421) The biokinetic model for systemic lutetium applied in this report is described in Section 2.2.3.2.

17.2.3.3. Treatment of progeny

(422) The treatment of radioactive progeny of lutetium produced in systemic compartments or absorbed to blood after production in the respiratory or gastrointestinal tract is described in Section 2.2.3.3.

17.3. Individual monitoring

^{177}Lu

(423) In vivo lung measurements of ^{177}Lu are used to determine intakes of the radionuclide for routine monitoring. Measurements of ^{177}Lu concentrations in urine and faeces may be used to determine intakes of the radionuclide. In vivo whole body measurement may be used as additional technique for special investigation. The main technique is gamma spectrometry.
Table 17.2. Monitoring techniques for 177Lu.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Monitoring Technique</th>
<th>Method of Measurement</th>
<th>Typical Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>177Lu</td>
<td>Urine Bioassay</td>
<td>γ-ray spectrometry</td>
<td>9 Bq/L</td>
</tr>
<tr>
<td>177Lu</td>
<td>Faecal Bioassay</td>
<td>γ-ray spectrometry</td>
<td>9 Bq/24h</td>
</tr>
<tr>
<td>177Lu</td>
<td>Lung Measurementa</td>
<td>γ-ray spectrometry</td>
<td>5 Bq</td>
</tr>
<tr>
<td>177Lu</td>
<td>Whole-body Measurementb</td>
<td>γ-ray spectrometry</td>
<td>120 Bq</td>
</tr>
</tbody>
</table>

a Measurement system comprised of two Broad Energy Germanium Detectors (BEGe), counting time of 36 minutes and chest wall thickness of 2.54 cm.

b Measurement system comprised of two Broad Energy Germanium Detectors (BEGe) and counting time of 15 minutes.

17.4. Dosimetric data for lutetium

Dosimetric data will be provided in the final version of the document.

REFERENCES

18. A GENERIC BIOKINETIC MODELING SCHEME FOR THE ACTINIDES

As is the case for the lanthanides, the initial distribution and rate of excretion of intravenously injected or absorbed activity varies across the actinide family. For the lanthanide elements, all of which are expected to be present in body fluids as trivalent ions, results of animal studies indicate a strong relation between the ionic radius and the early systemic distribution and excretion rate of an element. The biokinetics of the actinide family as a whole appears to be much less regular than that of the lanthanides and more difficult to describe in terms of physical or chemical properties. Presumably this is due in part to the different primary oxidation states of different actinides, ranging from trivalent to pentavalent. However, a relation between the ionic radius and the early systemic distribution broadly similar to that for the lanthanides is suggested by data for the heaviest actinides, Am through Es, which are expected to be present in body fluids as trivalent ions. As with the lanthanides, this relation can be used to assign element-specific parameter values to these elements in lieu of specific information. More generally, results of animal studies indicate sufficient overall biokinetic similarities within certain subgroups of the actinide family (e.g. Pa and Th; or Ac, Am, and Cm) that it is reasonable to assign parameter values for a frequently studied actinide to a less frequently studied actinide within its subgroup in the absence of specific information. For these reasons, a generic biokinetic modeling scheme is applied in this report series to the actinide elements Ac, Pa, Np, Pu, Am, Cm, Bk, Cf, Es, and Fm. The same modeling scheme was applied in Part 3 of this series to the actinide Th. This section describes the basis for the generic modeling scheme, the common model structure applied (with additional blood and liver compartments for Pu), and the generic and element-specific parameter values assigned to each of the actinide elements addressed here. Subsequent element sections expand on specific data or assumptions for each of these elements.

18.1. Actinides physico-chemistry

The actinides (An) comprise 15 elements with atomic numbers 89 through 103: actinium (Ac), thorium (Th), protactinium (Pa), uranium (U), neptunium (Np), plutonium (Pu), americium (Am), curium (Cm), berkelium (Bk), californium (Cf), einsteinium (Es), fermium (Fm), mendelevium (Md), nobelium (No) and lawrencium (Lr). IUPAC prefers the term actinoid to actinide (IUPAC, 2005) but this terminology is not adopted in this document. Uranium and thorium are included in OIR Part 3 (ICRP, 2016b). The last three elements Md, No and Lr are not considered in the OIR series.

Sources and production

Actinides may be encountered in the front end and the back end of the nuclear fuel cycle industry in a variety of chemical and physical forms, including oxides, hydroxides, inorganic salts (nitrates, chlorides, fluorides, sulphates, carbonates and phosphates) and in some specific cases in organic forms such as tributyl-phosphate (TBP). Of these actinides, only thorium and uranium, also called major actinides, occur naturally in substantial quantities as ores. Other actinides, also called minor actinides, are produced from transmutation reactions in nuclear reactors.
Uses

Actinides have no stable isotopes and are mostly used as fuel in nuclear reactors. Some of these actinides (e.g. uranium, plutonium, and americium) are used as mixed oxide reactor fuel (MOX). Major actinides are also used in nuclear weapons. Nuclear reprocessing was developed to chemically separate and recover actinides of interest from irradiated nuclear fuel.

Physico-Chemistry

The actinides (An) are also called f-transition metals or 5f elements in the periodic table of elements, because their general electronic structure is mostly [Rn]7s²5fⁿ except for Ac and Th which are only in 6d and 7s orbitals. Consequently, actinides are strong electron acceptors and can be considered as hard acids as defined by HSAB theory of Pearson (Pearson, 1963). They tend to interact with strong electron donors such as oxygen, being present in aqueous systems of interest such as biological and environmental media.

A comparative evolution of the ionic radii (Shanon, 1976) for a given coordination number of VI (Fig. 18.1) shows a significant and regular decrease in the series for the main valence state (from III to VI), and underlines the specificity of “yle” cations (AnO₂²⁺ with An(VI) and An= U, Np, Pu, Am) which are larger due to the oxygen binding.

![Fig. 18.1. Ionic radii of actinide series for different oxidation states (III to VI) for a coordination number (CN = VI).](image)

Actinides in aqueous solution can occur as solids, colloids or solvated species. The presence of these species is regulated by thermodynamic and kinetic laws and is sensitive to parameters such as cation/anion concentration, ionic strength, temperature, gas-liquid-solid phase equilibria and oxidation-reduction potential.

In aqueous media, actinides exhibit a range of oxidation state from +II to +VIII, with the more stable oxidation states detailed in Table 18.1. This table shows the various number of oxidation states in some early elements of the series (mainly U, Np, Pu, Am) and a predominant oxidation state of III for the heaviest actinides (Am, Cm, Bk, Cf...).

For the +III and +IV oxidation state (An³⁺, An⁴⁺), the coordination numbers of the cation range from 6 to 12. Oxidation states +V and +VI possess a particular molecular shape: this group, also called the actinyl group, is a linear trans-dioxo cation (An(V)O₂⁺, An(VI)O₂²⁺),
with strong covalent interactions between the actinides (An) and the oxygen (O), a large effective charge of the central actinides ion (e.g. 3.3 and 2.3, respectively), and coordination numbers of II to VIII. This actinyl geometry is ubiquitous and both An(V) and An(VI) aquo ions have five water molecules in their equatorial plane, whereas both An(III) and An(IV) exist as simple hydrated (or aquo) ions An(H$_2$O)$_n$$^{n+}$, where n=8 and p=3 or 4.

Table 18.1. Oxidation states for the actinide elements.

<table>
<thead>
<tr>
<th>Element</th>
<th>Oxidation state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ac</td>
<td>III</td>
</tr>
<tr>
<td>Th</td>
<td>IV</td>
</tr>
<tr>
<td>Pa</td>
<td>IV, V</td>
</tr>
<tr>
<td>U</td>
<td>III, IV, V, VI</td>
</tr>
<tr>
<td>Np</td>
<td>III, IV, V, VI, VII</td>
</tr>
<tr>
<td>Pu</td>
<td>III, IV, V, VI, VII, VIII</td>
</tr>
<tr>
<td>Am</td>
<td>III, IV, V, VI, VII</td>
</tr>
<tr>
<td>Cm</td>
<td>III, IV</td>
</tr>
<tr>
<td>Bk</td>
<td>III, IV</td>
</tr>
<tr>
<td>Cf</td>
<td>III, IV</td>
</tr>
<tr>
<td>Es</td>
<td>II, III</td>
</tr>
<tr>
<td>Fm</td>
<td>II, III</td>
</tr>
</tbody>
</table>

*In bold font are the most stable oxidation states under aqueous conditions.

A noteworthy aspect of actinide solution chemistry is the importance of hydrolysis reactions (Eq. 18.1) (Allard et al., 1980; Altmaier et al., 2013; Knope et al., 2013), which may be significant even in acidic media.

$$\text{An}^{n+} + m \text{H}_2\text{O} \leftrightarrow \text{An(OH)}_m^{(n-m)+} + m \text{H}^+ \quad (\text{Eq. 18.1})$$

The strength of hydrolysis follows the order An$^{4+}$ > AnO$_2^{2+}$ > An$^{3+}$ > AnO$_2^+$. The An$^{4+}$ and AnO$_2^{2+}$ species are reported also to form very stable hydroxide oligomers (i.e. [An(OH)$_3$])$_n$, depending on the actinide concentration.

A second important aspect of actinides solution chemistry is disproportionation reactions, leading to several oxidation states simultaneously in aqueous media: the redox reactions of actinide species have been divided into 2 groups, namely those involving only electron transfer (An$^{4+}$/An$^{3+}$ and AnO$_2^{2+}$/AnO$_2^+$ pairs), for which reactions of simple electron exchange are fast, and those also requiring formation and/or rupture of metal/oxygen bonds (e.g. An$^{4+}$/AnO$_2^+$ pairs), which tend to be kinetically slow.

The “hard acid” properties of actinide cations (Pearson, 1963) involve a stronger preference for oxygen donor atoms and preferential interactions with ligands containing such groups rather than nitrogen, sulphur or phosphorous donors. Their ability to form complexes with inorganic ligands diminishes as follows: PO$_4^{3-}$ > CO$_3^{2-}$ > OH$^-$ > SO$_4^{2-}$ > Cl$^-$. At the same oxidation state, it is well known that the relative stability of the complexes with hard acids increases with the atomic number, due to the contraction of the actinide ionic radii.

Behaviour within biological media

Considering the complexity of actinide chemistry (e.g. Seaborg, 1993; Neck et al., 2001; Gorden et al., 2003; Choppin et al., 2006; Knope et al., 2013, Altmaier et al., 2013), numerous studies have been conducted in order to better understand their biological behaviour.
(Durbin, 1960, 1962, 2006; Duffield and Taylor, 1987; Maher et al., 2013). Moreover, recent reviews focusing on developments of speciation tools (e.g. Paquet et al., 2003; Ansoborlo et al., 2006; Bresson et al., 2011; Vidaud et al., 2005, 2007, 2012; Maher et al., 2012) and on recent methodologies such as transcriptomics and proteomics (Hood et al., 2012; Aryal et al., 2011), have shown significant progress made in speciation of actinides (mainly uranium and plutonium) with specific biological ligands such as proteins involved in transportation (e.g. Prat et al., 2005; Vidaud et al., 2007; Jensen et al., 2011; Basset et al., 2013).

Most studies on actinide binding with biological ligands either in blood (Taylor, 1998; Duffield, 1991; Yule, 1991; Durbin, 2006) or in tissue/organ target deposition sites such as liver, bone and kidney, have shown that proteins such as transferrin and albumin are mainly in charge of the distribution from blood to organs, and that some other proteins were more or less organ-specific such as calmodulin, ferritin and lipofuscin for the liver (Taylor et al., 1987; Paquet et al., 2003; Duffield and Taylor, 1991), sialoproteins, chondroitin sulphate-protein complexes and glycoproteins for the bone (Duffield and Taylor, 1991).

Recent studies using methodologies such as proteomics and transcriptomics, and mainly focused on uranium and plutonium, carried out either in vitro by acute exposure of various cell line (Prat et al., 2005) or in vivo by studying organ response to acute or chronic exposure (Taulan et al., 2004, 2006), have generally shown that mechanisms such as oxidative stress, apoptosis, signal transduction, inflammation and catabolism might contribute to actinide toxicity. These studies provided a set of new interesting proteins involved in gene expression, such as fetuin-A (Basset et al., 2013), actin D, tubulin A, heat shock protein 90 (HSP 90) (Prat et al., 2005, 2012; Malard et al., 2009), glucose regulated protein (GRP78) and Nucleoside diphosphate kinase B (Aryal et al., 2011), osteopontin (Taulan et al., 2004, 2006; Qi et al., 2014; Safi et al., 2013; Vidaud et al., 2012). Some of these proteins might be good biomarker candidates such as osteopontin (Prat et al., 2011).

18.2. Routes of intake

18.2.1. Inhalation

As for the lanthanides (Section 2.2.1) the behaviour of many ionic (water-soluble) forms of actinides (e.g. nitrate) following deposition in the respiratory tract is complex and difficult to determine because their solutions are unstable at neutral pH and in many biological media, resulting in hydrolysis (see above and ICRP, 1986).

Another similarity with the lanthanides is the very wide range between elements in the amount of information on their behaviour following deposition in the respiratory tract. For two elements, uranium and plutonium, there is extensive information covering a wide range of chemical forms: more than for any other elements. For thorium, neptunium, americium and curium there is as much information as there is for most other elements in this document series. However, for actinium, protactinium, berkelium, californium, einsteinium and fermium there are few, if any, relevant experimental studies.

The similarities in chemical properties of the actinides also noted above raise the possibility of the application of model parameter values derived for well-informed elements to those elements for which information is lacking. However, there appears to be much greater variation in behaviour across the actinides than across the lanthanides. For example, Table 18.1 shows marked differences in the range of oxidation states for each element, and differences in the most stable oxidation state in aqueous media for each element.
ICRP (1986) noted that the competing phenomena of hydrolysis and complex formation play important roles in determining the biological behaviour of the actinides. The tetravalent actinides, thorium and plutonium, show a strong tendency to hydrolysis, leading to the formation of polymers or particles at pH values greater than about 2. The trivalent transplutonium elements, americium to fermium, hydrolyse to a much lesser degree but do show decreasing solubility in the pH range 6.5 to 9, forming insoluble hydroxides or other hydroxy species. The Np(V) ion shows virtually no tendency to undergo hydrolysis below a pH of about 7.

For actinium (Section 19.2.1.), no experimental studies were found that give information on its absorption, and chemical analogy is applied here. Following the approach taken with the systemic model for actinium, HRTM absorption parameter values chosen for americium are applied in this document to actinium.

For protactinium (Section 20.2.1.), the only experimental study found that gives information on its absorption from the respiratory tract involved administration of the citrate to rats by intratracheal instillation. As there is so little relevant information available, absorption parameter values for protactinium are based on chemical analogy. Following the approach taken with the systemic model for protactinium, HRTM absorption parameter values chosen for thorium (OIR Part 3, ICRP, 2016) are applied in this document to protactinium.

For neptunium (Section 21.2.1.), as noted above, there is as much information as there is for most other elements in this document series, and it is treated as an individual element, as are thorium and uranium.

For the four higher actinides (berkelium to fermium) there were only three studies (or fewer) on each element, and therefore consideration was given to use of chemical analogy. As noted above, there are greater similarities across the trivalent transplutonium elements, americium to fermium, than across the other actinides and there is a reasonable amount of information relating to americium and curium; there is far more information relating to plutonium, but this might be offset by differences in behaviour.

To provide guidance on, and justification for, the approach taken, the following three sections review and summarise relevant information on the actinides from plutonium to einsteinium (more details are given in the individual element sections; there was no such information on fermium):

- comparisons which could be made between the clearance characteristics of soluble forms of different elements deposited in the respiratory tract under similar conditions;
- estimates of rapid dissolution rates;
- estimates of bound fraction parameter values.

Comparisons of respiratory tract clearance of higher actinides

Comparisons that could be made between the clearance characteristics of soluble forms of the "higher" actinides (from plutonium to einsteinium) deposited in the respiratory tract under similar conditions are described in the next paragraphs. Ideally, comparisons would be made between elements administered simultaneously e.g. 'dual-isotope' experiments (provided the radionuclides behave independently), or at least as part of the same study. However, to provide a more comprehensive review, comparisons are also made here between studies carried out by the same research group under apparently similar conditions.

Nitrate and citrates: instillation into respiratory tract of rats
Crawley and Goddard (1976) studied the biokinetics of 241Am and 242Cm following their deposition in the respiratory system of rats: nitrate or citrate solutions were administered by instillation into the nasopharyngeal (N-P), tracheobronchial (T-B) and pulmonary (P) regions. No differences were observed in the tissue distribution and excretion of 241Am and 242Cm at 1 or 7 d after administration. Translocation from the P region to extrapulmonary (systemic) tissues was higher than from the other regions. Administration of the nitrates gave higher lung retention and lower translocation to extrapulmonary tissues than the corresponding citrates. The authors compared their results with those from a similar study involving 239Pu (Stather and Howden, 1975). Retention in the lungs after instillation into the P region was similar, but after deposition in the T-B region significantly more of both 241Am and 242Cm nitrates and citrates were retained compared with the 239Pu compounds. The authors considered that this may be due to a lower binding capacity of americium and curium to the proteins in the mucus lining the epithelium, resulting in a lower clearance up the ciliary escalator.

Stather and Priest (1977) compared tissue distributions of 238Pu, 239Pu and 241Am at 1, 7, 30 and 120 d following simultaneous instillation of the nitrates into the P region of rats. All results for 238Pu and 239Pu were similar. Lung retention of Pu and 241Am was also similar, but with some indication of greater clearance of Pu at 1 d. In a similar experiment, they compared tissue distributions of 241Am and 242Cm at 7, 30 and 150 d after administration of the nitrates. All results for 241Am and 242Cm were similar, as found by Crawley and Goddard (1976). However, lung retention of 241Am (33%, 13% and 1.6% ILD, respectively) was less than in the first experiment (45%, 20% and 6% ILD at 7, 30 and 120 d, respectively). The authors noted that the similarity in behaviour between 241Am and 242Cm could be due to similar behaviour of their hydroxides, or to the formation of mixed Am-Cm hydroxide polymers in the lungs, which clear at a rate determined by the properties of the mixed hydroxide. The latter explanation may account for the slower clearance of 241Am when mixed with 239Pu.

Stradling et al. (1980) measured tissue distributions of 239Pu, 241Am and 244Cm at 1, 6 and 21 d after intratracheal instillation of the citrates into the lungs (P region) of rats (for comparison with their behaviour following administration of sized fractions of the dioxides). Further details (including measurements of the radionuclides in other tissues and excreta) for 239Pu, 241Am and 244Cm are given in Stradling et al. (1978a), Stradling et al. (1978b) and Stradling et al. (1979), respectively. Results for lungs, liver and carcass are given in Table 18.2. The radionuclides appear to have been administered in separate experiments. In a similar study by the same group, Smith et al. (1977) measured tissue distributions of 239Pu at 18 hours, 6 and 17 d after intratracheal instillation of the citrate into the lungs of rats (Table 18.2). Tissue distributions of 241Am and 244Cm were similar. Lung retention of 239Pu was greater than that of 241Am and 244Cm up to about 1 d after administration, but was similar at later times (6 and 21 d). This suggests that the rapid dissolution rate s_r is lower for 239Pu than for 241Am or 244Cm, but the rapidly dissolved fractions f_r are similar.

Table 18.2. Distribution of radionuclides (percentage of administered activity, Mean ±SEM) following intratracheal instillation of the citrate into the lungs of rats.

<table>
<thead>
<tr>
<th>Time, d</th>
<th>239Pu</th>
<th>241Am</th>
<th>244Cm</th>
<th>239Pu</th>
<th>241Am</th>
<th>244Cm</th>
<th>239Pu</th>
<th>241Am</th>
<th>244Cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>26.8±0.7</td>
<td>5.12±0.23</td>
<td>53.7±1.1</td>
<td>1</td>
<td>28.2±1.7</td>
<td>11.0±1.0</td>
<td>42.6±1.4</td>
<td>41.7±1.9</td>
<td>51.7±2.7</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32.9±0.8</td>
</tr>
</tbody>
</table>
Davies et al. (1992, 1993) measured the distribution of 239Pu and 241Am at times from 1 hour to 28 d following instillation of a solution containing 238Pu and 241Am nitrates into the nasal passages of rats. They investigated the effect of site of deposition (6, 12 or 18 mm depth from the nostril) and the effect of duration of halothane anaesthesia. The main results are given in Table 18.3. Davies et al. (1993) also reported carcass, gastro-intestinal tract and feces measurements. The authors noted that rates of transfer from the nose were greater for 238Pu than for 241Am, but the difference was significant ($p < 0.01$) only for the 12 mm site.

Davies et al. (1992, 1993) also measured the distribution of 238Pu and 241Am at times up to 28 d following intratracheal instillation of a solution containing 238Pu and 241Am nitrates into the lungs (P region) of rats, for comparison with uptake from the nose. The main results are given in Table 18.4. (Davies et al. also reported liver, carcass, and urine measurements). The authors noted that rates of transfer from the lung were greater for 241Am than for 238Pu, in contrast to the rates from the nose, but the difference was not significant.

<table>
<thead>
<tr>
<th>Instillation depth</th>
<th>Nose Total to blood</th>
<th>238Pu</th>
<th>241Am</th>
<th>238Pu</th>
<th>241Am</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 mm</td>
<td>1 h</td>
<td>6.0±2.1</td>
<td>11.7±2.2</td>
<td>1.1±0.2</td>
<td>0.7±0.1</td>
</tr>
<tr>
<td></td>
<td>6 h</td>
<td>2.2±0.5</td>
<td>2.8±0.5</td>
<td>0.6±0.2</td>
<td>0.5±0.1</td>
</tr>
<tr>
<td></td>
<td>24 h</td>
<td>1.8±0.5</td>
<td>3.0±0.5</td>
<td>1.4±0.4</td>
<td>0.7±0.2</td>
</tr>
<tr>
<td></td>
<td>3 d</td>
<td>1.9±0.5</td>
<td>2.5±0.6</td>
<td>2.4±0.3</td>
<td>1.9±0.2</td>
</tr>
<tr>
<td>12 mm</td>
<td>1 h</td>
<td>52.2±15.3</td>
<td>34.6±7.9</td>
<td>1.5±0.4</td>
<td>1.0±0.1</td>
</tr>
<tr>
<td></td>
<td>6 h</td>
<td>8.2±2.7</td>
<td>10.4±2.9</td>
<td>2.4±0.4</td>
<td>0.6±0.1</td>
</tr>
<tr>
<td></td>
<td>24 h</td>
<td>3.1±1.1</td>
<td>4.0±1.3</td>
<td>2.4±0.3</td>
<td>0.8±0.2</td>
</tr>
<tr>
<td></td>
<td>4 d</td>
<td>1.4±0.1</td>
<td>2.0±0.5</td>
<td>2.1±0.2</td>
<td>0.7±0.2</td>
</tr>
<tr>
<td>18 mm</td>
<td>1 h</td>
<td>55.6±7.6</td>
<td>59.2±6.6</td>
<td>2.4±0.7</td>
<td>1.2±0.1</td>
</tr>
<tr>
<td></td>
<td>6 h</td>
<td>15.5±4.1</td>
<td>20.5±5.9</td>
<td>4.1±1.5</td>
<td>1.6±1.0</td>
</tr>
<tr>
<td></td>
<td>24 h</td>
<td>17.3±3.2</td>
<td>16.5±2.8</td>
<td>3.8±0.5</td>
<td>2.3±0.3</td>
</tr>
<tr>
<td></td>
<td>3 d</td>
<td>6.3±0.8</td>
<td>9.9±1.3</td>
<td>3.9±0.7</td>
<td>3.0±0.7</td>
</tr>
</tbody>
</table>

239Pu: Smith et al (1977);
239Pu: Stradling et al (1978a);
Separate measurements reported of Spleen, Blood, and "Other tissues" (kidneys, testes, adrenals, thymus, gastrointestinal tract)
Table 18.4. Distribution of 238Pu and 241Am (percentage of administered activity, Mean ±SEM) following simultaneous instillation of the nitrates into the lungs of rats.

<table>
<thead>
<tr>
<th>Day</th>
<th>238Pu</th>
<th>241Am</th>
<th>Total to blood 238Pu</th>
<th>241Am</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 d</td>
<td>3.0±1.2</td>
<td>9.7±1.9</td>
<td>2.5±0.7</td>
<td>3.6±0.6</td>
</tr>
<tr>
<td>28 d</td>
<td>4.0±1.1</td>
<td>5.2±1.3</td>
<td>3.0±0.3</td>
<td>6.7±2.5</td>
</tr>
</tbody>
</table>

Nitrates: inhalation by rats

Nénot et al. (1971) compared the biokinetics of 239Pu, 241Am and 242Cm following inhalation of Pu nitrate, Am nitrate and Cm chloride by rats. At 45 d after intake they observed significantly higher lung retention for 239Pu than for 241Am or 242Cm: respectively ~30%, 4% and 8% "IAD" (initial alveolar deposit: estimated total inhaled activity, IA, minus fecal activity in the first 3 d); with correspondingly lower systemic retention (~8%, 20% and 10% "IAD" in bone plus liver for 239Pu, 241Am and 242Cm respectively) and excretion (~61%, 72% and 79% "IAD" in urine plus feces respectively). After 2 months, 4% IA of 239Pu was still retained in lung while 0.8% IA was retained in systemic organs. At the same time, 1.3% and 1.6% IA of 241Am and 242Cm respectively was retained in lung, with 8% and 3% IA respectively retained in systemic organs.

Nénot et al. (1972) compared lung retention of 238Pu, 239Pu, 241Am and 242Cm following inhalation of the nitrates by rats up to ~50 d after inhalation (239Pu and 241Am up to ~100 d). Lung retention of 238Pu and 239Pu was similar (~40% of the initial lung deposit, ILD, at 50 d) and much greater than that of 241Am and 242Cm, which were also similar (~7% ILD, at 50 d). No details of the inhalation exposure were given. However, authors noted that some differences in retention could have been due to differences in mucociliary clearance and/or to the greater mass of 239Pu than that of the other radionuclides, which suggests that the radionuclides were administered separately.

Stradling et al. (1987) compared tissue distributions (lungs, liver and carcass) of $^{239+240}$Pu and 241Am at 7, 28, 70, 168 and 252 d after simultaneous inhalation of the nitrates by rats. (Results were reported in relation to "initial lung deposit", but this was based on amounts measured in rats at 2 d after exposure, to allow for clearance from the upper airways, and so probably underestimates even the initial alveolar deposit, since there would have been some absorption to blood by 2 d.) Americium-241 was absorbed from lungs to blood somewhat faster than 239Pu. At 7 d after exposure, lung retention of 239Pu (64% "ILD") was somewhat greater than that of 241Am (57% "ILD"). The Pu:Am ratio in lungs (normalised to that in the aerosol inhaled) increased steadily from 1.1 at 7 d, to 2.3 at 252 d. The estimated amount absorbed to blood was ~15% "ILD" for 239Pu, and ~18% "ILD" for 241Am at 7 d, and remained between 2 and 5% "ILD" higher for 241Am than for 239Pu throughout, suggesting that the greater absorption of 241Am occurred mainly within the first 7 d.
In separate studies, a research group at the Biology Department, Pacific Northwest Laboratory followed the biokinetics of 239Pu, 241Am, and 253Es after inhalation of the nitrates (in 0.27N nitric acid) by rats for 1000 d, 200 d and 100 d respectively, (Ballou et al., 1977; Ballou and Gies, 1978; Ballou et al., 1979; Fig. 18.2). In all three studies, the ILD was based on the estimated deposit in the lungs immediately after exposure.

Ballou et al. (1977) followed the distribution of 239Pu between lung, liver and skeleton after inhalation of the nitrates. They studied the effect of DTPA treatment and the long-term health effects. Lung retention decreased to 42% ILD at 30 d after inhalation, 14% ILD at 100 d and 0.04% ILD at 900 d. It was fit by a three-component exponential function with biological half-times (T_b) = 5 d (5% ILD), 35 d (30% ILD) and 155 d (10% ILD). At 30 d after inhalation by non-DTPA treated animals, 9% ILD had translocated to liver and skeleton. The retention in liver and skeleton then slowly decreased to 6% after 100 d and 0.7% at 900 d.

Ballou and Gies (1978) followed the clearance of 241Am from lung to liver, kidney and skeleton after inhalation of the nitrates. At 30 d post-inhalation 9% ILD was retained in lungs and 29% ILD had been transferred to skeleton and liver. After 100 d, 1.8% ILD was retained in lungs and 21% ILD was in skeleton and liver.

Ballou et al. (1979) studied the tissue distribution of 253Es after inhalation as the nitrate. Lung retention could be described by a two-component exponential function with T_b = 1.1 d (65% ILD) and 19.5 d (35% ILD). At 30 d post-inhalation, 14% ILD was retained in lungs while 47% had translocated to liver and skeleton. After 100 d, 1.8% ILD was retained in lungs and 38% ILD was in liver and skeleton.

The kinetics of lung retention over the first 100 d appears broadly similar for Es and Am nitrates while Pu nitrate is more strongly retained (Fig. 18.2a). The differences in clearance to blood appear clearly from the observation of systemic retention after inhalation of the nitrate: more than 20% ILD of Es or Am is retained in skeleton and liver after a month, while less than 10% ILD of Pu is translocated to those systemic tissues (Erreur ! Source du renvoi introuvable.b). Although the time-dependent distribution of the three elements is consistent with Type M behaviour, Pu is significantly less absorbed to blood than Am and Es. The transfer from lung to blood of Es appears somewhat higher than that of Am. Unfortunately, the lack of data after 100 - 200 d for Es and Am nitrates prevents comparison of the long term kinetics.

![Graph](a) Lung retention
Fig. 18.2. Comparison of biokinetics of actinides inhaled by rats as nitrates. Data (decay-corrected) normalised to estimated initial lung deposit (ILD) (a) Lung retention (b) Carcass retention: (∆) 239Pu – Ballou et al (1977); (♦) 241Am – Ballou and Gies (1978); (■) 253Es – Ballou et al (1979).

Ishigure et al. (2001) compared lung retention of plutonium (238/239/240Pu) and 241Am up to ~170 d following inhalation of plutonium nitrate containing 241Am by rats. The activity ratio of 241Am to plutonium in lungs, 0.024 ± 0.0004 : 1 at the exposure, slowly decreased to 0.021 (± 0.0005) : 1 at 4 weeks, and 0.020 (± 0.0004) : 1 at 24 weeks. Thus lung retention of 241Am was broadly similar to that of plutonium, although clearance of 241Am (presumably by absorption) was initially faster.

Nitrates: inhalation by dogs

Buldakov et al. (1972) compared the tissue distributions of 241Am and 239Pu at times up to about 400 d after inhalation by dogs of 241Am(NO3)3 and polymeric 239Pu(NO3)4, pH 1.5-2.0. Presumably the two radionuclides were inhaled by different dogs in order to study their effects. Lung retention of 239Pu was much greater than that of 241Am, e.g. ~80% and ~30% respectively of "initial deposit" at ~100 d after exposure. The authors noted that "The differences in the distribution of these alpha-emitters appear to be due to their physico-chemical properties". They consistently referred to the 239Pu(NO3)4 as "polymeric".

Conclusions

The conclusions from most studies in which radionuclides were administered separately are that americium, curium and einsteinium behave similarly, but plutonium is absorbed from the lungs more slowly than the transplutonium elements. In most studies in which plutonium and americium were administered together, their behaviour was similar, but, as suggested by the authors of some such studies, this might be a "carrier" effect of the americium following the greater mass of plutonium administered.

Estimates of rapid dissolution rates of higher actinides
Estimates of rapid dissolution rate were made for plutonium, americium, curium, californium and einsteinium. The information on which each was based and the estimated values are summarised here.

Plutonium

In seventeen *in vivo* studies of the biokinetics of inhaled soluble plutonium compounds (citrate and nitrate), sufficient early retention data were available to allow estimates of s_r to be made here.

Two human volunteers inhaled a mixed 237Pu/244Pu nitrate aerosol (Etherington et al., 2003). Measurements were made of 237Pu lung and liver retention by external counting up to about 4 months; and of 237Pu and/or 244Pu in blood and excreta for several years. A combined analysis for the two volunteers (Puncher and Etherington, 2016) gave $s_r = 0.4$ d$^{-1}$.

Brooks et al. (1992) followed the biokinetics of 239Pu for 8 years after inhalation of 239Pu nitrate by 20 cynomolgus monkeys. Tissue distributions of 239Pu were measured at 4 d, 1, 3, 6, 12, 24, 40, and 99 months. Analysis of the results here gave $s_r > 0.1$ d$^{-1}$.

Ballou et al. (1972) followed the biokinetics of 239Pu for 100 d after inhalation of 239Pu citrate by dogs. Tissue distributions were measured at 1, 3, 7, 14, 30, 62 and 100 d. Analysis of the results here gave $s_r = 0.5$ d$^{-1}$.

Bair (1970) followed the biokinetics of 239Pu for 300 d after inhalation of 239Pu nitrate by 15 dogs. Analysis here gave $s_r = 0.2$ d$^{-1}$. Dagle et al. (1983) followed the biokinetics of 238Pu or 239Pu for 1 year after inhalation of plutonium nitrate by dogs: 12 inhaled each isotope. Tissue distributions were measured at 3 d, 1, 3 and 12 months. Analysis of the results here gave $s_r = 0.3$ d$^{-1}$ for 238Pu, and $s_r = 0.14$ d$^{-1}$ for 239Pu.

Estimates of s_r made here from twelve inhalation studies in rats (Table 22.7) gave a wide range of values: from 0.2 to 12 d$^{-1}$. Some instillation studies, also included in Table 22.7, gave even higher values. Those with the earliest data show more than one phase of absorption over the first day or so, and that the rate decreases from ~100 d$^{-1}$ to <1 d$^{-1}$. The values derived from analysis assuming a constant rate and so fitting a single value of s_r therefore depend on the time pattern of measurements and their weighting.

The results of analyses performed here are summarised in Table 22.7. A default value of $s_r = 0.4$ d$^{-1}$, based principally on the human volunteer experiment, is adopted here for the default rapid dissolution rate of relatively soluble forms of plutonium.

Americium

In 15 studies of inhaled soluble compounds sufficient early retention data were available to allow estimates of s_r.

Breitenstein and Palmer (1989) and McInroy et al. (1995) reported the 11-year follow-up and autopsy measurements on a worker who received a combination of wound and inhalation exposures to 241Am in nitric acid. Interpretation of these data is further complicated by DTPA decorporation therapy. Analysis of the results here gave $s_r = 0.2$ d$^{-1}$.

Buldakov et al. (1972) followed the biokinetics of 241Am in dogs for two years after inhalation of the nitrate. Buldakov and Kalmykova (1979) studied the biokinetics of 241Am in dogs up to seven years after inhalation of the nitrate. Analysis here gave $s_r = 2.9$ and 0.2 d$^{-1}$, respectively.
The other 12 studies were carried out in rats, involving inhalation of the chloride, citrate or nitrate.

The results of analysis performed here are summarised in Table 23.4: Values of s_r were obtained ranging from 0.2 to 7.5 d^{-1} with a median of 1.3 d^{-1}.

Curium

In 14 relevant studies sufficient early retention data were available to allow estimates of s_r.

Bernard and Poston (1976) followed four workers who accidently inhaled 244Cm, by urine, feces and chest measurements for one or two weeks after intake. From the chest retention in one worker a value of $s_r = 0.3$ d^{-1} was estimated here. Parkinson et al. (1976) reported measurement on two workers up to one year after accidental inhalation of 244Cm. Analysis here of the early data from one case suggested $s_r = 0.15$ d^{-1}.

McClellan et al. (1972) followed the biokinetics of 244Cm in dogs for 256 d after inhalation of 244CmO$_{1.73}$ or 244CmCl$_3$ in a CsCl vector. Most of the curium was rapidly absorbed. Analysis here of both the oxide and chloride data gave $s_r = 0.4$ d^{-1}.

Guilmette and Kanapilly (1988) studied the tissue distribution of 244Cm in dogs for 2 years after inhalation of 244Cm$_2$O$_3$ and 244Cm(NO$_3$)$_3$ and observed broadly similar kinetics. Analysis here of the oxide and nitrate data gave $s_r = 0.1$ and 0.5 d^{-1}, respectively.

Seven studies were carried out in rats, involving inhalation of the citrate, nitrate or oxide: estimated values of s_r ranged from 0.15 to 10 d^{-1}.

The results of analyses here are summarised in Table 24.6: values of s_r range from 0.1 to 10 d^{-1} with a median of 0.4 d^{-1}.

Californium

In one study sufficient early retention data were available to allow an estimate of s_r.

Graham et al. (1978) followed the tissue distribution of 252Cf in rats for 32 d after intratracheal instillation of the chloride. Analysis here gave $s_r = 1$ d^{-1}.

Einsteinium

In one study sufficient early retention data were available to allow an estimate of s_r.

Ballou et al (1975) measured the tissue distribution of 253Es in rats for 42 d after intratracheal instillation of the chloride. Analysis here gave $s_r = 3$ d^{-1}.

Conclusions

For plutonium, the s_r value of 0.4 d^{-1} is based mainly on one high quality human volunteer experiment, and analysis gives a small uncertainty on the value. It is supported by the results on inhalation studies in primates and dogs, which give estimates of >0.1 d^{-1}, and 0.2, 0.3 and 0.5 d^{-1}, respectively. Results from twelve inhalation studies in rats (Table 22.7) gave a wide range of values: from 0.2 to 12 d^{-1}.

For the transplutonium elements, there is broad consistency in values around 1 d^{-1}, although considerable variation in the estimates based on rat studies. For both americium and curium the relevant data are reasonably consistent and comprehensive: there is at least one study in dogs and at least one accidental human intake, as well as several rat studies. There is as much information for each as for most other elements except plutonium and uranium. For
americium and curium, median s_r values are 1.0 d^{-1} and 0.4 d^{-1}, respectively. For californium and einsteinium there is only one rat study for each, but the results 1 d^{-1} and 3 d^{-1}, respectively, are consistent with those for americium and curium.

(490) Calculations were carried out here to provide information to guide the choice between a value of s_r of 0.4 d^{-1}, based mainly on the plutonium human volunteer study, and a 'rounded' value of 1.0 d^{-1} reflecting the results for the transplutonium elements. They showed that for inhalation of 239Pu nitrate, values of 0.4 d^{-1} and 1.0 d^{-1} gave very similar dose coefficients. However, a value of 0.4 d^{-1} gives a dose per Bq measured in urine on the first day after intake about twice that given by a value of 1 d^{-1}. Although this is offset by lower doses per Bq in urine at later times (Fig 22.1), because of the importance of the first day's urine sample in individual monitoring, the more precise value of 0.4 d^{-1} and is adopted here and applied to plutonium and the transplutonium elements.

Estimates of bound state parameter values for higher actinides

(491) Estimates of bound state parameter values: bound fraction (f_b) and associated uptake rate to blood (s_b) were made for plutonium, americium and curium. The information on which each was based, and the estimated values, are summarised here.

Plutonium

(492) Early applications of the HRTM to plutonium nitrate made use of a short-term bound state (e.g. ICRP, 2002) which enabled good fits to be made to the early experimental data (see comments above on observations in rat studies of plutonium dissolution rates decreasing with time). However, including this short-term bound state had little effect on lung doses. More recent studies indicate the presence of a small, but very long-term, bound state, which could potentially increase equivalent doses to the lungs significantly, particularly if it occurs in the bronchial (BB) and bronchiolar (bb) regions. Three studies investigated a long-term bound state for inhaled plutonium.

(493) Pellow et al. (2016b) and Puncher et al. (2016a) analysed lung retention data from a 15-year study in which dogs inhaled 239Pu nitrate (Dagle et al., 1993). The central estimate of the bound fraction f_b was 0.0023 (95% confidence interval (CI) = 6 x 10$^{-4}$ to 0.007). The associated uptake rate to blood (s_b) was <10$^{-5}$ d^{-1} and was assigned a value of 0 d^{-1}. This study is considered to provide strong evidence for the existence of a long-term retained component in the respiratory tract, for which the bound state provides the simplest explanation.

(494) Puncher et al. (2016b) analysed the autopsy and bioassay data of United States Transuranium and Uranium Registries (USTUR) donor 269, who received a high acute intake of plutonium nitrate by inhalation. They used the results of recent measurements (Tolmachev et al., 2016) on plutonium in the extra-thoracic (ET$_2$), BB, bb and alveolar-interstitial regions and in the thoracic lymph nodes. The results indicate that a small bound fraction is required, mainly to account for plutonium present in the ET$_2$, BB and bb regions at autopsy. However, it is not known whether the plutonium present in these tissues was associated with the epithelium, as assumed in the dosimetric model for the bound fraction, or in underlying tissues, such as lymphatic channels. The conservative assumption is made here that the plutonium is retained in the epithelium. The value of f_b was determined as 0.0037 (95% CI = 0.0037 to 0.0039). There was no evidence for an s_b value other than 0 d^{-1}.

(495) Puncher et al. (2016c) analysed autopsy data from 20 former workers of the Mayak Production Association (MPA) exposed only to plutonium nitrates. Given the evidence for a
long-term bound state provided by the two studies above, these analyses assumed that a bound state is present. The value of \(f_b \) was determined as 0.0014 (95% CI = \(1.1 \times 10^{-4} \) to 0.003). There was no evidence for an \(s_b \) value other than 0 \(d^{-1} \).

The information provided by the three studies therefore indicates a value for \(f_b \) for plutonium of about 0.002, with \(s_b = 0 \, d^{-1} \). The autopsy measurements of plutonium for USTUR donor 269 indicate that the bound fraction should apply in all respiratory tract regions except ET. This small long-term bound state results in an additional contribution to the committed equivalent dose coefficient for the lungs from inhaled \(^{239} \text{Pu} \) nitrate of about 20%.

Americium

Mewhinney et al. (1978, 1982) and Mewhinney and Griffith (1983) studied the tissue distribution of \(^{241} \text{Am} \) in dogs for six years after inhalation of monodisperse (3.0 µm, 1.5 µm and 0.75 µm AMAD) and polydisperse (1.8 µm AMAD) \(^{241} \text{AmO}_2 \) aerosols. They noted the long-term pulmonary retention of ~1% of the initial lung deposit (ILD). The effective retention half-time (~5000 d) for this fraction was longer than expected for clearance of insoluble particles. Autoradiography showed that as time progressed, fewer particles, but more single tracks, were found in the lungs as the \(\text{AmO}_2 \) dissolved. Particles could no longer be found when the activity retained in lung stabilised. Only single tracks, which were primarily associated with parenchymal interstitium, remained. The value of \(f_b \) was estimated here to be 0.015 with \(s_b \sim 10^{-4} \, d^{-1} \).

Taya et al. (1994) observed that americium retained for a long time in the dog lung after inhalation of americium nitrate was associated with connective tissues. Thomas et al. (1972) followed the biokinetics of \(^{241} \text{Am} \) in dogs for two years after inhalation of an aerosol formed by passing droplets of \(^{241} \text{Am} \) in hydrochloric and oxalic acids through a heating column at 600°C. They observed long-term retention of about 1.5% ILD. Jeanmaire and Ballada (1970) measured \(^{241} \text{Am} \) in lungs and excreta of two persons for more than 200 d following accidental inhalation of a soluble salt of americium. Analysis of results here gave \(f_b = 0.02 \) and 0.03 for the two cases.

Thus there is good evidence, from both biokinetics and autoradiography, for a bound fraction for americium, with parameter values assessed to be \(f_b = 0.01 \) and \(s_b = 10^{-4} \, d^{-1} \). Information was not found that might give evidence for a fraction similar to that for plutonium, with much slower uptake. There is no evidence of long-term retention of americium deposited in relatively soluble form in the ET, BB or bb regions. This small long-term bound state results in an additional contribution to the committed equivalent dose coefficient for the lungs from inhaled \(^{241} \text{Am} \) nitrate of about 25%.

Curium

Studies of curium deposited in the respiratory tract in most chemical forms showed rapid or moderately rapid absorption of most of the ILD. However, the studies of longer duration (>250 d) all show lung retention of small amounts: 0.3 – 4% ILD.

McClellan et al. (1972) followed the biokinetics of \(^{244} \text{Cm} \) in dogs for 256 d after inhalation of \(^{244} \text{CmO}_{1.73} \) or \(^{244} \text{CmCl}_3 \) in a CsCl vector. Most of the curium was rapidly
absorbed, but ~3% ILD was retained in lungs at 256 d. Analysis here of both the oxide and chloride data gave \(f_b = 0.025 \).

Similarly, Guilmette and Kanapilly (1988) followed the tissue distribution of \(^{244}\text{Cm}\) in dogs for 2 years after inhalation of \(^{244}\text{Cm}_2\text{O}_3\) and \(^{244}\text{Cm}(\text{NO}_3)_3\) and observed broadly similar kinetics, with ~2% ILD present after 2 years.

Sanders and Mahaffey (1978) followed the tissue distribution of \(^{244}\text{Cm}\) in 5 groups of rats for 900 d after inhalation of \(^{244}\text{Cm}\) oxide. While most of the \(^{244}\text{Cm}\) cleared from the lung rapidly, ~2% was retained with a half-life of about 1 year. Analysis here of the data for four groups gave values of \(f_b \) between 0.01 and 0.06.

Lundgren et al. (1997) followed the tissue distribution of \(^{244}\text{Cm}\) in rats for 1200 d after inhalation of \(^{244}\text{Cm}\) oxide. They observed that ~0.3% ILD was retained with a half-time >1000 d (rate <2 x 10^{-4} d^{-1}), and considered that it was probably dissolved curium bound to connective tissue in the lungs. Analysis here of the data gave \(f_b = 0.1 \).

Lafuma et al. (1974) concluded from autoradiographic studies that Cm nitrate was widely dispersed in the rat lung at 20 d post-exposure, generating mostly single α tracks and very few particle-like clusters. Sanders and Mahaffey (1978) came to the same conclusion from autoradiographs of rat lung taken immediately after inhalation exposure, and up to 2 years later.

Based on these considerations, the bound fraction for curium is assessed to be \(f_b = 0.02 \). There is no information to determine a non-zero clearance rate of the bound fraction.

Conclusions

For plutonium, three very different studies of long-term lung retention following inhalation of plutonium nitrate gave similar estimates of bound state parameter values: a lifetime dose-response study in dogs; an autopsy study on a large group of workers with multiple exposures and few bioassay data; and a more detailed autopsy study on a single worker with extensive bioassay data. The information provided by the three studies indicates a value for \(f_b \) of ~0.002. The associated uptake rate to blood (\(s_b \)) was estimated to be <10^{-5} d^{-1} and consistent with a value of 0 d^{-1}. Autopsy measurements on a single USTUR donor indicate that the bound fraction should apply in all respiratory tract regions except ET_1.

For americium there is strong evidence for a bound fraction, from both biokinetics and autoradiography. Parameter values were assessed here to be \(f_b = 0.01 \) and \(s_b = 10^{-4} \text{ d}^{-1} \), with reasonably consistent estimates from studies on man, dogs, and rats, and following inhalation of different chemical forms. There is no evidence of long-term retention of americium deposited in relatively soluble form in the ET, BB or bb regions. The information is probably as good as that on which bound state parameter values were estimated for any other element. The values of both \(f_b \) and \(s_b \) are higher than those estimated for plutonium.

For curium there is also good evidence for a bound fraction, from both biokinetics and autoradiography: not as comprehensive as for americium, but from a similar range of studies. The bound fraction was assessed here to be \(f_b = 0.02 \), similar to that for americium. The uptake rate \(s_b \) was not well defined: one study giving a value of ~10^{-3} d^{-1}, and another <10^{-4} d^{-1}. There is no evidence of long-term retention of curium deposited in relatively soluble form in the ET, BB or bb regions.
There is experimental evidence on americium and curium for a higher bound fraction, f_b, and higher rate of uptake from bound state to blood, s_b, than for plutonium (but no evidence to exclude another bound fraction with parameter values similar to those of plutonium). There is evidence for plutonium that the bound fraction should apply in the BB and bb regions, but no evidence for americium and curium to confirm or exclude application of the bound fraction in these regions. It has been calculated here that for 239Pu nitrate application of the plutonium bound state parameter values increases the equivalent dose to the lungs by ~20%, for 241Am nitrate application of the americium bound state parameter values also increases the equivalent dose to the lungs by ~20%, and for 244Cm nitrate application of the curium bound state parameter values nearly doubles the equivalent dose to the lungs.

As for the rapid dissolution rate, the plutonium bound state parameter values are applied here to the transplutonium elements, because they are based more on human data than those derived for americium and curium. Thus it assumed here that for plutonium and the transplutonium elements a bound fraction $f_b = 0.002$ and a rate of uptake $s_b = 0 \text{ d}^{-1}$, are applied throughout the respiratory tract except in the ET$_1$ region.

18.2.2. Ingestion

Data on human gastrointestinal absorption of uranium, neptunium, plutonium, americium and curium are now available from volunteer experiments. These data are complemented by extensive information from studies in laboratory animals. Data for various studies on absorption of plutonium and heavier elements in nine different animal studies have been reviewed in ICRP Publication 48 (ICRP, 1986). Additional data were then reported and analysed by Harrison (Harrison, 1991) and in ICRP Publications 68 (ICRP, 1994) and 100 (ICRP, 2006).

All these studies have shown that the absorption of actinides can be markedly influenced by fasting, diet, mass, chemical form of the ingested element and by drugs and diseases (NEA, 1988). These studies have also shown that quite large variations from individual to individual may occur for some elements.

The difficulties of assessing very low levels of absorption from the gastrointestinal tract and the need for very careful control of the experimental conditions used has been emphasised by several authors (Larsen et al., 1981; Harrison et al., 1982). Wide variations in the absorption of plutonium after ingestion of the same compound have been reported, indicating that the actual chemical and/or physiological conditions in the alimentary tract at the time of absorption probably varied considerably. These large variations may be due to differences in the true chemical composition of the solutions administered. For example, the actinide concentration, the pH and the presence of inorganic or organic complexing anions would have influenced the proportions of soluble and colloidal or particulate species, especially in solutions of plutonium in dilute nitric acid. The presence of food residue in the alimentary tract may also influence absorption and it is not always stated whether the values reported were measured in fed or fasting animals.

Table 18.5. reports the range of measured values for the fractional absorption of the actinides. It shows that, depending on the chemical form, the species and the experimental conditions, and apart for uranium, the absorption ranges from about 10^{-8} for insoluble forms of plutonium to about 10^{-2} for soluble, inorganic forms of neptunium and protactinium. The human data included in this table show a close similarity in the absorption of thorium, neptunium, plutonium, americium and curium, despite the differences in the chemical form
ingested, with mean f_A values of 1×10^{-4} to 2×10^{-4} (Harrison, 1991). These elements also show a remarkable similarity in their reactions with constituents of body fluids and cells, despite differences in solution chemistry (See Section 18.1).

(520) The gastrointestinal absorption of uranium is substantially greater than that of the other actinides, with f_A values ranging from 5×10^{-3} to 6×10^{-2} (Table 18.5). This is consistent with its different solution chemistry, the oxycation UO_2^{2+} being more resistant to hydrolysis at neutral pH than the predominant oxidation states of the other actinides.

(521) On the basis of results showing similar low levels of absorption in man for five actinide elements and taking account of animal data showing variations in f_A values resulting from differences in chemical forms, it is considered here that an appropriate general f_A value for all chemical forms of actinides except uranium is 5×10^{-4}. This value is adopted in this report.

Table 18.5. Range of fractional absorption f_A reported for the actinides\(^a\).

<table>
<thead>
<tr>
<th>Actinides</th>
<th>f_A(^b)</th>
<th>ICRP recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actinium</td>
<td>1×10^{-3}</td>
<td>5×10^{-4}</td>
</tr>
<tr>
<td>Thorium(^c)</td>
<td>2×10^{-4} to 6×10^{-4}</td>
<td></td>
</tr>
<tr>
<td>Protactinium</td>
<td>3×10^{-4} to 4×10^{-2}</td>
<td></td>
</tr>
<tr>
<td>Uranium(^c)</td>
<td>5×10^{-3} to 6×10^{-2}</td>
<td>0.02 (F) to 0.002 (M and S)</td>
</tr>
<tr>
<td>Neptunium</td>
<td>1×10^{-4} to 1×10^{-2}</td>
<td>5×10^{-4}</td>
</tr>
<tr>
<td>Plutonium</td>
<td>3×10^{-8} to 1×10^{-3}</td>
<td></td>
</tr>
<tr>
<td>Americium</td>
<td>3×10^{-6} to 1×10^{-3}</td>
<td></td>
</tr>
<tr>
<td>Curium</td>
<td>1×10^{-4} to 1.2×10^{-3}</td>
<td></td>
</tr>
<tr>
<td>Berkelium to Fermium</td>
<td>1×10^{-4} to 1.2×10^{-3}</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)Data reported for in vivo experiments performed on adult animals or humans, given the radionuclide in an inorganic form.

\(^b\)For details, see the individual element sections in the current report.

\(^c\)This element is described in OIR Part 3.

18.2.3. Systemic distribution, retention and excretion of actinide elements

General features of systemic behavior

(522) The systemic behaviors of all elements in the actinide sequence Ac-Es (atomic numbers 89-99) have been studied in mammalian species, and biokinetic data for several actinides have been derived from controlled human studies or follow-up of occupational intakes. With the exception of uranium (addressed in Part 3 of this report series), the systemic behaviors of the studied actinides follow the same general pattern as described earlier for the lanthanide family. The main sites of deposition of absorbed or injected activity are bone surfaces and liver, and the bone surface deposit is tenaciously retained until removed by bone restructuring processes. Activity removed from bone surfaces may be buried in bone volume or may transfer to blood after deposition and retention in bone marrow or, to some extent, may transfer directly to blood without uptake and retention in bone marrow. The behavior of actinide elements deposited in the liver is species dependent. For example, the residence time of Pu in
liver is at most a few months in rats, monkeys, and baboons but is measured in years or decades in hamsters, dogs, pigs, and humans (Taylor, 1984). The residence time in the human liver varies across the actinide family. For example, it is considerably longer for Pu than for Am.

Burial of the skeletal deposition of actinides in bone volume may result by different mechanisms associated with the bone remodeling process. Activity depositing at bone remodelling units, either in the formation period or in the transitional period between resorption and formation, may be buried relatively quickly. Much slower burial of surface activity may result from a process referred to as local recycling, in which a portion of the surface activity removed by osteoclasts during bone remodelling is redeposited at closely adjacent sites of new bone formation without reentering the general circulation. Burial of surface deposits may also occur as a result of bone drift, a phenomenon in which new bone is deposited on previously formed bone without any prior resorption process. Bone drift occurs on a larger scale in immature bone than in mature bone, but drift within bones and expansion of bone volume via periostial-endosteal drift continues throughout life in humans (Epker and Frost, 1965a,b; Frost 1986; Priest et al., 1992). Drifting osteons are observed at all ages within human cortical bone.

Activity buried in bone volume is gradually transferred back to blood, either directly or after deposition and retention in bone marrow. Activity is lost from bone marrow to blood over a period of months and presumably is subsequently redistributed in the same pattern as the original input to blood. The rates of transfer from cortical and trabecular bone compartments to all destinations are expected to reflect the turnover rate of cortical and trabecular bone.

The initial distribution of activity on bone surfaces varies across the actinide family. Results of early autoradiographic studies on rodents (Hamilton, 1948) indicated that the sites of deposition on bone surfaces are similar for Am, Cm, and Ac but that the surface distribution of these elements differed from that of Pu. Later studies involving refined techniques and various animal species yielded relatively detailed descriptions of the distribution of some actinide elements, particularly Pu and Am, on bone surfaces (Herring, 1962; Lloyd et al., 1972; Durbin, 1973; Priest et al., 1983). Pu deposits mainly on endosteal surfaces, especially the surfaces of the trabeculae of spongy bone near the sinusoidal circulation of active marrow (Durbin, 2011). Deposition of Am on bone surfaces is much more uniform than that of Pu, although there are also gradations in the intensity of the Am label. Americium deposits to a much greater extent than Pu on cortical vascular channels. Pu and Am depositions are similar in that the initial concentrations are greater on resorbing and resting surfaces than on actively growing surfaces.

There is no initial diffuse distribution of either Pu or Am in bone volume (Durbin, 2011).

As is the case for the lanthanides, the initial division of injected or absorbed activity between bone and liver varies across the actinide family. For the lanthanide elements, all of which are expected to be present in body fluids as trivalent ions, results of animal studies indicate a strong relation between the ionic radius and the ratio bone deposit : liver deposit. The systemic behaviour of the actinides is much less regular than that of the lanthanides and not easily described in terms of physical or chemical properties. This is due in part to the different primary oxidation states of different actinides, ranging from trivalent to pentavalent. However, a relation between ionic radius and bone deposit : liver deposit similar to that for the lanthanides is suggested by data for the heaviest actinides, Am through Es, which are expected to be present in body fluids as trivalent ions.

Model structures for the actinides
The structure of the systemic models for actinides other than Pu is shown in Fig. 18.3. All indicated paths of transfer are assigned non-zero transfers for each element, except that: the transfer from Liver 1 to Blood is non-zero only for Th (addressed in an earlier part of this report series) and Pa; and the transfer from Cortical marrow to Cortical surface is non-zero only for Am and Cm.

Fig. 18.3. Model structure for the actinide elements addressed in this report other than Pu.

The structure of the systemic model for Pu is shown in Fig. 18.4.

Fig. 18.4. Structure of the model for systemic Pu used in this report.
Primary considerations for modelling the behaviour of individual actinides

Biokinetic data for each actinide element addressed in this report are reviewed in the sections 19.2.3 (Actinium) to 28.2.3 (Fermium). The following paragraphs summarise the main considerations in selection or construction of a systemic model for each element in view of the quantity and quality of available data.

Actinium

The biokinetics of Ac has been studied in rats and accidentally exposed workers. The data are too sparse to allow development of transfer coefficients for most pathways in the generic model structure but suggest that the systemic behaviour of Ac is similar to that of Am. The systemic model applied in this report to Ac is a slightly modified version of the model applied here to Am. The only difference in the models for Ac and Am is that a non-zero transfer from cortical marrow to cortical bone surface in the Am model is not applied to Ac. Rather, Ac depositing in cortical marrow is assumed to transfer to blood with a half-time of 0.25 y, consistent with the generic model for bone-surface-seeking radionuclides.

Thorium

Thorium is addressed in an earlier part of this report series. It is discussed briefly in this section for completeness in that its systemic behaviour fits the same pattern as the elements addressed here, and the systemic model developed for Th is applied to its infrequently studied periodic neighbour, protactinium.

Protactinium

The systemic behaviour of Pa has been studied mainly in rats and baboons, and limited information is available from follow-up of an occupational exposure. The Pa-specific information is too sparse to allow development of most transfer coefficients within the generic model structure for actinides but suggest that the systemic behaviour of Pa is similar to that of Th. In this report the systemic model for Th described in an earlier part of this report series is applied to Pa.

Neptunium

The systemic model for Np used in ICRP Publication 67 (1993) is applied in the present report. The model is based on data on the distribution and excretion of Np in non-human primates, swine, and rodents; urinary excretion rates for intravenously administered Np
in healthy human subjects; and analogy with other actinides. Long-term retention of Np in the liver is based on animal data together with comparative autopsy data on 237Np and 239Pu in environmentally exposed humans.

Plutonium

The ICRP’s model for systemic Pu was last updated in ICRP Publication 67 (1993). That model was based on several different data sources including: bioassay data and autopsy measurements for occupational exposed subjects; extensive measurements on 18 unhealthy subjects who were injected with tracer amounts of 239Pu in biokinetic studies conducted in the mid-1940s; a more limited set of data from a controlled Pu injection study started a few years before the completion of Publication 67; and results of many studies of Pu kinetics in a variety of laboratory animals.

The Pu model of Publication 67 was updated several years later (Leggett et al., 2005) to reflect a substantially expanded database, particularly data from two Pu injection studies involving healthy human subjects and considerably expanded sets of bioassay and autopsy data for Pu workers. The most important change from the model of Publication 67 concerns the initial distribution of absorbed or injected Pu: Publication 67 assigns deposition fractions of 0.5 and 0.3 to bone and liver, respectively, while the updated model assigns fractions 0.3 and 0.6, respectively, based on the later human injection studies together with central tendencies indicated by autopsy data for Pu workers whose body burdens represented a wide range of times since exposure.

A systemic model for Pu proposed by Leggett et al. (2005) is used in this report. The following paragraphs summarise the Pu model used here and indicate similarities and differences from the model of Publication 67.

Circulation:

As in Publication 67, circulating Pu is defined as Pu in blood plus rapid-turnover soft tissues (ST0 in Fig. 2). Blood consists of two compartments, Blood 1 and Blood 2. Blood 2 receives recycled Pu and feeds ST0, Blood 1, and the urinary bladder contents. This provides a physically meaningful way of implementing the assumption, based on results of human injection studies, that fractional clearance from blood to urine increases for some time after the initial entry of Pu into blood. Specifically, it is assumed that:

- The initial input to blood distributes rapidly (half-time of 1 min) between a blood compartment called Blood 1 (70%) and a soft tissue compartment called ST0 (30%)Pu leaves Blood 1 with a half-time of 0.9 d. Soft tissue compartment ST0 empties into Blood 1 with a half-time of 7 d. All other feeds from tissues back to blood are to Blood 2. Pu is removed from Blood 2 at the rate 100 d^{-1} ($T_{1/2} \sim 10$ min), with 3.5% going to the urinary bladder contents, $0.3 \times (100-3.5\%) = 28.95\%$ going to ST0, and $0.7 \times (100-3.5\%) = 67.55\%$ going to Blood 1. In effect, the portion of activity leaving Blood 2 that does not go directly to the urinary bladder contents is assumed to distribute in the same way as the original input to blood.

Liver and fecal excretion:

Rapid, intermediate, and slow phases of removal from the liver are depicted. Plutonium moves from Blood 1 to the rapid-turnover compartment Liver 0. Some Pu entering Liver 0 is lost in bile, but most moves to a compartment within the hepatocytes with
intermediate-term retention (Liver 1). Most of the activity lost from Liver 1 goes to Blood 2, but a portion enters reticuloendothelial cells (Liver 2), from which it is slowly lost to Blood 2. It is assumed that:

- 60% of activity leaving the circulation goes to Liver 0.
- The removal half-time from Liver 0 is 15 d; 2% goes to the contents of the small intestine and 98% to Liver 1.
- The removal half-time from Liver 1 is 1 year; 80% goes to Blood 2 and 20% to Liver 2.
- The removal half-time from Liver 2 to Blood 2 is 15 years.
- 1.5% of Pu leaving the circulation goes to the contents of the upper large intestine.

Bone:

It is assumed that:

- 30% of Pu leaving circulation deposits in bone; 18% goes to trabecular bone and 12% to cortical bone.
- 90% of the trabecular deposit and 95% of the cortical deposit is on bone surface, with the remainder entering bone volume by depositing in bone-forming sites.
- Transfer from cortical bone surface or volume to cortical marrow is 3% per year.
- Transfer from trabecular bone surface or volume to red marrow is 18% per year.
- The burial rate of surface Pu is 0.75% per year for cortical bone surface and 4.5% for trabecular bone surface (one-fourth the rate of bone remodeling).
- The removal half-time from bone marrow to Blood 2 is 0.25 y.

Kidneys and urinary excretion:

The model of *Publication 67* includes a transfer from the intermediate-term soft-tissue compartment, ST1, to the urinary path. This transfer was used to model an increase with time in daily urinary clearance of circulating Pu, as observed in human injection studies. In the present model a blood compartment called Blood 2 is used to model a change with time in urinary clearance of circulating Pu. Plutonium that returns to blood from all systemic compartments except the rapid-turnover soft-tissue compartment ST0 is assumed to be cleared to the urinary bladder content at a higher rate than was the initial input of Pu to blood. It is assumed that:

- 2% of Pu leaving Blood 1 goes directly to the urinary bladder contents.
- 1% of Pu leaving Blood 1 goes to kidneys (Renal tubules in Fig. 18.4) and is removed to the bladder contents with $T_{1/2} = 40$ d.
- 0.05% of Pu leaving Blood 1 goes to a long-term kidney compartment (Other kidney) from which it is removed to Blood 2 with a half-time of 15 y.

As described earlier, 3.5% of Pu leaving Blood 2 (recycled Pu) goes directly to urinary bladder contents. Blood 2 also feeds the urinary bladder contents indirectly, since most of the activity leaving Blood 2 goes to Blood 1.

Gonads:

Deposition fractions for the testes and ovaries are the same as used in the Pu model of *Publication 67*, but the removal half-time from gonads is reduced from 10 y to 5 y based on...
comparisons of model predictions with updated information for workers and laboratory animals:

- 0.035% of Pu leaving the circulation deposits in the testes.
- 0.011% of Pu leaving the circulation deposits in the ovaries.
- The removal half-time from gonads to Blood 2 is 5 years.

Other soft tissues:

Parameter values for ST0 were given earlier. For ST1 and ST2 it is assumed that:

- 3% of Pu leaving the circulation goes to ST2.
- The removal half-time from ST2 to Blood 2 is 15 y.
- The balance of Pu leaving the circulation (2.404%, after assignment of all other deposition fractions) goes to ST1.
- The removal half-time from ST1 to Blood 2 is 500 d.

Transfer coefficients for Pu derived from the assumed deposition fractions and removal half-times are listed in Table 18.6.

Table 18.6. Transfer coefficients in the model for systemic Pu.

<table>
<thead>
<tr>
<th>Source</th>
<th>Destination</th>
<th>Transfer coefficient (d^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood</td>
<td>ST0</td>
<td>3.0000x10²</td>
</tr>
<tr>
<td>Blood</td>
<td>Blood 1</td>
<td>7.0000x10²</td>
</tr>
<tr>
<td>Blood 1</td>
<td>Liver 0</td>
<td>4.6200x10⁻¹</td>
</tr>
<tr>
<td>Blood 1</td>
<td>Cortical surface</td>
<td>8.7780x10⁻²</td>
</tr>
<tr>
<td>Blood 1</td>
<td>Cortical volume</td>
<td>4.6200x10⁻³</td>
</tr>
<tr>
<td>Blood 1</td>
<td>Trabecular surface</td>
<td>1.2474x10⁻¹</td>
</tr>
<tr>
<td>Blood 1</td>
<td>Trabecular volume</td>
<td>1.3860x10⁻²</td>
</tr>
<tr>
<td>Blood 1</td>
<td>Urinary bladder contents</td>
<td>1.5400x10⁻²</td>
</tr>
<tr>
<td>Blood 1</td>
<td>Renal tubules</td>
<td>7.7000x10⁻³</td>
</tr>
<tr>
<td>Blood 1</td>
<td>Other kidney</td>
<td>3.8500x10⁻⁴</td>
</tr>
<tr>
<td>Blood 1</td>
<td>Right colon contents</td>
<td>1.1550x10⁻²</td>
</tr>
<tr>
<td>Blood 1</td>
<td>Testes</td>
<td>2.6950x10⁻⁴</td>
</tr>
<tr>
<td>Blood 1</td>
<td>Ovaries</td>
<td>0.8470x10⁻⁴</td>
</tr>
<tr>
<td>Blood 1</td>
<td>ST1</td>
<td>1.8511x10⁻²</td>
</tr>
<tr>
<td>Blood 1</td>
<td>ST2</td>
<td>2.3100x10⁻²</td>
</tr>
<tr>
<td>ST0</td>
<td>Blood 1</td>
<td>9.9000x10⁻²</td>
</tr>
<tr>
<td>Blood 2</td>
<td>Urinary bladder contents</td>
<td>3.5000x10⁰</td>
</tr>
<tr>
<td>Blood 2</td>
<td>Blood 1</td>
<td>6.7550x10¹</td>
</tr>
<tr>
<td>Blood 2</td>
<td>ST0</td>
<td>2.8950x10¹</td>
</tr>
<tr>
<td>Renal tubules</td>
<td>Urinary bladder contents</td>
<td>1.7329x10⁻²</td>
</tr>
<tr>
<td>Other kidney</td>
<td>Blood 2</td>
<td>1.2660x10⁻⁴</td>
</tr>
<tr>
<td>ST1</td>
<td>Blood 2</td>
<td>1.3860x10⁻³</td>
</tr>
<tr>
<td>ST2</td>
<td>Blood 2</td>
<td>1.2660x10⁻⁴</td>
</tr>
<tr>
<td>Liver 0</td>
<td>Small intestine contents</td>
<td>9.2420x10⁻⁴</td>
</tr>
<tr>
<td>Liver 0</td>
<td>Liver 1</td>
<td>4.5286x10⁻²</td>
</tr>
<tr>
<td>Liver 1</td>
<td>Blood 2</td>
<td>1.5200x10⁻⁵</td>
</tr>
<tr>
<td>Liver 1</td>
<td>Liver 2</td>
<td>3.8000x10⁻⁴</td>
</tr>
</tbody>
</table>
Liver 2 | Blood 2 | 1.2660x10^{-4} \\
Testes | Blood 2 | 3.8000x10^{-4} \\
Ovaries | Blood 2 | 3.8000x10^{-4} \\
Cortical surface | Cortical marrow | 8.2100x10^{-5} \\
Cortical surface | Cortical volume | 2.0500x10^{-5} \\
Cortical volume | Cortical surface | 8.2100x10^{-5} \\
Trabecular surface | Trabecular marrow | 4.9300x10^{-4} \\
Trabecular surface | Trabecular volume | 1.2300x10^{-4} \\
Trabecular volume | Trabecular marrow | 4.9300x10^{-4} \\
Cortical marrow | Blood 2 | 7.6000x10^{-3} \\
Trabecular marrow | Blood 2 | 7.6000x10^{-3} \\

*aThe initial input to blood via absorption or injection is assumed to enter the compartment named Blood and then distribute rapidly (half-time of 1 min) between Blood 1 (70%) and ST0 (30%).

Americium

The biokinetic model for systemic Am is a modification of the model for Am in adults adopted in *Publication 67* (ICRP, 1993). That model was based on follow-up of workers acutely or chronically exposed to Am and experimental data for a variety of animal types including baboons, monkeys, dogs, sheep, cows, goats, and rodents.

The following changes are made to the Am model used in *Publication 67*:

- For consistency with models for other actinide elements, liver is divided into compartments with relatively fast and relatively slow turnover. The biological half-time assigned to the fast-turnover compartment is the generic value of 30 d (Liver 1). A removal half-time of 1 y, the half-time applied in Publication 67 to the single-compartment liver, is applied to the compartment with slow turnover (Liver 2).

- The removal half-time from gonads is reduced from 10 y to 5 y, a generic value applied in this report to the actinides and lanthanides.

- The generic bone model is modified for application to Am (and its close physiological analogue Cm) in view of data indicating that the model of *Publication 67* overestimates the rate of excretion of systemic 241Am when expressed as a fraction of the total bone content. A simple resolution of this discrepancy between model predictions and observations that has some experimental basis is to depict explicitly local recycling of a sizable portion of Am resorbed from cortical bone. This requires a modification of the generic bone model for bone-surface seekers. In the generic model, activity removed from bone is assumed to transfer to bone marrow and subsequently from bone marrow to blood. For application to Am and Cm, the generic bone model is modified by assuming that a fraction F of the amount entering cortical marrow subsequently transfers to cortical surface (local recycling), and the fraction $1-F$ transfers to blood. The removal half-time from cortical marrow to all destinations remains at the generic value of 0.25 y. A local recycling fraction $F = 2/3$ is selected for reasonable consistency with reported data on the long-term relation of 241Am in bone and urinary 241Am, taking account of uncertainties in the reported data.

Curium

155
The systemic behaviour of Cm is reasonably well characterised from biokinetic studies on a variety of laboratory animals including dogs, non-human primates, and rodents; measurements of urinary excretion of intravenously administered Cm in healthy human subjects; and follow-up of a few workers following accidental exposure to Cm. Comparative biokinetic data for Am and Cm in laboratory animals indicate that these chemically similar elements are also close physiological analogues. In this report, the systemic biokinetic model adopted for Am is also applied to Cm.

Berkelium, Californium, Einsteinium, Fermium

Information on the systemic biokinetics of Bk, Cf, and Es comes mainly from studies on rodents and dogs. Comparisons of systemic data for these elements and Am suggests a relation between ionic radius and the relative amounts transferred to bone, liver, and urine similar to the relation observed for the lanthanides. That is, initial deposition in bone tends to increase, deposition in liver tends to decrease, and the early urinary excretion rate tends to increase with decreasing ionic radius. This apparent pattern is used together with available element-specific data to develop transfer coefficients describing the expected distribution and excretion of these three elements following uptake to blood, with the parameter values for Am used as a point of departure. The systemic model for Es is assigned to fermium, for which no biokinetic data were found.

Summary of parameter values for actinides addressed in this report, other than Pu

Generic parameter values

The follow generic parameter values are applied to Ac, Pa, Np, Am, Cm, Bk, Cf, Es, and Fm:

- Percentage of outflow from blood going to rapid-turnover soft tissue (ST0): 30%
- Deposition fractions (% of activity leaving the circulation, defined as blood plus ST0):
 - ST2 (soft tissues with tenacious retention): 2%
 - Testes: 0.035%
 - Ovaries: 0.011%
- Removal half-time from:
 - Liver 1 (to SI content + Liver 2): 30 d (excluding Pa)
 - Bone marrow compartments: 0.25 y
 - Gonads to blood: 5 y
- Fractional transfer from:
 - Trabecular surface to trabecular volume, 0.09 y⁻¹
 - Cortical surface to cortical volume, 0.015 y⁻¹
 - Trabecular surface to trabecular marrow, 0.18 y⁻¹
 - Cortical surface to cortical marrow, 0.03 y⁻¹
 - Trabecular volume to trabecular marrow, 0.18 y⁻¹
 - Cortical volume to cortical marrow, 0.03 y⁻¹
 - Trabecular or cortical marrow to blood, 2.77 y⁻¹

Non-generic deposition fractions and removal half-times for the actinides elements other than Pu addressed in this report are listed in
Table 18.7. and Table 18.8., respectively. Transfer coefficients derived from these values and the generic parameter values are listed in Table 18.9.
Table 18.7. Non-generic deposition fractions for actinide elements.

<table>
<thead>
<tr>
<th>Destination</th>
<th>Ac</th>
<th>Pa, Th<sup>a</sup></th>
<th>Np</th>
<th>Am, Cm</th>
<th>Bk</th>
<th>Cf</th>
<th>Es, Fm</th>
</tr>
</thead>
<tbody>
<tr>
<td>UB contents</td>
<td>0.07</td>
<td>0.055</td>
<td>0.32</td>
<td>0.07</td>
<td>0.09</td>
<td>0.11</td>
<td>0.13</td>
</tr>
<tr>
<td>Right colon</td>
<td>0.013</td>
<td>0.005</td>
<td>0.007</td>
<td>0.013</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Bone surface</td>
<td>0.3</td>
<td>0.7</td>
<td>0.45</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.55</td>
</tr>
<tr>
<td>Liver 1</td>
<td>0.5</td>
<td>0.05</td>
<td>0.1</td>
<td>0.5</td>
<td>0.3</td>
<td>0.2</td>
<td>0.15</td>
</tr>
<tr>
<td>Kidneys 1</td>
<td>0.02</td>
<td>0.035</td>
<td>0.015</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>Kidneys 2</td>
<td>0.005</td>
<td>0.01</td>
<td>0.005</td>
<td>0.005</td>
<td>0.01</td>
<td>0.01</td>
<td>0.005</td>
</tr>
<tr>
<td>ST1<sup>b</sup></td>
<td>0.071</td>
<td>0.125</td>
<td>0.083</td>
<td>0.071</td>
<td>0.10</td>
<td>0.08</td>
<td>0.075</td>
</tr>
<tr>
<td>ST2</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Testes</td>
<td>0.00035</td>
<td>0.00035</td>
<td>0.00035</td>
<td>0.00035</td>
<td>0.00035</td>
<td>0.00035</td>
<td>0.00035</td>
</tr>
<tr>
<td>Ovaries</td>
<td>0.00011</td>
<td>0.00011</td>
<td>0.00011</td>
<td>0.00011</td>
<td>0.00011</td>
<td>0.00011</td>
<td>0.00011</td>
</tr>
</tbody>
</table>

^aThorium is addressed in an earlier part of this report series.

^bDerived as 100% minus the sum of all other deposition fractions (rounded to three decimal places).
Table 18.8. Non-generic values describing biological removal of actinide elements from compartments.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Ac</th>
<th>Pa, Th(^{a})</th>
<th>Np</th>
<th>Am, Cm</th>
<th>Bk</th>
<th>Cf</th>
<th>Es, Fm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removal half-time, Blood</td>
<td>30 min</td>
<td>6 h</td>
<td>6 h</td>
<td>30 min</td>
<td>18 h</td>
<td>1 h</td>
<td>1 h</td>
</tr>
<tr>
<td>Removal half-time, ST0</td>
<td>0.5 d</td>
<td>1.5 d</td>
<td>1 d</td>
<td>0.5 d</td>
<td>0.5 d</td>
<td>0.5 d</td>
<td>0.5 d</td>
</tr>
<tr>
<td>Removal half-time, ST1</td>
<td>50 d</td>
<td>2 y</td>
<td>100 d</td>
<td>50 d</td>
<td>100 d</td>
<td>100 d</td>
<td>100 d</td>
</tr>
<tr>
<td>Removal half-time, Kidneys1</td>
<td>7 d</td>
<td>15 d</td>
<td>14 d</td>
<td>7 d</td>
<td>7 d</td>
<td>7 d</td>
<td>7 d</td>
</tr>
<tr>
<td>Removal half-time, Kidneys2</td>
<td>500 d</td>
<td>5 y</td>
<td>500 d</td>
<td>500 d</td>
<td>5 y</td>
<td>5 y</td>
<td>5 y</td>
</tr>
<tr>
<td>Fraction, Liver 1 to Blood</td>
<td>0.974</td>
<td>0.25</td>
<td>0.0</td>
<td>0.974</td>
<td>0.974</td>
<td>0.97</td>
<td>0.97</td>
</tr>
<tr>
<td>Fraction, Liver 1 to SI cont</td>
<td>0.026</td>
<td>0.25</td>
<td>0.07</td>
<td>0.026</td>
<td>0.026</td>
<td>0.026</td>
<td>0.026</td>
</tr>
<tr>
<td>Fraction, Liver 1 to Liver 2</td>
<td>0.0</td>
<td>0.5</td>
<td>0.93</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Removal half-time, Liver 2</td>
<td>NA</td>
<td>9 y</td>
<td>1 y</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Fraction of bone deposit assigned to trab bone</td>
<td>0.5</td>
<td>0.5</td>
<td>0.55</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Fraction of bone deposit assigned to cort bone</td>
<td>0.5</td>
<td>0.5</td>
<td>0.45</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

\(^{a}\)Thorium is addressed in an earlier part of this report series.
Table 18.9. Transfer coefficients for the actinide elements addressed in this report (other than Pu).

<table>
<thead>
<tr>
<th>Path</th>
<th>From</th>
<th>To</th>
<th>Ac transfer coefficient (d⁻¹)</th>
<th>Pa, Th transfer coefficient (d⁻¹)</th>
<th>Np</th>
<th>Am, Cm transfer coefficient (d⁻¹)</th>
<th>Bk</th>
<th>Cf</th>
<th>Es, Fm transfer coefficient (d⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood</td>
<td>Liver 1</td>
<td>Blood</td>
<td>11.6</td>
<td>0.097</td>
<td>0.194</td>
<td>11.6</td>
<td>0.194</td>
<td>2.33</td>
<td>1.75</td>
</tr>
<tr>
<td>Blood</td>
<td>Trab surf</td>
<td>Blood</td>
<td>3.49</td>
<td>0.679</td>
<td>0.480</td>
<td>3.49</td>
<td>0.129</td>
<td>2.91</td>
<td>3.20</td>
</tr>
<tr>
<td>Blood</td>
<td>Cort surf</td>
<td>Blood</td>
<td>3.49</td>
<td>0.679</td>
<td>0.393</td>
<td>3.49</td>
<td>0.129</td>
<td>2.91</td>
<td>3.20</td>
</tr>
<tr>
<td>Blood</td>
<td>Kidneys 1</td>
<td>Blood</td>
<td>0.466</td>
<td>0.0679</td>
<td>0.0291</td>
<td>0.466</td>
<td>0.0129</td>
<td>0.233</td>
<td>0.116</td>
</tr>
<tr>
<td>Blood</td>
<td>Kidneys 2</td>
<td>Blood</td>
<td>0.116</td>
<td>0.0194</td>
<td>0.0097</td>
<td>0.116</td>
<td>0.00647</td>
<td>0.116</td>
<td>0.0582</td>
</tr>
<tr>
<td>Blood</td>
<td>UB cont</td>
<td>Blood</td>
<td>1.63</td>
<td>0.107</td>
<td>0.621</td>
<td>1.63</td>
<td>0.0582</td>
<td>1.28</td>
<td>1.51</td>
</tr>
<tr>
<td>Blood</td>
<td>RC cont</td>
<td>Blood</td>
<td>0.303</td>
<td>0.0097</td>
<td>0.0136</td>
<td>0.303</td>
<td>0.0388</td>
<td>0.699</td>
<td>0.699</td>
</tr>
<tr>
<td>Blood</td>
<td>Testes</td>
<td>Blood</td>
<td>0.0082</td>
<td>0.00068</td>
<td>0.00068</td>
<td>0.0082</td>
<td>0.00023</td>
<td>0.00408</td>
<td>0.00408</td>
</tr>
<tr>
<td>Blood</td>
<td>Ovaries</td>
<td>Blood</td>
<td>0.0026</td>
<td>0.00021</td>
<td>0.00021</td>
<td>0.00026</td>
<td>0.00007</td>
<td>0.00128</td>
<td>0.00128</td>
</tr>
<tr>
<td>Blood</td>
<td>ST0</td>
<td>Blood</td>
<td>10.0</td>
<td>0.832</td>
<td>0.832</td>
<td>10.0</td>
<td>0.277</td>
<td>4.99</td>
<td>4.99</td>
</tr>
<tr>
<td>Blood</td>
<td>ST1</td>
<td>Blood</td>
<td>1.67</td>
<td>0.243</td>
<td>0.161</td>
<td>1.67</td>
<td>0.0647</td>
<td>0.926</td>
<td>0.868</td>
</tr>
<tr>
<td>Blood</td>
<td>ST2</td>
<td>Blood</td>
<td>0.466</td>
<td>0.0388</td>
<td>0.0388</td>
<td>0.466</td>
<td>0.0129</td>
<td>0.233</td>
<td>0.233</td>
</tr>
<tr>
<td>Liver</td>
<td>SI cont</td>
<td>Liver</td>
<td>0.0006</td>
<td>0.000475</td>
<td>0.000133</td>
<td>0.0006</td>
<td>0.0006</td>
<td>0.0006</td>
<td>0.0006</td>
</tr>
<tr>
<td>Liver</td>
<td>Liver 2</td>
<td>Liver</td>
<td>0.0225</td>
<td>0.00095</td>
<td>0.00177</td>
<td>0.0225</td>
<td>0.0225</td>
<td>0.0225</td>
<td>0.0225</td>
</tr>
<tr>
<td>Liver</td>
<td>Blood</td>
<td>Liver 1</td>
<td>0.0019</td>
<td>0.000211</td>
<td>0.0019</td>
<td>0.0019</td>
<td>0.0019</td>
<td>0.0019</td>
<td>0.0019</td>
</tr>
<tr>
<td>Liver</td>
<td>Blood</td>
<td>Trab surf</td>
<td>4.93·10⁻⁴</td>
<td>4.93·10⁻⁴</td>
<td>4.93·10⁻⁴</td>
<td>4.93·10⁻⁴</td>
<td>4.93·10⁻⁴</td>
<td>4.93·10⁻⁴</td>
<td>4.93·10⁻⁴</td>
</tr>
<tr>
<td>Liver</td>
<td>Blood</td>
<td>Trab vol</td>
<td>2.47·10⁻⁴</td>
<td>2.47·10⁻⁴</td>
<td>2.47·10⁻⁴</td>
<td>2.47·10⁻⁴</td>
<td>2.47·10⁻⁴</td>
<td>2.47·10⁻⁴</td>
<td>2.47·10⁻⁴</td>
</tr>
<tr>
<td>Liver</td>
<td>Blood</td>
<td>Trab mar</td>
<td>4.93·10⁻⁴</td>
<td>4.93·10⁻⁴</td>
<td>4.93·10⁻⁴</td>
<td>4.93·10⁻⁴</td>
<td>4.93·10⁻⁴</td>
<td>4.93·10⁻⁴</td>
<td>4.93·10⁻⁴</td>
</tr>
<tr>
<td>Liver</td>
<td>Blood</td>
<td>Cort surf</td>
<td>0.0076</td>
<td>0.0076</td>
<td>0.0076</td>
<td>0.0076</td>
<td>0.0076</td>
<td>0.0076</td>
<td>0.0076</td>
</tr>
<tr>
<td>Liver</td>
<td>Blood</td>
<td>Cort mar</td>
<td>8.21·10⁻⁵</td>
<td>8.21·10⁻⁵</td>
<td>8.21·10⁻⁵</td>
<td>8.21·10⁻⁵</td>
<td>8.21·10⁻⁵</td>
<td>8.21·10⁻⁵</td>
<td>8.21·10⁻⁵</td>
</tr>
<tr>
<td>Liver</td>
<td>Blood</td>
<td>Cort vol</td>
<td>4.11·10⁻⁵</td>
<td>4.11·10⁻⁵</td>
<td>4.11·10⁻⁵</td>
<td>4.11·10⁻⁵</td>
<td>4.11·10⁻⁵</td>
<td>4.11·10⁻⁵</td>
<td>4.11·10⁻⁵</td>
</tr>
<tr>
<td>Liver</td>
<td>Blood</td>
<td>Cort mar</td>
<td>8.21·10⁻⁵</td>
<td>8.21·10⁻⁵</td>
<td>8.21·10⁻⁵</td>
<td>8.21·10⁻⁵</td>
<td>8.21·10⁻⁵</td>
<td>8.21·10⁻⁵</td>
<td>8.21·10⁻⁵</td>
</tr>
<tr>
<td>Liver</td>
<td>Blood</td>
<td>Cort surf</td>
<td>0.0076</td>
<td>0.0076</td>
<td>0.0076</td>
<td>0.00253</td>
<td>0.0076</td>
<td>0.0076</td>
<td>0.0076</td>
</tr>
<tr>
<td>Liver</td>
<td>Blood</td>
<td>Cort mar</td>
<td>0.00057</td>
<td>0.00076</td>
<td>0.00076</td>
<td>0.00076</td>
<td>0.00076</td>
<td>0.00076</td>
<td>0.00076</td>
</tr>
</tbody>
</table>

a Trab = trabecular; Cort = cortical; surf = surface; vol = volume; mar = marrow; UB = urinary bladder; RC = right colon; cont = content; ST0, ST1, ST2 are compartments of Other soft tissues with fast, intermediate, and slow turnover, respectively.

b Thorium is addressed in an earlier part of this report series.

18.2.4. Treatment of radioactive progeny

(551) Chain members addressed in the derivation of dose coefficients for the actinides addressed in this document include isotopes of thallium, lead, bismuth, polonium, astatine, radon, francium, radium, actinium, thorium, protactinium, uranium, neptunium, plutonium, americium, curium, berkelium, californium, einsteinium, and fermium.

(552) The models applied here to thallium, lead, bismuth, polonium, and radium as actinide progeny are the models applied to these elements as progeny of radium (described in Part 3 of this report series). The model applied here to uranium as an actinide progeny is the model applied to uranium as a progeny of thorium (also described in Part 3).
The model applied here to radon as an actinide progeny is a generic model applied in this report series to radon produced by radioactive decay in a systemic compartment. Radon produced in a compartment identified as non-exchangeable bone volume, exchangeable bone volume, or bone surface transfers to blood at the rate 0.36 d\(^{-1}\), 1.5 d\(^{-1}\), or 100 d\(^{-1}\), respectively; radon produced in a compartment identified simply as bone volume transfers to blood at 0.36 d\(^{-1}\); radon produced in a soft-tissue compartment transfers to blood at 33.3 d\(^{-1}\); and radon produced in blood or entering blood is removed from the body (exhaled) at 1000 d\(^{-1}\). Radioisotopes of francium and astatine appearing in actinide chains considered in this report have short half-lives and are assumed to decay at their site of production in systemic tissues or blood.

The model applied here to thorium as an actinide progeny is the model applied in Part 3 of this report series to thorium as a progeny of radium. Briefly, two compartments, one representing spleen and the other representing skin, are added to the explicitly identified source regions in the characteristic model for thorium described in Part 3. Spleen and Skin are assumed to receive 0.5% and 2%, respectively, of thorium leaving the circulation and to return thorium to blood with a biological half-time of 2 y. Thorium produced in a compartment that is not identifiable with a compartment in the thorium model is assumed to transfer to blood at the following rates: 1000 d\(^{-1}\) if produced in blood; 0.462 d\(^{-1}\) if produced in soft tissue; and at the rate of bone turnover if produced in a bone volume compartment.

The models applied here to actinium, protactinium, neptunium, plutonium, americium, curium, berkelium, californium, einsteinium, and fermium as actinide progeny are modifications of their characteristic models described earlier in this section. For a given element in this group, two compartments representing skin and spleen are added to the explicitly identified source regions in the element’s characteristic model. These compartments are taken from the intermediate soft-tissue compartment, ST1; that is, the deposition fraction for ST1 is reduced by the deposition fractions assigned to Spleen and Skin, and the removal half-time from ST1 is assigned to these added compartments. Deposition of the element in Skin is calculated as its mass fraction of Other soft tissue times its deposition fraction in Other soft tissue excluding the rapid-turnover compartment, ST0. The deposition fraction for Spleen is set at one-third of the deposition fraction for Skin, considering the relative masses of these tissues and the typically higher concentrations of actinides in spleen than skin observed in laboratory animals and human subjects. If the element is produced in a compartment that is not identifiable with a compartment in its characteristic model, it is assumed to transfer to the element’s blood compartment (Blood 1 in the case of plutonium, which has multiple blood compartments – see Table 18.6) at the rate 1000 d\(^{-1}\) if produced in a blood compartment, at the rate of transfer from the fast-turnover soft-tissue compartment ST0 to Blood if produced in a soft-tissue compartment, and at the rate of bone turnover if produced in a bone volume compartment.

The model for plutonium as a progeny is further modified by removing the transfers from Blood to ST0 and from Blood to Blood 1 (Table 18.6) and adding a transfer of 0.33 d\(^{-1}\) from Blood 1 to ST0. This simplifies the model for plutonium as a progeny by eliminating a blood compartment (Blood 1 in Table 18.6). The added transfer coefficient of 0.33 d\(^{-1}\) from Blood 1 to ST0 implies that ST0 receives 30% of plutonium leaving Blood 1. Total deposition in ST0 is virtually the same as in the model for plutonium as a parent, but the rate of accumulation of plutonium in ST0 is substantially lower in this simplified version of the model.
REFERENCES

Qi L., Basset C., Averseng O., et al., 2014. Characterization of UO$_2^{2+}$ binding to osteopontin, a highly phosphorylated protein: insights into potential mechanisms of uranyl accumulation in bones” Metallomics. 6, 166–176

19. ACTINIUM (Z=89)

19.1. Chemical Forms in the Workplace

Actinium is the first element of the actinide series which mainly occurs in oxidation state III. Lanthanides such as Eu(III) or Gd(III), and Am(III) are good chemical analogues of Ac(III). Actinium has no significant industrial use and may be encountered in industry in a variety of chemical and physical forms, including oxides (Ac$_2$O$_3$), chlorides and nitrates.

Traces of actinium-227 are present in uranium ores and it can be obtained by the neutron irradiation of 226Ra in a nuclear reactor.

Table 19.1. Isotopes of actinium addressed in this report.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Physical half-life</th>
<th>Decay mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ac-224</td>
<td>2.78 h</td>
<td>EC, A</td>
</tr>
<tr>
<td>Ac-225</td>
<td>10.0 d</td>
<td>A</td>
</tr>
<tr>
<td>Ac-226</td>
<td>29.37 h</td>
<td>B-, EC, A</td>
</tr>
<tr>
<td>Ac-227</td>
<td>21.772 y</td>
<td>B-, A</td>
</tr>
<tr>
<td>Ac-228a</td>
<td>6.15 h</td>
<td>B-</td>
</tr>
</tbody>
</table>

aDose coefficients and bioassay data for this radionuclide are given in the printed copy of this report. Data for other radionuclides listed in this table are given in the accompanying electronic annexes.

19.2. Routes of Intake

19.2.1. Inhalation

Absorption Types and parameter values

Two studies were found in the literature relating to lung retention of actinium (Ac) in man following accidental intakes. No experimental studies were found that give information on absorption of actinium from the respiratory tract.

As noted in the general actinide section, in the absence of relevant information, absorption parameter values for actinium are based on chemical analogy: values chosen for americium are applied in this document to actinium.

Absorption parameter values and Types, and associated f_A values for particulate forms of actinium are given in Table 19.2.

Protactinium oxide.

Newton (1968) followed lung retention of 231Pa and its progeny radionuclide 227Ac after accidental inhalation by a research student, by external measurement of X- and gamma-rays from 231Pa and the radioactive progeny of 227Ac: 227Th and 223Ra. For the decay scheme see Fig. A.7. in OIR Part 1 (ICRP, 2015) or Fig. 15-2 in OIR Part 3 (ICRP, 2016b). The contamination consisted of recently separated 231Pa, probably in the form of Pa$_2$O$_5$ or KPaO$_3$. Analysis of air and surface contamination showed that the 231Pa was accompanied by large amounts of its progeny; the 227Ac: 231Pa ratio was \sim0.08. Autoradiography of an air filter indicated that the largest particle sizes involved were in the range 3 – 5 µm. Whole-body and/or
chest measurements were made from 7 to 883 d after intake. Over the period 7 to 427 d, lung retention could be fit by a single exponential function with a biological half-life for 231Pa of 1000 ± 300 d. After correction for ingrowth from decay of 231Pa, the biological half-life of 227Ac was estimated to be in the range 300 – 400 d. Several 24-hour collections of urine and faeces voided during the first few weeks (but not before day 7) were analysed: no 231Pa, or radioactive progeny attributable to the intake were detected. Insufficient information is available to assess absorption parameter values. However, the activity was concentrated in the chest, from which little clearance was observed, indicating Type S behaviour.

Unspecified compounds.

A worker was referred for body radioactivity measurements following discovery of high levels of airborne 227Ac as well as surface activity in his laboratory and on his work clothes (Newton, 1966). Nothing was known of the chemical form of the contaminant, nor of its size distribution. Retention of 227Ac in his body was studied over more than 800 d after intake by external measurement (scintillation gamma-ray spectrometry) of x- and gamma-rays from 227Ac progeny radionuclides 227Th and 223Ra. Whole-body and/or chest measurements were made from 5 to 838 d after intake. Insufficient information is available to assess absorption parameter values. However, the activity remained largely confined to the chest region and was estimated to have cleared from the thorax with a biological half-time of at least 10 y, indicating Type S behaviour.

Actinium progeny formed in the respiratory tract

The general approach to treatment of progeny radionuclides formed in the respiratory tract is described in OIR Part 1, Section 3.2.3 and Annex A (ICRP, 2015). In summary, it is expected that generally the rate at which a particle dissociates is determined by its matrix, and hence the physico-chemical form of the inhaled material. It is recognised that nuclei formed by alpha decay within a particle matrix may be expelled from it into the surrounding medium by recoil, but to implement this routinely would add greatly to the complexity of calculations. It is expected that the behaviour of soluble (e.g. Type F) material in the respiratory tract would depend on its elemental form, i.e. that of the progeny radionuclides. Nevertheless, for simplicity, in this series of documents the absorption parameter values of the parent are, by default, applied to all members of the decay chain formed in the respiratory tract. Exceptions are made for noble gases formed as progeny radionuclides, which are assumed to escape from the body directly, in addition to other routes of removal. For calculation purposes it is assumed that radon formed as a progeny radionuclide within the respiratory tract escapes from the body at a rate of 100 d$^{-1}$, in addition to other routes of removal. [For further information see the section on thorium progeny formed in the respiratory tract in OIR Part 3, (ICRP, 2016)].

Studies specifically relevant to comparing the behaviour of actinium with that of its radioactive progeny (actinium, thorium and radium isotopes) are summarised here. For further information, see the thorium and radium inhalation sections in OIR Part 3 (ICRP, 2016).

As described above, Newton (1968) followed lung retention of 231Pa (and 227Ac) after accidental inhalation in a relatively insoluble form, by external measurement of X- and gamma-rays from 231Pa and the decay products of 227Ac: 227Th and 223Ra. However, much of the 227Ac was inhaled with the 231Pa, rather than formed as a progeny radionuclide within the lungs, and the 227Ac was not observed directly: it was assumed to be in equilibrium with its radioactive progeny. The estimated biological half-life of 227Ac in the lungs was shorter than that of 231Pa,
suggesting that it was cleared more rapidly. In contrast, no significant difference was found between the levels of ^{227}Th and ^{223}Ra in the chest, indicating that they were in equilibrium, with no significant preferential clearance of the ^{223}Ra progeny.

Rapid dissolution rate for actinium

(568) By analogy with americium, a value of 0.4 d$^{-1}$ is applied here to all Type F forms of actinium. Because it is lower than the general default value of 3 d$^{-1}$ for Type M and S materials, it is also applied to Type M and S forms of actinium.

Extent of binding of actinium to the respiratory tract

(569) By analogy with americium, a bound fraction with $f_b = 0.002$ and a rate of uptake $s_b = 0$ d$^{-1}$, applied throughout the respiratory tract except in the ET$_1$ region (where no absorption occurs), is adopted here for actinium. (These are the generic bound fraction parameter values, based on plutonium, applied in this document to all transplutonium elements.)

Table 19.2. Absorption parameter values for inhaled and ingested actinium.

<table>
<thead>
<tr>
<th>Inhaled particulate materials</th>
<th>Absorption parameter valuesa</th>
<th>Absorption from the alimentary tract, f_A^b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default parameter valuesb,c</td>
<td>f_i</td>
<td>s_i (d$^{-1}$)</td>
</tr>
<tr>
<td>Absorption Type</td>
<td>Assigned forms</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Citrate</td>
<td>1</td>
</tr>
<tr>
<td>Md</td>
<td>Chloride, oxide</td>
<td>0.2</td>
</tr>
<tr>
<td>S</td>
<td>Actinium associated with plutonium oxide compounds</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Inhaled particle materials

<table>
<thead>
<tr>
<th>Ingested materiale</th>
<th>All compounds</th>
<th>5 x 10$^{-4}$</th>
</tr>
</thead>
</table>

a It is assumed that for actinium a bound fraction $f_b = 0.002$ with an uptake rate $s_b = 0$ d$^{-1}$ is applied throughout the respiratory tract, except in the ET$_1$ region. The values of s_i for Type F, M and S forms of actinium (1 d$^{-1}$) are element-specific.

b For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the alimentary tract, the default f_A values for inhaled materials are applied: i.e., the product of f_i for the absorption Type (or specific value where given) and the f_A value for ingested soluble forms of actinium (5 x 10$^{-4}$).

c Materials (e.g. chloride) are generally listed here where there is sufficient information to assign to a default absorption Type, but not to give specific parameter values (see text).

d Default Type M is recommended for use in the absence of specific information on which the exposure material can be assigned to an Absorption Type, e.g. if the form is unknown, or if the form is known but there is no information available on the absorption of that form from the respiratory tract.

e Activity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject to reabsorption to blood. The default absorption fraction f_A for the secreted activity is the reference f_A (=5 x 10$^{-6}$) for ingestion of the radionuclide.
19.2.2. Ingestion

(570) Early studies by Hamilton (1948) and by Campbell et al. (1950) indicated that fractional absorption of actinium in rats is considerably less than 0.01.

(571) In Publication 30 Part 3 (ICRP, 1981) and Publication 48 (1986) an absorption value of 1×10^{-3} for actinium was used. However, in this report available data provided a sufficient basis for the use of a general value of 5×10^{-4} for all actinides other than U.

(572) An f_A value of 5×10^{-4} is adopted here for all chemical forms of actinium.

19.2.3. Systemic distribution, retention and excretion of actinium

19.2.3.1. Data

(573) A worker was referred for body radioactivity measurement following discovery of high levels of airborne 227Ac as well as surface activity in his laboratory and on his work clothes (Newton, 1966). Retention of 227Ac in his body was studied over more than 800 d after intake by scintillation gamma-ray spectrometry. The activity remained largely confined to the chest region and was estimated to have cleared from the thorax with a biological half-time of at least 10 y.

(574) Newton and co-workers (Newton, 1968; Newton and Brown, 1974) reported a case of internal exposure to 227Ac and 231Pa through a puncture wound. An estimated 90% of 227Ac reaching the systemic circulation was retained indefinitely. Three years after the accident, activity appeared to be deposited primarily in bone with some involvement of liver. After 9 y most of the liver content apparently had transferred to the skeleton. For example, during the period 1570-2330 d after the incident, daily urinary excretion of the 231Pa/227Ac chain member 223Ra was approximately 60 times greater than that of 231Pa and 150 times greater than that of 227Ac. Daily faecal excretion of 223Ra during that period was about 1300 times that of 231Pa and 2100 times that of 227Ac.

(575) Taylor (1970) studied the biokinetics of 227Ac in rats following its intravenous administration in various chemical forms. Similar tissue distributions were observed when 227Ac was administered as a complex with serum proteins, as nitrate, or as citrate. At 4 d 227Ac was found mainly in the liver and skeleton, and the kidneys contained about 1.5% of the administered amount. By 189 d the liver content was less than 1% of the content at 4 d. There was little if any net loss from bone during the period 4-189 d. Over the first week, cumulative urinary and faecal excretion amount to about 1% and 20%, respectively, of the administered activity.

(576) Campbell et al. (1956) investigated the behavior of 227Ac and its progeny 227Th and 223Ra in young adult male rats following administration of 227Ac alone or in equilibrium with its progeny by intravenous, intramuscular, and subcutaneous injection; orally via a stomach tube; or by absorption through the skin. The skeleton accumulated roughly half of intravenously administered 227Ac. It appeared that activity deposited in the skeleton was not removed. Rats injected with 227Ac in equilibrium with its progeny excreted about half of the administered 227Ac in three months. The remaining 50% was tenaciously retained in the body. Actinium-227 deposited in the skeleton was not removed, but 227Ac deposited in soft tissues was readily excreted. Actinium-227 deposited in the skeleton remained in equilibrium with its progeny, but 227Ac deposited in soft tissues was stripped of its progeny. Normal skin was found to be an
effective barrier to ^{227}Ac and its progeny, but abraded skin allowed some passage of ^{227}Ac and its progeny.

(577) The plasma disappearance pattern of ^{227}Ac following intravenous administration to rats is similar to Am and Cm in the same animals. Clearance was about 90% complete in 50 min and 99% complete in 400 min (Durbin, 2001). At 4 d after intramuscular administration of ^{227}Ac to rats, the contents of liver, skeleton, other tissues, cumulative urine, and cumulative faeces accounted for 27%, 56%, 4%, 5%, and 8%, respectively, of the administered activity.

This is broadly similar to the distributions of Am and Cm in the same animals.

(578) Biokinetic studies of actinium in rats indicate that its systemic behavior is generally consistent with the pattern found for most other actinide elements. That is, actinium deposits mainly in the skeleton and liver, is a bone surface seeker with tenacious retention in the skeleton, and is only slowly removed from the body. Its systemic biokinetics appears to be broadly similar to that of americium.

19.2.3.2. Biokinetic model
(579) The biokinetic model for systemic actinium applied in this report is described in Section 18.2.3.

19.2.3.3. Treatment of progeny
(580) The treatment of radioactive progeny of actinium produced in systemic compartments or absorbed to blood after production in the respiratory or gastrointestinal tract is described in section 18.2.4.

19.3. Individual monitoring
228Ac
(581) *In vivo* lung measurements of 228Ac are used to determine intakes of the radionuclide for routine monitoring. *In vivo* whole body measurement may be used as additional technique for special investigation. The main technique is gamma spectrometry.

Table 19.3. Monitoring techniques for 228Ac.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Method of Measurement</th>
<th>Typical Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>228Ac</td>
<td>Lung Measurement(^a)</td>
<td>γ-ray spectrometry</td>
</tr>
<tr>
<td>228Ac</td>
<td>Whole Body Measurement(^b)</td>
<td>γ-ray spectrometry</td>
</tr>
</tbody>
</table>

\(^a\) Measurement system comprised of two Broad Energy Germanium Detectors (BEGe), counting time of 36 minutes and chest wall thickness of 2.54 cm.

\(^b\) Measurement system comprised of two Broad Energy Germanium Detectors (BEGe) and counting time of 15 minutes.

19.4. Dosimetric data for actinium
Dosimetric data will be provided in the final version of the document.

170
REFERENCES

20. PROTACTINIUM (Z=91)

20.1. Chemical Forms in the Workplace

Protactinium is a rare actinide element which mainly occurs in oxidation state V and IV. Protactinium may be encountered in industry in a variety of chemical and physical forms, including oxides (Pa$_2$O$_5$, PaO$_2$), chlorides, citrates and nitrates.

Protactinium-231 is present as traces in uranium ores. Protactinium-231 and 234Pa are produced from thorium in nuclear reactors.

Table 20.1. Isotopes of protactinium addressed in this report.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Physical half-life</th>
<th>Decay mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pa-227</td>
<td>38.3 m</td>
<td>EC, A</td>
</tr>
<tr>
<td>Pa-228</td>
<td>22 h</td>
<td>EC, B+, A</td>
</tr>
<tr>
<td>Pa-229</td>
<td>1.50 d</td>
<td>EC, A</td>
</tr>
<tr>
<td>Pa-230</td>
<td>17.4 d</td>
<td>EC, B-, A</td>
</tr>
<tr>
<td>Pa-231a</td>
<td>3.276E+4 y</td>
<td>A</td>
</tr>
<tr>
<td>Pa-232</td>
<td>1.31 d</td>
<td>B-, EC</td>
</tr>
<tr>
<td>Pa-233a</td>
<td>26.967 d</td>
<td>B-</td>
</tr>
<tr>
<td>Pa-234</td>
<td>6.70 h</td>
<td>B-</td>
</tr>
<tr>
<td>Pa-235</td>
<td>24.5 m</td>
<td>B-</td>
</tr>
</tbody>
</table>

*Dose coefficients and bioassay data for this radionuclide are given in the printed copy of this report. Data for other radionuclides listed in this table are given in the accompanying electronic annexes.

20.2. Routes of Intake

20.2.1. Inhalation

Absorption Types and parameter values

One study was found in the literature relating to lung retention of protactinium (Pa) in man following accidental intake. One experimental study was found that gives information on absorption of protactinium from the respiratory tract.

As there is so little relevant information available, absorption parameter values for protactinium are based on chemical analogy. As noted in the general actinide section, absorption parameter values chosen for thorium are applied in this document to protactinium.

Reference biokinetic models were used here (i.e. by the Task Group) for the analysis of the data and the determination of absorption parameter values: the revised Human Respiratory Tract Model (ICRP, 2015) and the rat model for particle transport in the respiratory tract of the Guide for the Practical Application of the ICRP Human Respiratory Tract Model (ICRP, 2002); the Human Alimentary Tract Model (ICRP, 2006); and the human systemic model for thorium (ICRP, 2016).
Absorption parameter values and Types, and associated f_A values for particulate forms of protactinium are given in Table 20.2.

Protactinium citrate

Zalikin (1966) followed the tissue distribution of ^{233}Pa for 128 d after administration of protactinium citrate (pH 3) to rats by intratracheal instillation. Complementary experiments were conducted in which the tissue distribution of ^{233}Pa was measured after subcutaneous and oral administration. Absorption from the alimentary tract was low, in the range 0.006 – 0.02%. About 30% of the initial lung deposit (ILD) was absorbed by the time of the first measurement (1 hour). Long term lung retention was also observed: 34% ILD at 6 hours and 9.6% ILD at 128 d. It was noted that ^{233}Pa absorbed from the lungs behaved similarly to ^{233}Pa administered by subcutaneous injection.

As described in the section below on Systemic Distribution, Retention and Excretion, there are strong similarities between the systemic biokinetics of protactinium and that of thorium, and the systemic model for thorium is applied in this document to protactinium. To test whether thorium might also be a suitable analogue for protactinium with regard to absorption from the respiratory tract, analysis was carried out here in which thorium biokinetic models were fit to the data from Zalikin (1966): i.e., the thorium systemic model (see above) and thorium respiratory tract absorption parameter values $s_r = 50 \text{ d}^{-1}$, $s_s = 0.005 \text{ d}^{-1}$, and $f_b = 0$ (no bound fraction) (see thorium section in OIR Part 3, ICRP, 2016). The rapidly-dissolved fraction, f_r, was allowed to vary. A good fit to the data was obtained (Fig. 20.1) with $f_r = 0.5$.

For water soluble forms of thorium, a central value for f_r of 0.1 was adopted. However, following administration by intratracheal instillation into rats of ^{224}Th citrate (Thomas et al, 1963), ~50% ILD was absorbed rapidly from the lungs when administered at "tracer level", and ~10% when administered with carrier (^{228}Th). Zalikin (1966) did not report the mass administered nor whether any carrier was added. However, the longest-lived isotope of protactinium (^{231}Pa) has a half-life of only 3.3 x 10^4 years, and so even if any were added, it seems likely that the total mass would still be at tracer level. Thus the only experimental data are consistent with the assumption that absorption from the respiratory tract is similar to that of thorium.
Fig. 20.1 Tissue distribution of 233Pa in rats following intratracheal instillation of 233Pa citrate (Zalikin, 1966b, mean with lognormal errors), and derived from the models described here. (Data and curve for kidneys have been rescaled by 0.1 to make the figure more readable.)

Protactinium oxide

(590) Newton (1968) followed lung retention of 231Pa (and its progeny radionuclide 227Ac) after accidental inhalation by a research student, by external measurement of X- and gamma-rays from 231Pa (and the radioactive progeny of 227Ac: 227Th and 223Ra). For the decay scheme see Fig. A.7. in OIR Part 1 (ICRP, 2015) or Fig. 15-2 in the uranium section of OIR Part 3 (ICRP, 2016). The contamination consisted of recently separated 231Pa, probably in the form of Pa$_2$O$_5$ or KPaO$_3$. Analysis of air and surface contamination showed that the 231Pa was accompanied by large amounts of its progeny; the 227Ac: 231Pa ratio was ~0.08. Autoradiography of an air filter indicated that the largest particle sizes involved were in the range 3–5 µm. Whole-body and/or chest measurements were made from 7 to 883 d after intake. The activity was concentrated in the chest, from which little clearance was observed. Over the period 7 to 427 days, lung retention could be fit by a single exponential function with a biological half-life for 231Pa of 1000 ± 300 d. (The biological half-life of 227Ac was estimated to be ~350 d). Several 24-hour collections of urine and faeces voided during the first few weeks (but not before day 7) were analysed: no 231Pa, or its progeny attributable to the intake were detected. Analysis here showed that the experimental data are consistent with the assumption that absorption from the respiratory tract is similar to that of Type S forms of thorium. However, the very slow clearance from the chest indicates a lower particle transport rate from the alveolar to the bronchiolar region than the central value assumed in the HRTM (ICRP 2015): 8 x 10$^{-4}$ d$^{-1}$, consistent with a chest biological half-time for 231Pa of 1000 ± 300 d.

Protactinium progeny formed in the respiratory tract

(591) The general approach to treatment of radioactive progeny formed in the respiratory tract is described in OIR Part 1, Section 3.2.3 and Annex A (ICRP, 2015). In summary, it is expected that generally the rate at which a particle dissociates is determined by its matrix, and hence the physico-chemical form of the inhaled material. It is recognised that nuclei formed by alpha decay within a particle matrix may be expelled from it into the surrounding medium by recoil, but to implement this routinely would add greatly to the complexity of calculations. It is expected that the behaviour of soluble (e.g. Type F) material in the respiratory tract would...
depend on its elemental form, i.e. that of the progeny radionuclide. Nevertheless, for simplicity, in this series of documents the absorption parameter values of the parent are, by default, applied to all members of the decay chain formed in the respiratory tract. Exceptions are made for noble gases formed as progeny radionuclides, which are assumed to escape from the body directly, in addition to other routes of removal. For calculation purposes it is assumed that radon formed as a progeny radionuclide with the respiratory tract escapes from the body at a rate of 100 d\(^{-1}\), in addition to other routes of removal. [For further information see OIR Part 1, Section 3.2.3 and Annex A (ICRP, 2015), and the section on thorium progeny formed in the respiratory tract in OIR Part 3 (ICRP, 2016)].

(592) Studies specifically comparing the behaviour of protactinium with that of its radioactive progeny (actinium, thorium and radium isotopes) are summarised here. For further information, see the thorium and radium inhalation sections in OIR Part 3 (ICRP, 2016).

(593) As described above, Newton (1968) followed lung retention of \(^{231}\)Pa (and \(^{227}\)Ac) after accidental inhalation in a relatively insoluble form, by external measurement of X- and gamma-rays from \(^{231}\)Pa and the radioactive progeny of \(^{227}\)Ac: \(^{227}\)Th and \(^{223}\)Ra. However, much of the \(^{227}\)Ac was inhaled with the \(^{231}\)Pa, rather than formed as a progeny radionuclide within the lungs. The estimated biological half-life of \(^{227}\)Ac in the lungs was shorter than that of \(^{231}\)Pa, suggesting that it cleared more rapidly. In contrast, no significant difference was found between the levels of \(^{227}\)Th and \(^{223}\)Ra in the chest, indicating that they were in equilibrium, with no significant preferential clearance of the \(^{223}\)Ra progeny.

Rapid dissolution rate for protactinium

(594) By analogy with thorium, a value of 50 d\(^{-1}\) is applied here to all Type F forms of protactinium. However, as noted in the thorium inhalation section (ICRP, 2016), the results of studies of water-soluble forms of thorium (chloride, citrate, nitrate, sulphate) deposited in the lungs, indicate that there are no commonly encountered Type F forms of thorium.

Extent of binding of protactinium to the respiratory tract

(595) By analogy with thorium, it is assumed that for protactinium the bound state can be neglected, i.e. \(f_b = 0.0\).

Table 20.2. Absorption parameter values for inhaled and ingested protactinium (based on thorium, ICRP, 2015).

<table>
<thead>
<tr>
<th>Inhaled particulate materials</th>
<th>Absorption parameter values(^a)</th>
<th>Absorption from the alimentary tract, (f_x)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific parameter values(^c)</td>
<td>(f_s)</td>
<td>(s_s) (d(^{-1}))</td>
</tr>
<tr>
<td>Water soluble forms, including chloride, citrate, fluoride, nitrate and sulphate(^d)</td>
<td>0.1</td>
<td>50</td>
</tr>
</tbody>
</table>

Default parameter values\(^e\)

<table>
<thead>
<tr>
<th>Absorption</th>
<th>Assigned forms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type F</td>
<td>— NB: Type F should not be assumed without</td>
</tr>
</tbody>
</table>
20.2. Ingestion

Early studies by Hamilton (1948) and by Zalikin (1966a,b, 1969) indicated that fractional absorption of citrate and other unspecified forms of protactinium in rats is about \(1 \times 10^{-3}\) or less. Later studies by Harrison and Stather (1981) estimated intestinal absorption of protactinium after intragastric administration and intravenous injection in adult hamsters. The values obtained were 0.039 and \(2.2 \times 10^{-3}\) for \(^{231}\text{Pa}\)-citrate and \(^{231}\text{Pa}\)-fluoride, respectively. Sullivan (1983) reported absorption of \(3 \times 10^{-4}\) for nitrate forms in adult males and females rats.

In *Publication 30 Part 3* (ICRP, 1981) and *Publication 48* (1986) an absorption value of \(1 \times 10^{-3}\) for protactinium was used. However, in this report available data provided a sufficient basis for the use of a general value of \(5 \times 10^{-4}\) for all actinides other than U.

An \(f_A\) value of \(5 \times 10^{-4}\) is adopted here for all chemical forms of protactinium.

20.2.3. Systemic distribution, retention and excretion of protactinium

Data

Newton and Brown (1974) studied the behavior of \(^{231}\text{Pa}\) and \(^{227}\text{Ac}\) in an adult male over a 9-y period following their internal deposition via a puncture wound. The investigators estimated on the basis of external measurements and analysis of activity in excreta that 70-80% of the \(^{231}\text{Pa}\) that reached blood was retained with a half-life in the range 70-125 y. After 3 y total-body activity was contained mainly in bone, with lower accumulation in the liver. After 9 y the body burden was almost completely contained in the skeleton.
At 24 h after intravenous administration of 233Pa in citrate buffer to baboons, the skeleton contained about half of the injected amount (Ralston et al., 1986). About 6% of the injected activity was excreted in urine during the first 24 h. By 21 days, when the slowly clearing plasma activity had been reduced to about 2% of the injected, the skeleton and soft tissues contained about 65% and 13%, respectively, of the injected amount. Cumulative urinary and faecal excretion of 233Pa during the first 21 d amount to about 15% and 3%, respectively, of the injected amount.

Following intravenous administration of protactinium to rats, ~99% of injected activity was removed from plasma compartment in 3 d. Plasma clearance was comparable to that of plutonium and much slower than that of neptunium, americium, or curium. At 1-7 d the skeleton contained 70-80% and the liver contained 2-3% of the injected amount. The high deposition in the skeleton and low uptake by liver following systemic uptake in rats closely resembled the distribution of thorium (Lanz et al., 1946; Schuppler et al., 1988; Durbin, 2011).

Zalikin (1969) investigated the accumulation of 233Pa in tissues of rats during its chronic oral administration. The absorbed activity accumulated primarily in the skeleton. After 150 d of chronic intake the skeleton contained about 10 times as much activity as the liver and about 16 times as much activity as the kidneys.

The biokinetic model for systemic protactinium applied in this report is described in Section 18.2.3.

The treatment of radioactive progeny of protactinium produced in systemic compartments or absorbed to blood after production in the respiratory or gastrointestinal tract is described in section 18.2.4.

20.3. Individual monitoring

231Pa

In vivo lung measurements of 231Pa are used to determine intakes of the radionuclide for routine monitoring. Measurements of 231Pa concentrations in urine and faeces may be used to determine intakes of the radionuclide. In vivo whole body measurement may be used as an additional technique for special investigations. The main technique is gamma spectrometry.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Monitoring Technique</th>
<th>Method of Measurement</th>
<th>Typical Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>231Pa</td>
<td>Urine Bioassay</td>
<td>γ-ray spectrometry</td>
<td>34 Bq/L</td>
</tr>
<tr>
<td>231Pa</td>
<td>Faecal Bioassay</td>
<td>γ-ray spectrometry</td>
<td>34 Bq/24h</td>
</tr>
<tr>
<td>231Pa</td>
<td>Lung Measurementa</td>
<td>γ-ray spectrometry</td>
<td>46 Bq</td>
</tr>
<tr>
<td>231Pa</td>
<td>Whole-body Measurementb</td>
<td>γ-ray spectrometry</td>
<td>600 Bq</td>
</tr>
</tbody>
</table>
In vivo lung measurements of ^{233}Pa are used to determine intakes of the radionuclide for routine monitoring. Measurements of ^{231}Pa concentrations in urine and faeces may be used to determine intakes of the radionuclide. In vivo skeleton measurement (knee geometry) and whole body measurement may be used as additional bioassay techniques for special investigations. The main technique is gamma spectrometry.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Monitoring Technique</th>
<th>Method of Measurement</th>
<th>Typical Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{233}Pa</td>
<td>Urine Bioassay</td>
<td>γ-ray spectrometry</td>
<td>7 Bq/L</td>
</tr>
<tr>
<td>^{233}Pa</td>
<td>Faecal Bioassay</td>
<td>γ-ray spectrometry</td>
<td>7 Bq/24h</td>
</tr>
<tr>
<td>^{233}Pa</td>
<td>Lung Measurementa</td>
<td>γ-ray spectrometry</td>
<td>20 Bq</td>
</tr>
<tr>
<td>^{233}Pa</td>
<td>Whole Body Measurement</td>
<td>γ-ray spectrometry</td>
<td>160 Bq</td>
</tr>
<tr>
<td>^{233}Pa</td>
<td>Skeleton Measurement (knee)c</td>
<td>γ-ray spectrometry</td>
<td>1 Bq</td>
</tr>
</tbody>
</table>

a Measurement system comprised of two Broad Energy Germanium Detectors (BEGe), counting time of 36 minutes and chest wall thickness of 2.54 cm.

b Measurement system comprised of two Broad Energy Germanium Detectors (BEGe) and counting time of 15 minutes.

c Measurement system comprised of two Broad Energy Germanium Detectors (BEGe), counting time of 36 minutes.

Dosimetric data will be provided in the final version of the document.

REFERENCES

DRAFT REPORT FOR CONSULTATION: DO NOT REFERENCE

21. NEPTUNIUM (Z=93)

21.1. Chemical Forms in the Workplace

Neptunium is an actinide element which occurs mainly in oxidation states IV, V and VI. Neptunium may be encountered in industry in a variety of chemical and physical forms, including oxides (NpO$_2$, Np$_3$O$_8$), nitrates, chlorides, fluorides, oxalates and carbonates. Less common forms such as bromides, iodides, sulphides or nitrides are also encountered in some specific situations.

Neptunium-237, the most stable isotope of neptunium, is a by-product of nuclear reactors and plutonium production and it can be used as a component in neutron detection equipment.

<table>
<thead>
<tr>
<th>Isotopes</th>
<th>Physical half-life</th>
<th>Decay mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Np-232</td>
<td>14.7 m</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Np-233</td>
<td>36.2 m</td>
<td>EC, A</td>
</tr>
<tr>
<td>Np-234</td>
<td>4.4 d</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Np-235</td>
<td>396.1 d</td>
<td>EC, A</td>
</tr>
<tr>
<td>Np-236</td>
<td>1.54E+5 y</td>
<td>EC, B-, A</td>
</tr>
<tr>
<td>Np-236m</td>
<td>22.5 h</td>
<td>EC, B-</td>
</tr>
<tr>
<td>Np-237a</td>
<td>2.144E+6 y</td>
<td>A</td>
</tr>
<tr>
<td>Np-238</td>
<td>2.117 d</td>
<td>B-</td>
</tr>
<tr>
<td>Np-239a</td>
<td>2.356 d</td>
<td>B-</td>
</tr>
<tr>
<td>Np-240</td>
<td>61.9 m</td>
<td>B-</td>
</tr>
<tr>
<td>Np-241</td>
<td>13.9 m</td>
<td>B-</td>
</tr>
</tbody>
</table>

aDose coefficients and bioassay data for this radionuclide are given in the printed copy of this report. Data for other radionuclides listed in this table are given in the accompanying electronic annexes.

21.2. Routes of Intake

21.2.1. Inhalation

Absorption Types and parameter values

No studies were found in the literature relating to lung retention of neptunium (Np) in man following accidental intakes other than environmental exposure to nuclear weapons fallout. Information on absorption from the respiratory tract is available from experimental studies with neptunium in several chemical forms including nitrate and oxide. Nearly all in vivo studies were carried out in rats. In most cases tissue distribution, but not excretion, data were reported, which limits the ability to derive absorption parameter values. Thompson (1982) reviewed the literature available at that time.

Absorption parameter values and Types, and associated f_A values for particulate forms of neptunium are given in
Table 21.2. Reference biokinetic models were used here (i.e. by the Task Group) for the analysis of the data and the determination of absorption parameter values:

- For rats: the rat model for particle transport in the respiratory tract of the Guide for the Practical Application of the ICRP Human Respiratory Tract Model (ICRP, 2002) and information relating to the study (e.g. early excretion) for deposition in the respiratory tract; a simplified version of the Gastro-Intestinal Tract Model (ICRP, 1979) with a single large intestine compartment; the Np systemic model for man (ICRP, 1993) was simplified and calibrated using rat data from Stradling et al. (2000) and Lyubchanskiy and Levdk (1972).

Rates for the lung, gut or systemic models were also modified when the fit with "default" values was not considered sufficiently good. In the studies of relatively insoluble forms of neptunium (oxide and contaminated dust) analysed here, s_t was not well defined: its value was assumed to be 3 d$^{-1}$, the general default value for Type M and S materials. No information was found that enabled bound state parameter values for neptunium to be estimated. In analyses carried out here to estimate values of the dissolution parameters (f_r, s_r and s_s) it was assumed that the bound state could be neglected, i.e. the bound fraction $f_b = 0.0$.

Neptunium nitrate (Np(NO$_3$)$_x$)

According to Thompson (1982) several publications in the Russian literature appear to refer to a single series of experiments involving intratracheal administration to rats of 237Np(V, VI) nitrate and of 237Np(IV) oxalate (e.g. Levdk et al. 1972a,b). None report data on the kinetics of neptunium retention in, or absorption from, the lungs, but Thompson inferred from calculated doses a biological retention half-time in the lungs (T_b) of 100 – 200 d for both compounds, indicating Type M behaviour. Details were, however, reported of the distribution of neptunium within the lungs from autoradiographic studies. The results indicate that lung retention was mainly in particulate form rather than bound (see section on bound state below).

Lyubchanskiy and Levdk (1972) followed the tissue distribution of 237Np up to 512 d after inhalation of 237Np(V,VI) nitrate (and oxalate, see below) by rats. There was considerable rapid absorption (more than for the oxalate): at the first measurement (0.25 d) ~70% of the initial lung deposit (ILD) had deposited in the systemic tissues, mostly in the skeleton. Lung clearance was relatively slow thereafter: retention falling to ~13% ILD at 32 d and ~1% ILD at 512 d. Analysis carried out here showed that the results could be fit with absorption parameter values as follows: f_r was well defined at ~0.7, s_t was not well defined, but s_s >10 d$^{-1}$; and s_s was not well defined but <0.002 d$^{-1}$.

Sullivan et al. (1986) followed the tissue distribution of 237Np up to 750 d after inhalation of 237Np nitrate by rats, at three exposure levels: High, Medium and Low, with inhaled masses of about 0.5, 0.25 and 0.17 mg 237Np respectively per rat. The authors fit lung retention by a three-component exponential function: with $T_b = 1$ d (~78% ILD); 35 d (~21% ILD) and roughly 10,000 d (0.8% ILD). There was some rapid absorption: ~3% ILD was found in the skeleton immediately after exposure and ~15% ILD at 4 d. Analysis carried out here showed that the results could be fit with absorption parameter values as follows: f_r was well defined at ~0.6, s_t was fairly well defined, at ~10 d$^{-1}$; and s_s was not well defined but <0.002 d$^{-1}$.

Stradling et al. (2000) followed the biokinetics of 237Np for 180 d after instillation of Np nitrate into rats. Analysis carried out here showed that the results could be fit with absorption parameter values as follows: f_r was well defined at ~0.8, s_t was not well defined, but s_s >10 d$^{-1}$; and s_s was not well defined but <0.005 d$^{-1}$.
The results for neptunium nitrate, coming from three independent studies, are more comprehensive than for any other relatively soluble form of neptunium. They are consistent in giving values of f_r of about 0.7. They are also consistent in giving relatively high values of s_r, of the order 10 d$^{-1}$; and moderate (if uncertain) values of s_s, of the order 0.001 – 0.01 d$^{-1}$. These results are therefore used as the basis for assigning the default rapid dissolution rate for neptunium (see below). Inhalation exposure to neptunium nitrate is not unlikely. The results are consistent with assignment to Type M, but the values assessed for f_r and s_r are very different from the Type M default values. Specific parameter values of $f_r = 0.7$, $s_r = 30$ d$^{-1}$ and $s_s = 0.005$ d$^{-1}$ are used here for neptunium nitrate.

Neptunium oxalate (Np(C$_2$O$_4$)$_2$)

Lyubchanskiy and Levdi (1972) followed the tissue distribution of 237Np up to 650 d after inhalation of 237Np(IV) oxalate (and nitrate, see above) by rats. There was some rapid absorption, but less than for the nitrate: at the first measurement (0.25 d) ~20% ILD had deposited in the systemic tissues, mostly in the skeleton. Lung clearance was relatively slow thereafter: retention falling to ~30% ILD at 32 d and ~1% ILD at 650 d. Analysis carried out here showed that the results could be fit with absorption parameter values which were reasonably well defined as follows: f_r ~0.8, s_t ~2 d$^{-1}$, and s_s ~0.0015 d$^{-1}$. These results are consistent with assignment to Type M. Although absorption parameter values for neptunium oxalate based on in vivo data were derived, inhalation exposure to it is unlikely. Therefore specific parameter values for neptunium oxalate are not used here. Instead, it is assigned to Type M.

Neptunium citrate

Moskalev et al. (1972) followed the biokinetics of 237Np for 32 d after intratracheal instillation into rats. There was some rapid absorption: at the first measurement (1 d) ~9% ILD had deposited in the skeleton. Absorption continued slowly: at 32 d ~59% ILD remained in the lungs, with ~25% in the skeleton. The authors fit lung retention by a two-component exponential function: 31% with $T_b = 4$ d; and 69% with $T_b = 133$ d. A complementary intravenous (IV) injection experiment was carried out. The authors noted that following deposition in the lungs, most systemic deposition was in the skeleton, whereas after IV injection, most was deposited in the liver and spleen. This was attributed to colloid formation after IV injection. Analysis carried out here gave only broad estimates of absorption parameter values. With s_s fixed at 0.005 d$^{-1}$, f_r was estimated at ~0.2, and s_r was not well defined, but > 1 d$^{-1}$. These results give assignment to Type M.

Neptunium oxide (NpO$_2$)

Lizon et al. (1996) reported preliminary results (tissue distribution up to 92 d) of a study of the behaviour of 237Np in rats that inhaled 237NpO$_2$. Results were presented as fractions of initial deep lung deposit (IDLD) based on the lung content at the first measurement, 7 d. Average IDLDs were ~0.1 and 0.2 kBq in the two groups studied. Lung retention from 7 to 92 d was fit by a single exponential function with $T_b = 68$ d. The skeleton contained ~1% IDLD with little change from 7 to 92 d: liver and kidneys contained smaller amounts. In analyses carried out here for this, and other studies on neptunium oxide, s_r was not well defined: its value was assumed to be 3 d$^{-1}$, the general default value for Type M and S materials. Analysis carried out
here showed that the results could be fit with absorption parameter values as follows: \(f_r \) was well defined at 0.012; and \(s_s \) was well defined at \(3 \times 10^{-4} \) d\(^{-1} \). These results give assignment to Type S.

Guezingar et al. (1998) investigated the particle distribution in the lungs following inhalation of \(^{237} \text{NPo}_2 \) by rats, with average IDLD of 4.4 kBq. Lung retention was followed in each rat by external x-ray spectrometry. The authors fit lung retention from 7 to 500 d by a two-component exponential function: 60% with \(T_b = 65 \) d and the rest with \(T_b = 467 \) d. These results indicate Type S behaviour: there was insufficient information to estimate absorption parameter values. The high IDLD may well have resulted in impaired lung clearance by particle transport, as observed by Dudoignon et al. (1999, 2001) at similar exposure levels.

Dudoignon et al. (1999, 2001) investigated lung carcinogenesis in rats following inhalation of \(^{237} \text{NPo}_2 \) by rats, with average IDLD ranging from 0.1 to 7 kBq. Lung retention was followed in each rat by external x-ray spectrometry. The authors fit lung retention from 7 to \(~500\) d by a two-component exponential function. For an IDLD of 0.2 kBq (the lowest exposure level), \(~70\)% IDLD was retained with \(T_b \sim 30 \) d and the rest with \(T_b \sim 200 \) d. The half-time of the long-term retention phase increased with increasing IDLD. These results indicate Type S behaviour.

Ramounet et al. (2000) followed the lung retention and tissue distribution of \(^{237}\text{Np} \) in rats following inhalation of two industrial \(^{237}\text{NPo}_2 \) dusts: in one group (IDLD 0.9 kBq) to 365 d, and in the other (IDLD 5.8 kBq) to 90 d. The authors fit lung retention by a two-component exponential function. For both groups, \(~80\)% IDLD was retained with \(T_b \sim 30 \) d and the rest with \(T_b \sim 200 \) d. The authors noted that this was similar to reported retention of insoluble non-toxic particles in rats. Most of the transfer to blood occurred in the first week after inhalation, estimated to be \(~0.4\)% and \(~0.8\)% IDLD for the first and second groups respectively. Assuming a value of \(s_r = 100 \) d\(^{-1} \), the authors estimated values of \(f_r = 0.001 \) and 0.002 respectively, and a value of \(s_s = 1 \times 10^{-5} \) d\(^{-1} \) for both groups. Analysis carried out here (assuming a value of \(s_r = 3 \) d\(^{-1} \)) showed that the results could be fit with absorption parameter values as follows: for both exposure levels \(f_r \) was well defined at 0.003 and 0.006 respectively; only an upper limit for \(s_s \) was well defined at \(~1 \times 10^{-4} \) d\(^{-1} \) for both exposure levels. All these results give assignment to Type S.

Stradling et al. (2000) and Bailey et al. (1999) reported measurements of the lung retention and tissue distribution of \(^{237}\text{Np} \) to at least 140 d after inhalation of \(^{237}\text{NPo}_2 \) by rats, with average IDLD ranging from 0.1 to 4 kBq. About 2% ILD was absorbed in the first few days, and little thereafter. Analysis carried out here (assuming a value of \(s_r = 3 \) d\(^{-1} \)) showed that the results could be fit with absorption parameter values as follows: \(f_r \) was well defined at 0.04; but \(s_s \) was not well defined at \(~4 \times 10^{-4} \) d\(^{-1} \) (<0.002 d\(^{-1} \)). These results indicate Type S behaviour. Two in vitro tests were conducted on the same materials. In one, using a lung fluid simulant, 0.05–0.2% dissolved in 180 d, with \(~30\)% of total dissolution in the first 7 d. In the other, using Gamble’s solution, 0.05–0.2% dissolved in 180 d. These results give assignment to Type S.

Although absorption parameter values for \(\text{NpO}_2 \) based on in-vivo data were derived, they were not well defined: \(\text{NpO}_2 \) is therefore assigned to Type S.

Neptunium in contaminated dust

Bair and Case (1961) followed the biokinetics of \(^{237}\text{Np} \) for 30 d following inhalation by rats of an industrial material containing \(^{237}\text{Np} \). Summaries were reported by Ballou et al.
(1962), who also conducted complementary intravenous injection and gavage experiments, and by Bair et al. (1963). Because of the low specific activity, a large mass of dust (10 mg) was inhaled, containing 60% aluminium, 20% iron and 16% uranium. Lung retention of 237Np was about 7% and 2% ILD, at 1 d and 3 weeks, respectively, after inhalation. About 4% ILD was transported to systemic tissues or excreted in urine. The authors noted that the biokinetics might be affected by the large mass and possible chemical toxicity of the dust inhaled. Analysis carried out here (assuming a value of $s_r = 3 \text{ d}^{-1}$) showed that the results could be fit with absorption parameter values as follows: f_r was not well defined, but no more than a few percent; s_r was well defined at -0.04 d^{-1}. The results indicate Type M behaviour.

Nuclear weapons fallout

Erfurd et al. (1986) measured concentrations of 237Np and 239Pu in lung and liver samples from individuals with no known occupational exposure to any actinide element. The average 237Np/239Pu atom ratio was measured was 0.04, considerably lower than that in global fallout (~0.7). The authors concluded that the ratios measured in the tissues suggest that Np has been lost preferentially to Pu in the lung, and that the Np lost from the lungs was not concentrated in the liver. Overall this indicates Type M or S behaviour.

Rapid dissolution rate for neptunium

As described above, the results of studies with neptunium nitrate are considered to provide the best basis for assigning the default rapid dissolution rate for neptunium. The results of one study gave a value for s_r of $\sim 10 \text{ d}^{-1}$; those of the other two gave 10 d^{-1} as a lower limit. As these estimates are close to the general default value of 30 d^{-1}, this value is adopted here for all Type F forms of neptunium.

Extent of binding of neptunium to the respiratory tract

According to Thompson (1982), Levdik et al. (1972b) reported details of the microdistribution of neptunium within the lungs from autoradiographic studies involving intratracheal administration to rats of 237Np(V, VI) nitrate and of 237Np(IV) oxalate. At early times, the nitrate showed a more diffuse distribution than the oxalate, but after 7 d both forms appeared mainly as aggregates associated with macrophages of the alveolar septum, with desquamated cells of the alveolar and bronchial lumen, and less frequently in the bronchial epithelium. By 7 d after nitrate and 30 d after oxalate administration, accumulation of neptunium was noted along peribronchial and perivascular spaces, which was interpreted as being associated with elimination from the lung. From 6 to 12 months after administration accumulation was noted in reticular sinus cells and regional lymph nodes. This description indicates that lung retention was mainly in particulate form rather than bound. The data are insufficient to estimate the extent of any bound state. Although it is not clear that the bound state for neptunium is negligible, it is assumed by default that $f_b = 0$.
Table 21.2. Absorption parameter values for inhaled and ingested neptunium.

<table>
<thead>
<tr>
<th>Inhaled particulate materials</th>
<th>Absorption parameter values</th>
<th>Absorption from the alimentary tract,</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific parameter values</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neptunium nitrate</td>
<td>f_r 0.7, s_r (d^{-1}) 30, s_s (d^{-1}) 0.005</td>
<td>f_A 5×10^{-4}</td>
</tr>
</tbody>
</table>

Default parameter values		
Absorption Type	Assigned forms	
F	—	f_A 5×10^{-4}
M	Neptunium citrate, oxalate	f_A 1×10^{-4}
S	Neptunium dioxide	f_A 1×10^{-6}

Ingested materials		
--------------------	-----------------------------	
All chemical forms		f_A 5×10^{-4}

a. It is assumed that for neptunium the bound state can be neglected, i.e., $f_k = 0.0$. The value of s_r for Type F forms of neptunium (30 d^{-1}) is element-specific (although numerically equal to the general default value). The values for Types M and S (3 d^{-1}) are the general default values.

b. For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the alimentary tract, the default f_A values for ingested materials are applied: i.e., the (rounded) product of f_r for the absorption Type and the f_A value for ingested soluble forms of neptunium (5×10^{-4}).

c. See text for summary of information on which parameter values are based, and on ranges of parameter values observed in different studies. For neptunium nitrate, specific parameter values are used for dissolution in the lungs, but a default value of f_A (footnote b).

d. Materials (e.g. neptunium citrate) are generally listed here where there is sufficient information to assign to a default absorption Type, but not to give specific parameter values (see text).

e. Default Type M is recommended for use in the absence of specific information on which the exposure material can be assigned to an Absorption Type, e.g. if the form is unknown, or if the form is known but there is no information available on the absorption of that form from the respiratory tract.

f. Activity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject to reabsorption to blood. The default absorption fraction f_A for the secreted activity is the reference f_A ($=5\times10^{-4}$) for ingestion of the radionuclide.

21.2.2. Ingestion

The gastrointestinal absorption of neptunium is influenced by its initial chemical form (nitrate, citrate, bicarbonate…), mass and oxidation state (IV, V or VI) (ICRP, 2006).

Popplewell et al. (1991) measured the absorption of 239Np in five adult male volunteers by comparing urinary excretion after oral and intravenous administration as citrate; the mean f_1 value obtained was 2×10^{-4} for Np with a range of 10^{-4} to 3×10^{-4}.

Animal data on the absorption of Np have been reviewed in Harrison (1991) and Publication 100 (ICRP, 2006).

The first measurements of Np absorption involved administration of mg quantities of 237Np to rats and f_1 values of about 1×10^{-2} were obtained (Ballou et al., 1962; Sullivan and Crosby, 1975, 1976). Subsequent experiments established that absorption at lower concentrations in a number of animal species was an order of magnitude or more lower. Metivier et al. (1983, 1986) observed that absorption was about 10^{-3} in baboons given 15-66 ng.
\(^{239}\text{Np} \) as the nitrate and about \(1 \times 10^{-2} \) at a dose of 40-100 \(\mu g \) \(^{237}\text{Np} \). Harrison et al. (1984) reported in rats values of \(3 \times 10^{-3} \) for a 500 \(\mu g \) dose of \(^{237}\text{Np} \) as the nitrate and \(3 \times 10^{-4} \) for 0.5 \(\text{ng} \) of \(^{239}\text{Np} \). Ham et al. (1994) reported a \(f_1 \) value of \(2 \times 10^{-3} \) after administration to primates (C. jacchus) of 13 \(\mu g \) \(^{237}\text{Np(V)-citrate} \) by gastric intubation.

In Publication 30 (ICRP, 1980), absorption was taken to be \(1 \times 10^{-2} \) based on measurements on rats given high masses of \(^{237}\text{Np} \). In Publication 48 (ICRP, 1986), the effect of mass was discussed and a general value for actinides of \(10^{-3} \) was applied to Np. This value was also adopted in Publication 56 (ICRP, 1989). However, in this report available data provided a sufficient basis for the use of a general value of \(5 \times 10^{-4} \) for all actinides other than U.

An \(f_A \) value of \(5 \times 10^{-4} \) is adopted here for all chemical forms of Np.

21.2.3. Systemic distribution, retention and excretion of neptunium

21.2.3.1. Data

The rate of urinary excretion of \(^{239}\text{Np} \) was determined in five healthy adult male human subjects over 9-10 days following intravenous injection of this radionuclide in citrate solution (Popplewell et al., 1991). Cumulative urinary excretion during this period accounted for 23–42% of administered \(^{237}\text{Np} \). This is a considerably higher rate of urinary excretion than has been estimated for most other actinide elements in human subjects or laboratory animals.

![Fig. 21.1. Cumulative urinary excretion of \(^{239}\text{Np} \) by five healthy adult male humans following intravenous injection with \(^{239}\text{Np} \) citrate (data of Popplewell et al., 1991).](image)

The systemic biokinetics of neptunium has been studied in a variety of laboratory animals including baboons (Cohen, 1987; Ralston et al., 1986), monkeys (Durbin et al., 1986, 1989), tamarins (Cohen, 1987), swine (Sullivan and Gorham, 1982), rabbits (Buldakov et al., 1972), and rodents (Ballou et al., 1962; Moskalev et al., 1972; Lyubchanskii and Lev dik, 1972; Morin et al., 1973; Volf and Wirth, 1986; Paquet et al., 1996, 2000; Ramounet et al., 1998; Sontag et al., 1997). Collective data from animal studies indicate the following typical initial distribution of neptunium in adults: about half of absorbed or injected neptunium is deposited in
the skeleton, 10% or less is deposited in the liver, about 5% is deposited in kidneys and other soft tissues, a small percentage is excreted in feces, and the remainder is rapidly excreted in urine.

(638) The externally viewed removal half-time of neptunium from the liver is no more than a few weeks in mice and rats and a few months in non-human primates (Cohen, 1987; Durbin 1989), but these animals generally lose actinides from the liver at a much greater rate than do humans. Data for rabbits injected subcutaneously with neptunium (Buldakov et al., 1972) are consistent with a rate of loss from liver to blood on the order of 0.5–1.0 y\(^{-1}\). Comparative environmental and human autopsy data for \(^{237}\text{Np}\) and \(^{239}\text{Pu}\) (Efurd et al., 1984, 1986) are consistent with the assumption that neptunium is removed at a faster rate than plutonium from the human liver.

(639) The behavior of neptunium in the skeleton appears to be similar to that of other studied actinide elements, excluding uranium. Neptunium is deposited on bone surfaces, and formation of aggregates in bone marrow following bone remodeling is evident (Nenot et al., 1972; NCRP, 1988). The division between trabecular and cortical portions of the skeleton is closer to that of americium and alkaline earth elements than that of plutonium. Similarities between the gross skeletal distribution of neptunium and alkaline earth elements have been noted, particularly in the osteogenic part of bone (Nenot et al., 1972; Durbin et al., 1986).

21.2.3.2. Biokinetic model

(640) The biokinetic model for systemic neptunium applied in this report is described in Section 18.2.3.

21.2.3.3. Treatment of progeny

(641) The treatment of radioactive progeny of neptunium produced in systemic compartments or absorbed to blood after production in the respiratory or gastrointestinal tract is described in Section 18.2.4.

21.3. Individual monitoring

\(^{237}\text{Np}\)

(642) Measurements of \(^{237}\text{Np}\) concentrations in urine and faeces are used to determine intakes of the radionuclide for routine monitoring. The main techniques used for in vitro bioassay are alpha spectrometry and ICP-MS. The decay product \(^{233}\text{Pa}\) grows into equilibrium with \(^{237}\text{Np}\) within several tens of days and transforms into \(^{233}\text{U}\), as alpha-emitter with a long half-life. \(^{233}\text{Pa}\) can be measured more easily than \(^{237}\text{Np}\) and can serve as an indicator of contamination with \(^{237}\text{Np}\). In vivo lung measurements of \(^{237}\text{Np}\) may be used to determine intakes of the radionuclide for routine monitoring. Whole body measurement may be used as an additional technique for special investigations. The main technique for in vivo measurements is gamma spectrometry.

Table 21.3. Monitoring techniques for \(^{237}\text{Np}\).
Isotope Monitoring Technique Method of Measurement Typical Detection Limit Achievable detection limit

237Np Urine Bioassay α spectrometry 0.6 mBq/L 0.1 mBq/L

237Np Urine Bioassay ICP-MS\(^a\) 1.0×10^{-12} g/L 4.0×10^{-13} g/L

237Np Faecal Bioassay α spectrometry 1 mBq/24h 1 mBq/24h

237Np Lung Measurement\(^b\) γ-ray spectrometry 25 Bq 13 Bq

237Np Whole Body Measurement\(^c\) γ-ray spectrometry 400 Bq 200 Bq

\(^a\) Inductively Coupled Plasma Mass Spectrometry (ICP-MS).

\(^b\) Measurement system comprised of two Broad Energy Germanium Detectors (BEGe), counting time of 36 minutes and chest wall thickness of 2.54 cm.

\(^c\) Measurement system comprised of two Broad Energy Germanium Detectors (BEGe) and counting time of 15 minutes.

239Np

(643) \textit{In vivo} lung measurements of 239Np are used to determine intakes of the radionuclide for routine monitoring. Measurements of 237Np concentrations in urine and faeces may be used to determine intakes of the radionuclide. Whole body measurement may be used as an additional technique for special investigations. The main technique is gamma spectrometry.

Table 21.4. Monitoring techniques for 239Np.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Monitoring Technique</th>
<th>Method of Measurement</th>
<th>Typical Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>239Np</td>
<td>Urine Bioassay</td>
<td>γ-ray spectrometry</td>
<td>18 Bq/L</td>
</tr>
<tr>
<td>239Np</td>
<td>Faecal Bioassay</td>
<td>γ-ray spectrometry</td>
<td>18 Bq/24h</td>
</tr>
<tr>
<td>239Np</td>
<td>Lung Measurement(^a)</td>
<td>γ-ray spectrometry</td>
<td>10 Bq</td>
</tr>
<tr>
<td>239Np</td>
<td>Whole Body Measurement(^b)</td>
<td>γ-ray spectrometry</td>
<td>200 Bq</td>
</tr>
</tbody>
</table>

\(^a\) Measurement system comprised of two Broad Energy Germanium Detectors (BEGe), counting time of 36 minutes and chest wall thickness of 2.54 cm.

\(^b\) Measurement system comprised of two Broad Energy Germanium Detectors (BEGe) and counting time of 15 minutes.

21.4. Dosimetric data for neptunium

Dosimetric data will be provided in the final version of the document.
REFERENCES

16(2/3).
ICRP, 1989. Age-dependent doses to members of the public from intake of radionuclides. Part
ICRP, 1993. Age-dependent doses to members of the public from intake of radionuclides. Part
Ann. ICRP 36(1/2).
44(2)
and microdistribution of neptunium-237 in the rat following intratracheal
administration of the isotope. In: Biological Effects of Radiation From External and
Internal Sources (Ed. by Moskalev, Y.I., Kalistratova, V.S.), 229–239. Meditsina,
Moscow. (Translated in US Atomic Energy Commission Document AEC-Tr-7457,
342–351.)
of NpO$_2$ in the Rat: preliminary results. In: IRPA 9, Proceedings of the 9th
International Congress of the International Radiation Protection Association, Vienna,
Hofburg, Austria, 451–453.
In: Biological Effects of Radiation From External and Internal Sources. Translation
AEC-Tr-7457 (Ed. by Y.I.Moskalev & V.S.Kalistratova), 204-214. Moscow,
Medititsina.
190–200.
neptunium V chez le singe et le rat. Radioprot. 18, 13–17.
311–315.
biological effects of neptunium-237. In: Biological Effects of Radiation From External
and Internal Sources.(Translated in US Atomic Energy Commission Document AEC-
Tr-7457, 330–341.) (Ed. by Y.I.Moskalev & V.S.Kalistratova), 220–229. Meditsina,
Moscow.
Mueller, W. A., Linzner, U., 1983. Distribution and dosimetry studies after incorporation of
National Council on Radiation Protection and Measurements, Bethesda, MD
for Their Assessment, Dosimetry and Treatment. NCRP Report No. 156. National
Council on Radiation Protection and Measurements, Bethesda, MD

190

22. PLUTONIUM (Z=94)

22.1. Chemical Forms in the Workplace
Plutonium is an actinide element which occurs in various oxidation states (III to VII), but mostly in oxidation state (IV). Plutonium may be encountered in a variety of chemical and physical forms, including metal, carbides, hydroxides, oxides (PuO$_2$), including mixed oxide reactor fuel (MOX), chlorides, oxalates and nitrates, and also organic forms such as tributyl-phosphate (TBP). 238Pu, 239Pu, 240Pu, 241Pu are the main isotopes of plutonium, and 239Pu is the main fissile material used for the production of nuclear weapons.

Some studies indicate that the biokinetics of plutonium depends on the total mass of circulating plutonium. This leads to significant differences between isotopes (e.g. 238Pu and 239Pu) when their biokinetics is expressed in terms of activity, due to differences in specific activity (and thus in total plutonium mass (Guilmette et al., 1992).

Table 22.1. Isotopes of plutonium addressed in this report.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Physical half-life</th>
<th>Decay mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pu-232</td>
<td>33.7 m</td>
<td>EC, A</td>
</tr>
<tr>
<td>Pu-234</td>
<td>8.8 h</td>
<td>EC, A</td>
</tr>
<tr>
<td>Pu-235</td>
<td>25.3 m</td>
<td>EC, A</td>
</tr>
<tr>
<td>Pu-236</td>
<td>2.858 y</td>
<td>A, SF</td>
</tr>
<tr>
<td>Pu-237</td>
<td>45.2 d</td>
<td>EC, A</td>
</tr>
<tr>
<td>Pu-238a</td>
<td>87.7 y</td>
<td>A, SF</td>
</tr>
<tr>
<td>Pu-239a</td>
<td>2.411E+4 y</td>
<td>A</td>
</tr>
<tr>
<td>Pu-240a</td>
<td>6.564E+3 y</td>
<td>A, SF</td>
</tr>
<tr>
<td>Pu-241a</td>
<td>14.35 y</td>
<td>B-, A</td>
</tr>
<tr>
<td>Pu-242</td>
<td>3.75E+5 y</td>
<td>A, SF</td>
</tr>
<tr>
<td>Pu-243</td>
<td>4.956 h</td>
<td>B-</td>
</tr>
<tr>
<td>Pu-244</td>
<td>8.00E+7 y</td>
<td>A, SF</td>
</tr>
<tr>
<td>Pu-245</td>
<td>10.5 h</td>
<td>B-</td>
</tr>
<tr>
<td>Pu-246</td>
<td>10.84 d</td>
<td>B-</td>
</tr>
</tbody>
</table>

aDose coefficients and bioassay data for this radionuclide are given in the printed copy of this report. Data for other radionuclides listed in this table are given in the accompanying electronic annexes.

22.2. Routes of Intake

22.2.1. Inhalation
There is extensive information available on the behaviour of plutonium after deposition in the respiratory tract from animal experiments (mainly in rats, dogs and baboons), in-vitro dissolution studies, some accidental human intakes, and one human volunteer study. Publication 19 (1972) reviewed information then available on inhalation of plutonium. It
summarised the results of over forty in-vivo experiments, about half of which were on plutonium dioxide, several on the nitrate, and the others on a wide range of laboratory forms. ICRP Publication 48 (ICRP, 1986) addressed the behaviour of plutonium entering the body by inhalation in the context of the Publication 30 Lung Model (ICRP 1979). It placed emphasis on more recent data, supplementing those studies already covered in Publications 19 and 31 (ICRP 1972, 1980) (The latter was mainly concerned with the biological effects of inhaled radionuclides.) Because the various oxide forms had been the most thoroughly studied, they were given special attention and used to illustrate the effects of important variables influencing the distribution and retention of radionuclides in the respiratory tract, including: impairment of clearance by radiation effects and other pathology; the temperature of oxide formation; particle size; specific activity (^{238}Pu vs. ^{239}Pu); and the presence of other metals. Of the more soluble forms, the nitrate and tri-butyl phosphate complex were considered in detail as being of most importance for occupational exposure.

(647) Publication 71 (ICRP, 1995) provided a brief review of the literature relating to inhaled plutonium compounds in the context of the HRTM, and with emphasis on forms to which members of the public might be exposed as a result of environmental releases. More recently, HRTM absorption parameter values have been derived from the results of animal and in-vitro studies for a wide range of compounds encountered in the nuclear fuel industry. Davesne et al. (2010) carried out a comprehensive review, re-interpreting experimental data in many cases to derive values for f, s_r, and s_i for each chemical form (assuming $f_b = 0$, see below). Emphasis is given here to studies which provide information on HRTM absorption parameter values for forms of most importance for occupational exposure. The Task Group has here re-analysed the data from most of the studies and utilised some extended data sets that were not available to Davesne et al. (2010).

(648) Absorption parameter values for important particulate forms of plutonium are given in: Tables 22.2 and 22.3 for plutonium nitrate; Table 22.4 for plutonium-239 dioxide; Table 22.5 for plutonium-uranium mixed oxides (MOX); and Table 22.6 for plutonium-238 dioxide. Recommended absorption parameter values and Types, and associated f_A values for particulate forms of plutonium are given in Table 22.9.

(649) Reference biokinetic models were used here (i.e. by the Task Group) for the analysis of the data and the determination of absorption parameter values. Data from the human studies were interpreted using the revised HRTM (ICRP, 2015), the Gastro-Intestinal Tract Model (ICRP, 1979) or the Human Alimentary Tract Model (HATM, ICRP, 2006), and the systemic model for plutonium described in section 22.2.3. Data from a study of the biokinetics of inhaled plutonium nitrate in monkeys (Brooks et al., 1992) were interpreted using the revised HRTM and the systemic model for humans described in section 22.2.3. Respiratory tract deposition fractions were determined from measured bioassay data.

(650) The rat studies were interpreted using the respiratory tract model described in ICRP Supporting Guidance 3 (ICRP, 2002), and a simple gastro-intestinal and systemic model (Smith, 201X). This model was derived from data on the retention and excretion of intravenously (IV) injected plutonium citrate in rats (Bailey et al., 1999), from rat gavage studies of insoluble forms of gadolinium (Pellow et al., 2016a) and terbium (Hodgson et al., 2004) and from published data on rat digestive tract transit times (Enck et al., 1989; Quini et al. 2012; Schoonjans et al. 2002).

(651) In analysis of many of the rat studies there were large uncertainties in the values of s_r and f_r, partly due to the (negative) correlation between them: a good fit to a dataset can be obtained with a range of values of each, if suitable data do not constrain one or the other. For
example, analyses of measurements by Stather and Priest (1977) of 238Pu and 239Pu after
instillation of a solution of the nitrates gave a large difference between the estimated values of
s_r, even though the data sets were similar (see below). Therefore, a single fixed s_r value for rats
(1 d$^{-1}$) was derived (Smith, 201x) from the individual s_r values estimated for a subset of the
studies where sufficient early retention data were available (Table 22.8). Data from each study
were then re-analysed using this fixed s_r value to obtain more robust f_r and s_s values (Table
22.2).

(652) The structure of the rat respiratory tract model (ICRP, 2002) was also used to analyse
data from the dog studies. The particle transport rates from the TB and ET compartments and
the deposition fractions in the TB$_{slow}$ and TB$_{fast}$ compartments were the default values used in
the rat model (ICRP, 2002). The particle transport rates from the AI compartments and the
deposition fractions in the AI compartments were obtained from measurements on dogs
supplied by Kreyling (1990) and are reported by Pellow et al. (2016a). The gastro-intestinal and
systemic models for the dog described in Mewhinney and Diel (1983) were used.

Absorption Types and parameter values

(653) Two studies of occupational exposure to plutonium nitrate in humans (Puncher et al.,
2016b,c) and one experimental study in dogs (Pellow et al., 2016b; Puncher et al., 2016a)
provide strong evidence for the existence of a long-term retained component in the respiratory
tract, for which the bound state provides the simplest explanation. The assessed values for the
bound state parameters ($f_b = 0.002$; $s_b = 0$ d$^{-1}$) were applied in the analysis of the results of all
the plutonium studies reported in this section. A detailed discussion on binding of plutonium in
the respiratory tract and on the choice of the values for f_b and s_b is provided below in the
section: 'Extent of binding of plutonium in the respiratory tract'.

(654) Due to the large number of studies of the biokinetics of inhaled and instilled
plutonium, results for each chemical form are generally presented for each species studied in
turn.

Plutonium citrate

(655) Ballou et al. (1972) followed the biokinetics of 239Pu in Beagle dogs for 100 days
after inhalation of plutonium citrate (pH 3.5). Complementary experiments were also carried
out where plutonium citrate was administered orally and intravenously. After inhalation, about
60% of the initial lung deposit (ILD) cleared within 7 days, and this was attributed to deposition
in the upper respiratory tract (URT). The content of the skeleton increased from ~6% ILD at 1 d
to ~40% ILD for t > 50 d, exceeding that in the lungs (~30% ILD). Analysis here gave: $f_r = 0.3$,
$s_r = 0.5$ d$^{-1}$, $s_s = 0.005$ d$^{-1}$, and assignment to Type M.

(656) Stather and Howden (1975) investigated the effect of chemical form on the
biokinetics of plutonium in rats after intra-tracheal instillation of plutonium citrate (pH 6.5) and
nitrate. Rats were killed at times up to 180 days and 239Pu content was measured in lungs, liver,
remaining carcass, urine and faeces. Lung retention as a fraction of the estimated ILD was
lower for citrate than for nitrate, and in particular showed faster transfer to systemic tissue in
the first day and the first week. Analysis here for the citrate gave: $f_r = 0.8$, $s_r = 2$ d$^{-1}$, $s_s = 0.008$
d$^{-1}$, and assignment to Type M. Analysis here for the nitrate gave: $f_r = 0.6$, $s_r = 1.4$ d$^{-1}$, $s_s =
0.003$ d$^{-1}$. To obtain more robust f_r and s_s values for comparison purposes, the data were re-
analysed here with fixed $s_r = 1$ d$^{-1}$ (see above), which gave: $f_r = 0.8$ and $s_s = 0.007$ d$^{-1}$ for the
citrate, and \(f_r = 0.6 \) and \(s_s = 0.001 \text{ d}^{-1} \) for the nitrate, indicating that absorption of citrate was higher in both the rapid and slow phases.

(657) Smith et al. (1977) followed the biokinetics of \(^{239}\text{Pu}\) in rats for 17 d after intra-tracheal instillation of plutonium citrate (0.01M nitric acid / 2% sodium citrate). The lung content fell from 27% ILD at 18 hours to 10% and 7.4% ILD at 6 and 17 days respectively, whilst the content in systemic tissues increased from 59% to 75% and 73% ILD respectively.

Analysis here gave: \(f_r = 0.9, s_r = 2 \text{ d}^{-1} \) with fixed \(s_s = 0.001 \text{ d}^{-1} \), and assignment to Type M, but very close to the criterion for assignment to Type F. As retention was only measured for 17 days, the value of \(s_s \) is poorly defined. Analysis indicated only that its value is less than 0.01 \text{ d}^{-1}.

(658) Although absorption parameter values for plutonium citrate based on in-vivo data were derived, inhalation exposure to it is unlikely. Therefore specific parameter values for plutonium citrate are not used here. Instead, it is assigned to Type M. However, the results were taken into account in the selection of the rapid dissolution rate for plutonium. They made only a small contribution to it, because more results are available for plutonium nitrate, including human volunteer data.

Pu chloride (PuCl\(_3\))

(659) Publication 19 (ICRP, 1972) includes one PuCl\(_3\) inhalation experiment in its review: retention in lung and skeleton were broadly similar to those following inhalation of nitrate. It is not considered in detail here because exposure to PuCl\(_3\) is unlikely. However, one account of accidental occupational exposure was found in the literature.

(660) Ramsden et al. (1970) reported an incident in which two workers inhaled an aerosol believed to be a mixture of ferrous chloride and plutonium chloride (PuCl\(_3\)) in a finely divided form (smoke or fume). The mass median diameter was estimated to be about 0.2 \text{ µm}. Both men started faecal and urine sampling programmes immediately. Faecal \(^{239}\text{Pu}\) activity in the first 5 days was so low that long term sampling was not undertaken. Urine sampling continued for four months, until the levels were below the limit of detection. Lung content was measured at 2 and 365 days and was below the limit of detection (3 nCi, ~100 Bq) at both times. Analysis here, taking a fixed value for \(s_r \) of 0.4 \text{ d}^{-1}, gave \(f_r = 0.15 \) and \(s_s = 0.005 \text{ d}^{-1} \), and assignment to Type M.

(661) Although absorption parameter values for plutonium chloride based on in-vivo data were derived, inhalation exposure to it is unlikely. Therefore specific parameter values for plutonium chloride are not used here. Instead, it is assigned to Type M.

Plutonium nitrate (Pu(NO\(_3\))\(_4\))

(662) Plutonium nitrate in aqueous solution is widely encountered in nuclear fuel fabrication and reprocessing. There are numerous biokinetic studies on plutonium nitrate following intra-tracheal instillation into rats, and inhalation by rats, dogs, monkeys and people.

The importance of the mass of plutonium deposited in the lung has been recognised for plutonium nitrate, as absorption can be inhibited by relatively high mass loadings, possibly because of colloid formation (Nolibé et al., 1989). High mass loadings rarely occur and so such effects are not considered to be of concern for routine exposures to plutonium.

Man
Two human volunteers inhaled a mixed 237Pu/244Pu nitrate aerosol with a breathing pattern designed to maximise alveolar deposition (Etherington et al., 2003). Measurements were made of 237Pu lung and liver retention by external counting up to about 4 months; and of 237Pu and/or 244Pu in blood and excreta for several years. The data were re-interpreted using the revised HRTM, the HATM and a modified version of the systemic model described in section 22.2.3, by means of a Bayesian analysis (Puncher and Etherington, 2016). Particle transport rates were determined from the measured data. Absorption parameter values were determined from a combined analysis for the two volunteers: $f_r = 0.2$, $s_r = 0.4 \text{d}^{-1}$, $s_s = 0.002 \text{d}^{-1}$, consistent with assignment to Type M.

Puncher et al. (2016b) performed an analysis of the autopsy and bioassay data of United States Trans-Uranium and Uranium Registries (USTUR) donor 269, a plutonium worker who died 38 y after receiving a high (58 kBq) acute intake of plutonium nitrate by inhalation (James et al., 2007). The analysis also used the results of recent measurements (Tolmachev et al., 2016) on plutonium in the extra-thoracic (ET$_2$), bronchial, bronchiolar and alveolar-interstitial regions and in the thoracic lymph nodes for this donor. The data were found to be uninformative on the rapid absorbed fraction parameters, which were therefore fixed at $f_r = 0.17$ and $s_r = 1 \text{d}^{-1}$. The fixed s_r value was based on an assessment of s_r values from a limited number of in-vivo studies on plutonium nitrate and oxides in a variety of mammals, which were adequately described by lognormal distributions centred on 1 d^{-1}, whilst the f_r value was based on a similar assessment for plutonium nitrate only (Puncher et al., 2011). After the measured systemic (liver and skeleton) retention data were corrected to remove the effect of DTPA (diethylene triamine pentaacetic acid) treatment, the mean value for f_b was determined as 0.0037. There was no evidence for an s_b value other than zero. The estimated value for s_s was 0.0048 d^{-1}. Puncher et al. (2016b) is one of the two studies that provide the basis for the adoption of a bound state for plutonium, the other being Pellow et al. (2016b) (see below).

Puncher et al. (2016c) performed an analysis of autopsy data (plutonium activity in skeleton, liver, lungs, and thoracic lymph nodes) from 20 former plutonium workers of the Mayak Production Association (MPA) exposed only to plutonium nitrates, and 20 workers exposed only to plutonium oxides. The mean value for f_b was determined as 0.0014. There was no evidence for an s_b value other than zero. The rapid fraction and rapid dissolution rate were fixed at values of 0.17 and 1 d^{-1} (see above) and the mean value determined for s_s was $2.5 \times 10^{-4} \text{d}^{-1}$.

Monkeys

Brooks et al. (1992) investigated the distribution and the biological effects of inhaled 239Pu nitrate in 20 male cynomolgus monkeys. Animals died or were sacrificed and amounts were measured in lungs, liver and skeleton at times between 4 days and 99 months. Amounts were also measured in urine and faeces collected daily up to 38 days. Projected ILDs were 40, 10, or 4 kBq. Three animals exposed to 40 kBq of 239Pu died of radiation-related pulmonary pneumonitis and fibrosis, but inclusion or exclusion of these data did not significantly affect the absorption parameter analysis. The systemic model was adjusted to account for the shorter residence time of Pu in the liver. Analysis here gave: $f_r = 0.1$, $s_r > 0.1 \text{d}^{-1}$, $s_s = 0.003 \text{d}^{-1}$, and assignment to Type M.

Dogs
Bair (1970) followed the biokinetics of 239Pu for 300 d after inhalation of 239Pu nitrate by dogs. Results were also reported by McClellan (1972) for comparison with results on americium and curium. Fifteen dogs inhaled an aerosol of a plutonium HNO$_3$ solution (0.14N for three dogs killed after one month and 0.27N for twelve dogs killed at times between 75 and 303 days). The lungs contained about 65% of the sacrifice body burden one month after exposure; skeleton and liver contained about 20% and 12% respectively. Autoradiographs showed much particulate plutonium in the lung, probably due to colloid formation in the aerosol droplets. The lung retention dropped to about 35% ILD at 200-300 days: about 2% ILD was transferred to tracheobronchial lymph nodes (TBLN), 25% to skeleton and 7% to liver. About 15% was excreted in faeces and 1% in urine. Analysis here gave: $f_r = 0.3$, $s_r = 0.2$ d$^{-1}$, $s_s = 0.0013$ d$^{-1}$, and assignment to Type M.

Dagle et al. (1983) compared the biokinetics of plutonium in 24 Beagle dogs after nose-only inhalation of 238Pu and 239Pu nitrate (0.27N nitric acid solution), as part of a 15-year life span effects study (Dagle et al., 1993; PNL, 1994). Amounts in tissues and excreta were measured for dogs killed at times between 3 days and 12 months. The ILD was defined as the total tissue and excretion content minus the content in the first 3 days faecal excreta. Plutonium-238 cleared more rapidly from the lungs than 239Pu: the lung content was 49% and 88% ILD respectively after 3 days. The lung and tissue content after one year were 2% and 72% for 238Pu and 13% and 56% for 239Pu. Given the similar amounts of administered activity, the difference between isotopes may be attributed to the lower specific activity/higher mass of 239Pu and a possible increased formation of colloids, which are less readily translocated from lungs to blood. Analyses here gave: $f_r = 0.8$, $s_r = 0.3$ d$^{-1}$, $s_s = 0.005$ d$^{-1}$ for 238Pu, and $f_r = 0.13$, $s_r = 0.14$ d$^{-1}$, $s_s = 0.004$ d$^{-1}$ for 239Pu, both consistent with assignment to Type M.

The data for 239Pu, including long-term retention measurements, were analysed by Pellow et al. (2016b) and Puncher et al. (2016a). Lung clearance of 239Pu was modelled using simplified and modified versions of the Publication 66 HRTM and the revised HRTM (ICRP, 2015). The arithmetic mean of the posterior distribution for f_b, determined using a model based on the Publication 66 HRTM, was 0.0023. The half time associated with this bound fraction was greater than 70,000 days, and so the uptake rate to blood from the bound state (s_b) was assigned a value of 0 d$^{-1}$. The rapid fraction and rapid dissolution rate were fixed at 0.17 and 1 d$^{-1}$ (see study of USTUR donor 0269 above) and the arithmetic mean of the posterior distribution determined for s_s was 0.0023 d$^{-1}$.

Rats

Absorption parameter values obtained from individual analyses of the data from each study are presented with the study descriptions below. Although biokinetic data from a large number of studies with laboratory rats are available, the information obtainable from each individual study on the rapid dissolution rate, s_r, is limited, mainly because of the limited amount of early retention data.

Morin et al. (1972) compared the biokinetics of 238Pu and 239Pu in rats following inhalation and intravenous injection of Pu nitrate. Rats inhaled Pu in HNO$_3$ solution (pH 1). Amounts were measured in lung, systemic organs and in urinary and faecal excretion for 1 to 45 days and 1 to 90 days after inhalation for 238Pu and 239Pu, respectively. The lung clearance rate for 239Pu was higher than that for 238Pu: lung retention on days 1 and 45 was 96% ILD and 30% ILD for 238Pu and 79% ILD and 30% ILD for 239Pu. Individual analyses here gave: $f_r = 0.13$, s_r,
Nénot et al. (1972) compared retention of ^{238}Pu, ^{239}Pu, ^{241}Am and ^{242}Cm in the lungs and bone of rats following inhalation of the nitrates. Lung retention was measured in the period 2 to 42 d for ^{238}Pu and in the period 8 to 90 days for ^{239}Pu. Lung retention was broadly similar although ^{239}Pu cleared slightly more rapidly than ^{238}Pu: for ^{239}Pu, 30% ILD was retained at 45 days, while for ^{238}Pu, ~42% ILD was retained at 42 days. Individual analyses here gave: $f_t = 0.14$, $s_t = 0.2$ d$^{-1}$, $s_s = 0.005$ d$^{-1}$ for ^{238}Pu and $f_t = 0.04$, $s_t = 0.8$ d$^{-1}$, $s_s = 0.004$ d$^{-1}$ for ^{239}Pu, both consistent with assignment to Type M. No details of the inhalation exposure were given. However, the authors noted that some differences in retention could have been due to differences in mucociliary clearance and/or to the greater mass of ^{239}Pu than that of the other radionuclides, which suggests that the radionuclides were administered separately.

Stather and Howden (1975) investigated the effect of chemical form on the distribution and excretion of plutonium after intra-tracheal instillation into the respiratory tract of rats as the citrate or nitrate. ^{239}Pu nitrate was administered in 0.01M nitric acid. The ^{239}Pu content of the lungs, liver and remaining carcass, and the urine and faeces were analysed. Lung retention as a fraction of the estimated ILD was higher for nitrate than for citrate for the six months follow-up, showing, in particular, slower transfer to systemic tissues in the first day and first week. Analysis here for the nitrate gave: $f_t = 0.6$, $s_t = 1.4$ d$^{-1}$, $s_s = 0.003$ d$^{-1}$, and assignment to Type M.

Stather and Priest (1977) administered a solution of 0.01N nitric acid containing ^{239}Pu, ^{238}Pu and ^{241}Am nitrates to rats by intratracheal instillation. Groups were killed at times between 1 and 120 days. The lung, liver and carcass contents (%ILD) of ^{238}Pu and ^{239}Pu were similar. Lung content fell from about 70% ILD at 1 day to 40% and 7.3% at 7 and 120 days respectively. Content in systemic organs increased from 21% ILD at 1 day to about 40% at 120 days. Individual analyses here gave: $f_t = 0.4$, $s_t = 80$ d$^{-1}$, $s_s = 0.007$ d$^{-1}$ for ^{238}Pu and $f_t = 0.5$, $s_t = 0.4$ d$^{-1}$, $s_s = 0.004$ d$^{-1}$ for ^{239}Pu, both consistent with assignment to Type M.

Ballou et al. (1977) studied long-term effects, retention and distribution of ^{239}Pu in rats exposed by nose-only inhalation to a ^{239}Pu nitrate aerosol (0.27N nitric acid). The amounts in lung, liver and skeleton were followed for over 900 days and analysed here for the rats which were not treated with Ca-DTPA. The first measurements, at 30 days, show a small transfer of plutonium from lung to systemic tissues. Ballou et al. (1977) described the lung retention as the sum of three exponentials with effective half-times (T_b) of 5, 35 and 155 days, associated with 60, 30 and 10% ILD, respectively. Analysis here resulted in satisfactory fits to the data only with a fixed s_t value (taken to be 1 d$^{-1}$, Table 22.2) giving $f_t = 0.06$, $s_s = 0.004$ d$^{-1}$, and assignment to Type M.

Stradling et al. (1987) exposed rats by inhalation to a laboratory prepared mixed aerosol of ^{238}Pu and ^{241}Am nitrate. The ^{238}Pu ILD was determined from tissue analysis of rats killed immediately after exposure. Lung and organ retention was measured at times between 7, and 252 days. The Pu lung content had reduced to 64%, 36% and 2.3% ILD at 7, 28 and 252 days respectively while the systemic content increased up to about 20% at 252 days. Analysis here gave: $f_t = 0.5$, $s_t = 0.1$ d$^{-1}$, $s_s = 0.002$ d$^{-1}$, and assignment to Type M.

Moody et al. (1993, 1994, 1998) exposed 35 rats, by nose-only inhalation, to a sample of diluted industrial process feed liquor, essentially Pu nitrate in 0.01M nitric acid (designated "Material A"). (The experiment complemented two involving intratracheal instillation into rats of particulate materials which were 10- to 20-year-old residues of nitrate absorbed on to ubiquitous building dust: see Plutonium nitrate residues section below.) The
ILD was estimated from analysis of tissues of rats killed 30 minutes after exposure. Further groups were killed at times between 7 and 365 days. The lungs, liver and remaining carcass (excluding gastrointestinal tract, the pelt and the extremities) were analysed for total plutonium activity. Lung content decreased from 49% to 1.8% ILD and the liver content decreased from 8.1% to 1.1% between 1 and 365 days. Analysis here gave: $f_r = 0.6$, $s_s = 0.002 \text{ d}^{-1}$, and assignment to Type M.

Pellow et al. (2016c) reported the results of measurements of the biokinetics of plutonium for 170 d after inhalation and intratracheal instillation of Pu nitrate into rats. In the inhalation experiment (Hodgson et al., 2003), rats were exposed for 40 minutes by nose-only inhalation to a 237Pu nitrate aerosol. Groups were killed at 10-minute intervals during the exposure and at 10 and 30 minutes, 1, 3 and 6 hours and at times between 1 and 84 days. The average 237Pu ILD of the rats killed immediately after exposure was 23% of the total amount in the body, including activity on the pelt. This fell to approximately 12% at 7 and 84 days respectively. The liver content initially rose from 0.3% to 1% at 7 days and then fell gradually to 0.5% at 84 days.

In the complementary instillation experiments, 0.1 ml of plutonium nitrate in saline was instilled into the lungs of rats. Animals received 237Pu and/or 238Pu. Early results were based on 237Pu alone or the average of 237Pu plus 238Pu. Later values were based on 238Pu alone due to the short half-life of 237Pu. Animals were killed at 10 and 30 minutes, 1, 3 and 6 hours and at times between 1 and 169 days. Initial clearance of material from the lungs was rapid with only 57, 29 and 19% remaining in the lungs at 1 hour and 1 and 7 days respectively and eventually falling to 4% at 169 days. The systemic content at these times was 22, 34, 35 and 26% ILD. Most of the activity cleared from the body via the faeces, cumulative excretion at 1, 7 and 169 days being 22, 31 and 60%, whereas no more than about 3% was excreted in urine by 169 days. In analyses here, independent estimates for inhalation gave: $f_r = 0.13$, $s_r = 12 \text{ d}^{-1}$, $s_s = 0.007 \text{ d}^{-1}$; and for instillation: $f_r = 0.7$, $s_r = 20 \text{ d}^{-1}$, $s_s = 0.003 \text{ d}^{-1}$, both consistent with assignment to Type M.

The rapid fraction was larger following instillation than following inhalation. A higher rapid fraction following instillation of plutonium nitrate than following inhalation was noted by ICRP (2002, Section C.6.4), in a discussion of the advantages and disadvantages of different methods of administration of radionuclides to the respiratory tract for biokinetic studies. Several possible reasons were considered including differences in distribution and artefacts resulting from the presence of liquid.

Results of the re-analysis of these experimental studies made here using a single fixed s_r value of 1 d$^{-1}$ (see below) are presented in Table 22.2. The difference between absorption parameter values obtained from instillation and inhalation experiments, and in particular the difference in f_r values, is clearly shown by the median and range of values given in the Table.

<table>
<thead>
<tr>
<th>Administration</th>
<th>Absorption parameter valuesa</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhaled, 239Pu</td>
<td>$f_r = 0.04$, $s_s = 0.0085$</td>
<td>Morin et al. (1972)</td>
</tr>
<tr>
<td>Inhaled, 237Pu</td>
<td>$f_r = 0.19$, $s_s = 0.0049$</td>
<td>Morin et al. (1972)</td>
</tr>
<tr>
<td>Inhaled, 238Pu</td>
<td>$f_r = 0.05$, $s_s = 0.0041$</td>
<td>Nénot et al. (1972)</td>
</tr>
<tr>
<td>Inhaled, 239Pu</td>
<td>$f_r = 0.03$, $s_s = 0.0042$</td>
<td>Nénot et al. (1972)</td>
</tr>
</tbody>
</table>
Instilled 0.62 0.0013 Stather and Howden (1975)
Instilled, 238Pu 0.52 0.0043 Stather and Priest (1977)
Instilled, 239Pu 0.48 0.0045 Stather and Priest (1977)
Inhaled 0.06 0.0043 Ballou et al. (1977)
Inhaled, 238Pu 0.22 0.0035 Stradling et al. (1987)
Inhaled 0.55 0.0018 Moody et al. (1993, 1994, 1998)
Instilled 0.74 5.2×10^{-5} Pellow et al. (2016c)
Inhaled 0.24 0.0042 Pellow et al. (2016c)

<table>
<thead>
<tr>
<th></th>
<th>Median</th>
<th>Geom. mean</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.23</td>
<td>0.042</td>
<td>0.030</td>
<td>0.74</td>
</tr>
</tbody>
</table>

Instillation vs inhalation

<table>
<thead>
<tr>
<th></th>
<th>Median</th>
<th>Geom. mean</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.57; 0.13</td>
<td>0.0028; 0.0042</td>
<td>0.48; 0.030</td>
<td>5.2×10^{-5}; 0.0018</td>
</tr>
</tbody>
</table>

Notes

a. f_b and s_b were assumed to be 0.002 and 0 d$^{-1}$ respectively.

(682) Estimates of absorption parameter values for plutonium nitrate derived above are summarised in Table 22.3. For rats, instillation studies are not included, because of possible artefacts as discussed above, and because there are ample results from inhalation experiments. With regard to the rapid phase it is considered that the human volunteer experiment provides the most reliable estimates of f_r (0.16) and s_r (0.39 d$^{-1}$) (Etherington et al., 2003; Puncher and Etherington, 2016). Not only does it involve human data, but the carefully controlled exposure and comprehensive early data (in-vivo, blood and excreta) enable good estimates to be made of f_r and s_r. The other human studies, and many of the animal experiments, lack early data and only provide estimates of s_r. For inhalation experiments in rodents it is difficult to obtain reliable excretion data during the first few days, because of likely cross-contamination of samples from material deposited on the pelt, etc.

Table 22.3. Estimated absorption parameter values for inhaled plutonium nitrate. Values in parentheses were fixed in analyses.

<table>
<thead>
<tr>
<th>Species</th>
<th>f_r</th>
<th>s_r (d$^{-1}$)</th>
<th>s_s (d$^{-2}$)</th>
<th>Reference</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Man</td>
<td>0.16</td>
<td>0.39</td>
<td>0.0022</td>
<td>Etherington et al. (2003), Puncher and Etherington (2016)</td>
<td>Human volunteer experiment, only two subjects, but extensive data to 300 d.</td>
</tr>
<tr>
<td>Man</td>
<td>(0.17)</td>
<td>(I)</td>
<td>0.00048</td>
<td>Puncher et al. (2016d)</td>
<td>One USTUR subject, bioassay and autopsy data.</td>
</tr>
<tr>
<td>Man</td>
<td>(0.17)</td>
<td>(I)</td>
<td>0.000205</td>
<td>Puncher et al. (2016d)</td>
<td>Autopsy data only, for 20 subjects, first at 5 y after exposure.</td>
</tr>
<tr>
<td>Monkey</td>
<td>0.1</td>
<td>>0.1</td>
<td>0.0025</td>
<td>Brooks et al. (1992)</td>
<td>Monkeys: 20 followed up to 8 years, few early data.</td>
</tr>
<tr>
<td>Dog</td>
<td>0.27</td>
<td>0.17</td>
<td>0.0013</td>
<td>Bair (1970)</td>
<td>Extensive data to 300 d.</td>
</tr>
</tbody>
</table>
With regard to \(f_r \), there is considerable variation in the estimated values from animal experiments (Tables 22.2 and 22.3), with a range from about 0.05 to 0.8, which is broadly consistent with the value from the human volunteer experiment. As noted above, the scatter is partly due to the (negative) correlation between estimates of \(f_r \) and \(s_r \). The value from the human volunteer experiment, rounded to 0.2, is chosen here.

With regard to \(s_r \), the results from the dog studies are close to that from the human volunteer experiment. Those from the rat experiments, however, range from about 0.05 to 10 d\(^{-1}\), which is broadly consistent with the value from the human volunteer experiment.

However, a much higher value (~10 d\(^{-1}\)) comes from the rat experiment with the most comprehensive early data, including measurements made immediately after exposure. This indicates that rather than a constant rate of absorption from the respiratory tract applying during the “rapid” phase (the first day or so) as assumed in the HRTM, the rate decreases with time from >10 d\(^{-1}\) to <1 d\(^{-1}\). This could be represented more realistically in a compartment model structure by additional compartments. For example, Birchall et al. (1995) used the bound state compartment as a second component of absorption in order to represent the biokinetics after intratracheal instillation into rats of plutonium nitrate (see section on Extent of binding of plutonium in the respiratory tract, below). Because the rate of absorption of the rapid phase (even at 0.4 d\(^{-1}\)) is so great compared to particle transport rates from the AI region, with which it competes, the value of \(s_r \) has little effect on the total amount absorbed to blood from the lungs in the rapid phase. However, typically a similar amount of activity deposits in the ET airways, as deposits in the lungs. Because particle transport from ET\(_2\) to the alimentary tract is assumed to be so rapid (100 d\(^{-1}\)), assumption of a low value of \(s_r \) (e.g. 0.4 d\(^{-1}\)) and a low value of \(f_A \) results in very little uptake from material deposited in the nose. However, if there were a large fraction absorbed at a higher rate (>10 d\(^{-1}\)), this would result in a correspondingly large uptake from material deposited in the nose. The use of a single low value of \(s_r \) based on overall uptake from the lungs might then result in an underestimate of uptake from the nose. Nevertheless, it is possible that even if the higher rate occurred in the AI region, it would not occur in the nose e.g. because of the presence of mucus and a thicker epithelium. In the human volunteer experiment the subjects inhaled through a mouthpiece, so there was minimal ET deposition. However, in the study by Brooks et al. (1992) the monkeys were exposed nose-only, and so although it lacks early data on which to assess the value of \(s_r \), it provides an opportunity to test whether the
assumption of a single low value of \(s_t \) results in underestimation of overall uptake during nose-breathing. Analysis here applying the values \(f_r = 0.16, s_r = 0.39 \text{ d}^{-1}, s_s = 0.0022 \text{ d}^{-1} \), from the human volunteer study to the results of the monkey experiment gave a reasonably good fit to the data, and therefore indicates that overall uptake is not significantly underestimated.

(686) With regard to the slow dissolution rate \(s_s \), the estimate from the human volunteer experiment is not as definitive as the values for the rapid phase. In-vivo measurements of organ retention using \(^{237}\text{Pu}\) (half-life 45.3 d) were limited to about 4 months, but the estimated rate of 0.0022 \text{ d}^{-1} corresponds to a half-time of about a year, and so much of the material remained when detailed measurements stopped. (Measurements in blood and excreta using \(^{244}\text{Pu}\) continued for several years.) There are also other important sources of information. The two animal experiments considered to be most reliable are the study of Brooks et al. (1992), in which measurements were made in primates for 9 y, and the \(^{239}\text{Pu}\) study of Dagle et al. (1983) in which a large number of dogs were followed for up to 15 y. Estimates of the value of \(s_s \) from both are remarkably similar: 0.0025 and 0.0023 \text{ d}^{-1}, respectively. Estimated values for rat studies range from 0.002 to 0.02 \text{ d}^{-1}, but are given much lower weight in consideration of a representative value, both because the studies were in rodents, and because they were of shorter duration.

(687) Two other estimates were made from human studies. One is from analysis of the USTUR autopsy and bioassay data of a worker who received a high acute inhalation intake of plutonium nitrate (Puncher et al., 2016b). The estimated value of \(s_s \) is 0.0048 \text{ d}^{-1}, which is about twice the estimates above. Factors giving it high weight are: a human study, detailed measurements, both bioassay and autopsy, and long duration (many years between exposure and autopsy). However, the measurements are on a single subject, who received an unusually high exposure and was treated with DTPA.

(688) The other estimate is from analysis of autopsy data from 20 former MPA workers considered to be exposed only to plutonium nitrate (Puncher et al., 2016c). The estimated value of \(s_s \) is 2.5 x \(10^{-4} \text{ d}^{-1} \). This is much lower than those derived from the other human and animal studies considered above. Factors giving it high weight are: a human study, a large number of subjects, and long duration. However, the exposures are less well characterised than in the other studies considered, and there are no bioassay or other early data: the first MPA autopsy was at \(\sim 5 \) y after exposure. The possibility that the low value was due at least partly to the different time scale of the study was investigated here. The estimated rate of 0.0022 \text{ d}^{-1} from the volunteer experiment corresponds to a half-time of about a year, and such a phase would have been completed by the time of the first autopsy. It was confirmed here that the MPA data did not exclude such a phase, by fitting an exponential retention function with three dissolution components (in addition to a bound state). With fixed values \(f_r = 0.2, s_r = 1 \text{ d}^{-1}, \) and \(s_s = 0.0022 \text{ d}^{-1} \), analysis gave a fraction of 0.48 associated with the component dissolving at 0.0022 \text{ d}^{-1}, and 0.32 dissolving at 1.3 \(10^{-4} \text{ d}^{-1} \). Such a large fraction (0.32) dissolving at such a low rate (1.3 x \(10^{-4} \text{ d}^{-1} \)), seems inconsistent with the results of the USTUR and long term dog and monkey studies. Indeed, recent re-analysis of the dog data does indicate that the large slow fraction is not compatible with the later data in that series, but is compatible with the human volunteer data because of the much shorter duration of data collection (40% is still in the lungs when the last lung measurement was taken) (M. Puncher, personal communication, 2015). It is not therefore included in the recommended specific parameter values for plutonium nitrate. However, it could be considered in assessments of high exposures. Dose assessments for a material with more dissolution components than the two included in the published HRTM can be made using software that implements the HRTM (and allows material specific parameter values to be
changed), by considering simultaneous intakes of more than one material, each with two components.

In conclusion, estimated values of the slow dissolution rate s_s, from the human volunteer, and long-term monkey and dog inhalation experiments are remarkably similar: 0.0022, 0.0025 and 0.0023 d$^{-1}$, respectively. Estimates from the USTUR and MPA are considerably higher and lower, respectively. A rounded value of 0.002 d$^{-1}$ is used here.

Based on the studies above, specific absorption parameter values of $f_r = 0.2$, $s_r = 0.4$ d$^{-1}$, $s_s = 0.002$ d$^{-1}$ are used here for plutonium nitrate. A specific absorption parameter value of $f_A = 1 \times 10^{-4}$ (see ingestion section) is also used.

Plutonium nitrate residues

Stradling et al. (1987) exposed rats by inhalation and intra-tracheal instillation to the respirable fraction (particles less than 2 µm Stokes diameter, obtained by sedimentation) of a dust containing mainly 239Pu. It had been separated from a mixture of atmospherically degraded plutonium, americium and natural uranium nitrates mixed and diluted with corrosion products from an experimental rig. After inhalation, amounts in lungs, systemic organs and in urinary and faecal samples were measured for animals killed at times between 2 and 365 days. The 239Pu lung content was 41% and 3.1% IAD at 28 and 365 days, respectively. Analysis here gave: $f_r = 0.4$, $s_r = 0.03$ d$^{-1}$, $s_s = 0.002$ d$^{-1}$. After intra-tracheal instillation the lung content decreased from 94% ILD at 2 days to 37% ILD at 365 days. Between 2 and 365 days the liver content increased from 0.2 to 4.1% ILD and the carcass from 1.6 to 7.3% ILD. Analysis here resulted in satisfactory fits to the data only with a fixed s_r value: $f_r = 0.02$, $s_r = 1$ d$^{-1}$, $s_s = 0.002$ d$^{-1}$. Both sets of results give assignment to Type M.

Moody et al. (1993, 1994, 1998) followed the tissue distribution of plutonium in rats for 365 days after intratracheal instillation of suspensions of two materials (designated B and C): both were 10- to 20-year old residues consisting of plutonium nitrate absorbed onto ubiquitous building dust and corrosion products. Both materials contained plutonium originating from plutonium nitrate liquor but were likely to contain partially oxidised forms. (The experiments were complemented by an inhalation study with recently separated plutonium nitrate liquor, "Material A": see Plutonium-239 nitrate section above.) For both materials the ILD was estimated by analysing aliquots of the suspension. Groups were killed at times between 3 and 365 days. The lungs, liver and total carcass were analysed for total plutonium-alpha activity. For Material B, the lung content decreased from 49% to 3.6% ILD between 1 and 365 days, whilst the liver content peaked at 2.4% at 28 days. Analysis here gave: $f_r = 0.14$ and $s_r = 0.0012$ d$^{-1}$. For Material C, the lung content decreased from 65% to 9.8% ILD between 1 and 365 days post exposure, whilst the liver content peaked at 1.8% at 168 days. Analysis here gave: $f_r = 0.03$ and $s_r = 9 \times 10^{-4}$ d$^{-1}$. Results for both materials are consistent with assignment to Type M, although Material C is close to the criterion for Type S.

Plutonium Tri-Butyl-Phosphate (Pu-TBP)

Tri-n-Butyl-Phosphate (TBP) is used extensively as an extractant during fabrication of nuclear fuel and for the separation of uranium and plutonium during reprocessing (Purex process). Plutonium (IV) is extracted into the organic phase as the neutral complex $\text{Pu(NO}_3\text{)}_4 \cdot 2\text{TBP}$, referred to hereafter as Pu-TBP (Stradling et al., 1985). As in the case of
plutonium nitrate, absorption can be inhibited by relatively high mass loadings, possibly
because of colloid formation (Nolimbé et al., 1989; ICRP, 1986). Such mass effects are not
considered to be of concern for routine exposures, but may have affected the experimental
results below.

Métivier et al. (1989a) exposed baboons (Papio papio) via an intratracheal tube to an
aerosol of 239Pu-TBP (30% Pu-TBP in n-dodecane). Animals were killed at times between 0.21
and 365 days. The 239Pu content of the lungs, trachea, thoracic lymph nodes, femurs, humeri,
liver and kidneys were analysed. Lung content fell from about 87% to 14% ILD between 0.21
and 365 days, while skeletal content increased from about 0.3 to 10% ILD. Cumulative faecal
and urinary excretion were 68% and 8% ILD respectively at 365 days. In a complementary
experiment, the biokinetics of systemic plutonium up to 365 days were determined in baboons
after intravenous (IV) injection of the Pu-TBP solution. There was high retention in the lungs
(73% of the injected activity at 2 days, and 17% at 365 days). It is possible that this was due to
the formation of colloidal particles which were retained in pulmonary capillaries (see e.g.
Warner and Brain, 1990; Leung et al., 1995). The distribution of the remaining activity was
broadly similar to that predicted by a citrate-based systemic model. However, urinary excretion
was reported to be three times higher than following (IV) injection of Pu citrate. Analysis here
gave only a lower limit on s_r ($> 10 \text{ d}^{-1}$), which was fixed at 30 d$^{-1}$ (based on analysis of the
study by Stradling et al., 1985, below) giving: $f_r = 0.05$, $s_s = 0.002 \text{ d}^{-1}$, and assignment to Type
M.

Métivier et al. (1983) exposed rats by nose-only inhalation to an aerosol of Pu-TBP
(30% Pu-TBP in n-dodecane). Plutonium in lung, liver and skeleton was measured at times
between 6 hours and 400 days. About 70% ILD was excreted by fast mucociliary clearance;
liver plus skeleton content at 8 days was about 0.5% ILD. In complementary experiments the
biokinetics of plutonium were determined up to 30 days after intramuscular injection, and 6
days after intra-gastric administration of the Pu-TBP solution. The authors estimated
gastrointestinal absorption to be $\sim1.5 \times 10^{-4}$ of the administered plutonium. Analysis here, with
s_r fixed at 30 d$^{-1}$ (based on analysis of the study by Stradling et al., 1985, below), gave: $f_r =
0.01$, $s_s = 0.0013 \text{ d}^{-1}$, and assignment to Type M.

Stradling et al. (1985) exposed rats by nose-only inhalation to an aerosol of 238Pu-TBP
(30% TBP in n-dodecane). ILDs were only about 0.5 ng to ensure that they were not
greatly in excess of those corresponding to human exposure at the annual limit. Groups were
killed at times between 30 min and 120 days, and lungs, liver and remaining carcass (without
pelt and gastro-intestinal tract), plus urine and faeces, measured. ILDs were estimated from the
total activity in body tissue and excreta, ignoring that in feces in the first three days, which was
considered to result mainly from ingested pelt contamination. Absorption from the lungs was
very rapid: the 238Pu contents of liver and carcass were about 10% ILD and 30% ILD at 30
minutes, but subsequent lung clearance was mainly by particle transport to feces. DTPA
injections given to another group of rats were effective at enhancing 238Pu lung clearance. The
authors noted that the much slower absorption from the lungs, and ineffectiveness of DTPA,
oberved by Métivier et al. (1983, see above) might have been due to colloid formation.
Stradling et al. (1983) had previously observed rapid absorption of 238Pu (30% ILD in 1 day),
following intratracheal instillation of a low mass of 238Pu-TBP into hamsters. Analysis here
with s_r fixed at 30 d$^{-1}$ (based on analysis by Davesne et al, 2010) gave: $f_r = 0.5$, $s_s = 0.005 \text{ d}^{-1}$,
and assignment to Type M.

Specific absorption parameter values of $f_r = 0.5$, $s_r = 30 \text{ d}^{-1}$, $s_s = 0.005 \text{ d}^{-1}$, based on
the study by Stradling et al. (1985), using inhalation of low masses, and $f_A = 10^{-3}$ based on the
study by Métivier et al. (1983) are used here for Pu-TBP. As this is an organic form, it is understandable that the rapid dissolution rate should be faster than for ionic forms such as nitrate and citrate. The studies by Métivier et al. (1983, 1989a) suggest that a lower value of \(f_r \) (~0.02) might apply in the case of a high accidental intake: specific parameter values are not applied here because such intakes would require special investigation. The distribution of absorbed plutonium between systemic organs is broadly similar to that of ionic forms, and therefore it is considered that the plutonium systemic model described in Section 18.2.3. can be applied to Pu-TBP with caution. The greater transfer from blood to urine (compared to citrate) observed by Métivier et al. (1989a) following IV injection, is not implemented here, partly because of uncertainties associated with the experiment. Assumption of enhanced urinary excretion would make little difference to the inhalation dose coefficient, because urinary excretion would still be small compared to systemic deposition. However, systemic uptake (and intake) estimated from urinary excretion would be much lower, and could be underestimated if enhanced urinary excretion did not occur in practice.

Plutonium dioxide \((\text{PuO}_2) \)

Plutonium dioxide is the final product in the manufacture of fuel pellets, and is present in mixed oxide fuel (MOX) with uranium oxide. \(\text{PuO}_2 \) can be present in different physico-chemical forms: its production temperature can vary from 300 to 1800°C. Numerous studies in several animal species have been conducted, and measurements after accidental inhalation in man have been performed. Following exposure to \(\text{PuO}_2 \) aerosols, generally two distinct phases of absorption to blood from the respiratory tract are exhibited: a small rapidly-absorbed fraction, which is possibly related to ultrafilterable (<25 nm diameter) particles (ICRP, 1986; Smith et al., 1977, see also below) and the remainder, which is generally cleared with a half-time of the order of years or decades. Both the fraction rapidly absorbed and the long-term retention half-time can be influenced by the method of formation of the material and its history (ICRP, 1986).

Plutonium-239 dioxide

Plutonium in the dioxide form used in the production of nuclear fuel is predominantly \(^{239}\text{Pu} \) by activity, and for simplicity is here termed \(^{239}\text{PuO}_2 \). It may, however, contain varying amounts of other isotopes, notably: \(^{238}\text{Pu}, ^{240}\text{Pu}, ^{241}\text{Pu} \) and \(^{242}\text{Pu} \). Plutonium-241 decays to \(^{241}\text{Am} \), which emits a 60-keV gamma ray that is more readily measured by external detectors than the low energy x-rays resulting from the decay of plutonium.

In analyses of data on plutonium oxides and mixed oxides containing plutonium conducted here, the value for the rapid dissolution rate was fixed: \(s_r = 1 \text{ d}^{-1} \) for rats and \(s_r = 0.4 \text{ d}^{-1} \) for all the other species (see the Rapid dissolution section below).

Man

Cases of accidental intake of plutonium oxides at the Rocky Flats Plant (RFP) show very long term lung retention of plutonium, and correspondingly low dissolution \textit{in vivo}. Gregoratto et al. (2010) analysed nine cases, which were considered in a previous study, based on lung measurements and reported in a National Institute for Occupational Safety and Health (NIOSH) Technical Document (ORAUT, 2007). Lung and urine measurements are available for up to 30-38 years. Six of the RFP cases were exposed to plutonium from a fire in October 1965.
(Mann and Kirchner, 1967). The plutonium consisted of ‘high-fired’ PuO₂. Gregoratto et al. (2010) analysed the lung and urine data for the six workers and the median values were \(f_r = 0.005 \) and \(s_s = 4 \times 10^{-6} \text{ d}^{-1} \), consistent with assignment to Type S.

(702) Avtandilashvili et al. (2012) reported bioassay data (lung, urine and faecal measurements) for USTUR donors 0202 and 0407, who are the two most highly exposed of the 18 USTUR Registrants who were involved in the 1965 RFP fire. They also reported \(^{239,240}\text{Pu} \) post mortem tissue analyses for Case 0202. (No radiochemical analyses had yet been performed on Registrant 0407’s tissue samples taken at autopsy.) They carried out a maximum-likelihood analysis of the results, using the AI particle transport model of Gregoratto et al. (2010), on which that of the updated HRTM (ICRP, 2015) is based, and derived material-specific absorption parameter values. For both Cases, about 1% was absorbed relatively rapidly, with half-times \((T_b)\) of approximately 8 h \((s_s = 1 \text{ d}^{-1}\) Case 0202) or 16 h \((s_s = 2 \text{ d}^{-1}\) Case 0407), respectively; and the remainder absorbed extremely slowly, with \(T_b\) approximately 400 y (Case 0202) or 360 y (Case 0407), respectively, giving \(s_s = 5 \times 10^{-6} \text{ d}^{-1}\) for both. Avtandilashvili et al. (2013) applied Bayesian inference techniques to the same data to obtain probability distributions for the parameter values. Central estimates of values of \(s_s \) were higher (about 2 d\(^{-1}\) for Case 0202; and 6 d\(^{-1}\) for Case 0407) than the point estimates obtained by Avtandilashvili et al. (2012), but those for \(s_r \) were similar. These values are consistent with assignment to Type S.

(703) Puncher et al. (2016d) analysed autopsy data from 20 Mayak workers exposed to plutonium-239/240 oxides. Urine data were not used because they were affected by large uncertainties. However, measurements of plutonium activity in skeleton, liver, lungs, and thoracic lymph nodes at death, ranging from 5 to 18 years post-exposure, and information from the workers’ exposure histories (Birchall et al., 2016), were used in a Bayesian analysis to estimate the slow dissolution rate. A value of \(s_s = 4.5 \times 10^{-5} \text{ d}^{-1}\) was obtained, with \(f_r \) and \(s_r \) were fixed at 0.0026 and 1 d\(^{-1}\) respectively as the data were not informative for these parameters, being based on measurements at late times following exposure.

(704) Ramsden et al. (1970) reported measurements (external and excreta) made on a worker in an experimental plutonium fuels laboratory, following accidental inhalation of a compacted mixture of plutonium oxide and graphite, produced from the oxalate by calcining at 500°C, dry mixing and sintering at 1200°C. Faecal samples were obtained for the first 5 days and at times up to 470 days, and analysed for \(^{239,240}\text{Pu} \) and \(^{238}\text{Pu} \). The results indicated that the worker had also been exposed to a different material, which complicates any analysis. The two forms of plutonium are referred to as “low burn up” (5.4% \(^{240}\text{Pu} \) by weight) and “high burn up” (14% \(^{240}\text{Pu} \) by weight). Faecal data are provided for both materials. Urine measurements, started 2 weeks after the incident, were near the limit of detection and decreased with time. Lung measurements were made at six times between 15 and 566 days. Ramsden (1976) reported further lung measurements on this worker, up to 1500 d. Analysis here gave \(f_r = 0.006, \)

\(s_s = 7 \times 10^{-6} \text{ d}^{-1}\), and assignment to Type S.

(705) Ramsden (1976) also reported plutonium-in-lung measurements made on four other workers after single acute inhalation exposures to plutonium oxide in the same laboratory. Measurements were made up to times between 30 and 1000 days. In all cases lung retention was fit by a two-exponential function with an intermediate phase of half-time \((T_b)\) about 10-50 days and a long-term phase with \(T_b\) up to 600 days. There is insufficient information to estimate absorption parameter values: the results suggest Type M or S behaviour.

(706) Ramsden (1976) and Ramsden et al. (1978) reported lung and excreta measurements made on a worker who was involved in a number of minor incidents involving inhalation of high-fired plutonium oxide over a 12-year period. Ramsden (1984) reported a further 7 years
lung retention data on the subject, during which period there was little, if any, clearance from
the lungs. Analysis here gave an upper limit on the slow absorption rate: $s_s < 1 \times 10^{-4} \text{ d}^{-1}$,
indicating Type S behaviour.

(707) Spitz and Robinson (1981) reported measurements of plutonium in excreta and in-vivo chest measurements of ^{241}Am for a worker exposed to plutonium released in air during
time operations with plutonium dioxide pellets in a glovebox. The isotopic composition of
alpha-activity was 8%, 80%, and 12% for ^{238}Pu, $^{239+240}\text{Pu}$ and ^{241}Am, respectively. The ^{241}Pu
gave rise to measurable ingrowth of ^{241}Am. DTPA chelation therapy was performed five times
within ten days after intake. Chest measurements of ^{241}Am, corrected for ingrowth, did not
show any decrease during the 500 days follow-up (the data showed a small increasing trend
with a 95% confidence interval $[-3 \times 10^{-4}, 2 \times 10^{-4} \text{ d}^{-1}]$ for the overall clearance rate) and no
measurable amount of plutonium in urine excretion after three weeks nor detectable activity in
faeces 280 days after exposure (the previous measurement is at 6 days). The authors estimated
that less than 1% of the inhaled plutonium was excreted in urine and faeces, including the first
week after intake and during the chelation therapy, indicating that the material was very
insoluble in lungs: Type S behaviour.

(708) Carbaugh and La Bone (2003) analysed extensive data obtained over 6500 days as
follow-up monitoring for a worker (HAN-1) who accidentally inhaled an aerosol of high-fired
plutonium oxide (calcined at 600°C). In-vivo lung measurements of ^{241}Am showed very long
term lung retention. No activity was detected in faecal samples at 600 and 2200 days and early
urine samples showed only a very slight systemic uptake. This case has been previously
analysed by Carbaugh and La Bone (2003); Fritsch (2007); Davesne et al. (2010); and
Gregoratto et al. (2011). Information on the early rapid absorption phase was difficult to
analyse because of the possible enhancement of urine excretion due to the administration of
DTPA but all analyses found a slow particle transport clearance, more consistent with the
revised HRTM (ICRP, 2015) than with the original HRTM (ICRP, 1994) and a slow dissolution
rate, $s_s = 10^{-5} \text{ d}^{-1}$.

(709) Bihl et al. (1988a,b,c) reported on ten cases of inhaled plutonium at the Hanford
nuclear site (including HAN-1), that showed extremely slow clearance from the lung and very
little short-term or long-term absorption, and which they referred to as "Super Class Y
plutonium". Evidence suggested that the chemical form was plutonium oxide. Except for HAN-
1 above, there is insufficient information to estimate absorption parameter values. However,
approximate lung retention half-times ranged from 5000 to $>20,000$ days: the results therefore
suggest Type S behaviour, and that the behaviour observed in HAN-1 is not exceptional.

(710) Surendran et al. (1995) reported measurements of ^{241}Am in the lungs of a worker
exposed to high burn-up plutonium, which showed a linear increase over a 6-year period. There
was no detectable ^{241}Am in skeleton and liver, and negligible excretion. The authors noted that
this case provided the first supporting evidence from another laboratory of "Super Class Y"
plutonium" as observed for HAN-1.

Monkeys

(711) Métivier et al. (1978, 1989a) studied the radiation effects and lung clearance of ^{239}Pu
after inhalation (through a mask) of $^{239}\text{PuO}_2$ by 64 immature baboons (Papio papio). The
$^{239}\text{PuO}_2$ was prepared by calcining plutonium peroxide at 1000°C. The ILD was determined
from in-vivo x-ray measurements one week later. Plutonium tissue distributions were
determined at death, mostly between about 25 and 4000 d after exposure. Radiation
pneumonitis, pulmonary fibrosis and respiratory insufficiency were the primary causes of death. Bair et al. (1980) compared the lung clearance and radiation effects in this study (results available up to 1978) with corresponding results obtained in a separate study with Beagle dogs (see below). They concluded that lung clearance and effects were similar in the two species. Poncy et al. (1998) reported results on two baboons that died at 6900 and 8700 d. The lung clearance half-time for most baboons was between 600 and 3900 days. Activity in liver plus skeleton increased slowly to about 1% ILD at 2000 d. Analysis here gave \(f_r = <0.001, s_s = 10^{-5} \) d\(^{-1}\), and assignment to Type S.

LaBauve et al. (1980) exposed 16 immature rhesus monkeys via inhalation to \(^{239}\text{PuO}_2 \) aerosol labelled with \(^{169}\text{Yb} \). Monkeys were exposed in groups to four different initial lung burdens. In-vivo whole-body \(^{169}\text{Yb} \) measurements were made up to 200 days and it was estimated that \(^{239}\text{PuO}_2 \) was retained in the body with an average effective half-time of 1000 days. Autopsy data are reported for four monkeys sacrificed 4 h and 30 days and for three monkeys which died at 430, 443 and 990 days (two from radiation pneumonitis, and the third from gastric torsion, presumably not related to Pu exposure). The data show little absorption, with less than 1% ILD in systemic organs and lung content decreasing between 400 and 1000 days from 73% to 42% ILD (one animal) with a major transfer to lymph nodes, from 5% to 36% ILD at 400 and 1000 days respectively. Analysis here gave: \(f_r = 0.001, s_s = 6 \times 10^{-6} \) d\(^{-1}\), and assignment to Type S.

Stanley et al. (1980b) exposed monkeys (six cynomolgus and three rhesus), dogs, and rats by inhalation to aerosols of \(^{239}\text{PuO}_2 \), heat-treated at 850°C, as used in the fabrication of nuclear fuel. Measurements of activity in lung, TBLN, liver and skeleton were made at sacrifice at times between 4 hours, and 1.5 years. In monkeys, activity in lung (lymph nodes) was 30(13)% and 60(5)% ILD at 1 and 1.5 years, and 0.04% in liver after 1.5 years. No liver measurements are available at earlier times and the systemic model was adjusted to account for the shorter residence time of Pu in the liver as in the analysis of Brooks (1992). Analysis here gave: \(f_r = 2 \times 10^{-3}, s_s = 2 \times 10^{-6} \) d\(^{-1}\) with significant uncertainties but consistent with assignment to Type S.

Lataillade et al. (1995) exposed three pairs of baboons by tracheal intubation each to a different form of plutonium oxide: 1) an industrial \(\text{PuO}_2 \) (70% \(^{239}\text{Pu} \) and 0.2% \(^{238}\text{Pu} \), heat-treated at 950°C; 2) a “reference” pure \(^{239}\text{Pu} \) oxide obtained by calcining Pu peroxide at 1000°C, grinding it and reheating it at 1000°C; and 3) a mixed U-Pu oxide (see below in the MOX section). (Experiments with rats were also conducted, see below.) Baboons were kept for one year, urine was collected daily for the first 6 days and one week per month afterwards for the baboons exposed to the industrial Pu oxide. The ILD was estimated from in-vivo measurements of x-rays one week after exposure. Lung, thoracic lymph nodes, liver, kidneys, femora and humeri were measured at sacrifice and activity in skeleton was estimated as 5.9*(femora + humeri). Plutonium translocation to the systemic organs after one year was greater after inhalation of the “reference” \(^{239}\text{Pu} \) oxide than after the inhalation of the industrial Pu oxide, about 0.85% and 0.05% ILD respectively. Analysis here for the industrial Pu oxide gave: \(f_r = 0.002, s_s = 4 \times 10^{-6} \) d\(^{-1}\) with significant uncertainties but consistent with assignment to Type S.

Dogs

Bair and McClanahan (1961) exposed four dogs by nose-only inhalation to an aerosol of \(^{239}\text{PuO}_2 \). Two were killed after 30 min and two after 39 weeks: plutonium in lungs
and systemic organs was measured. About 1.5% ILD was found in the systemic organs at 30 min. Urine and faeces were collected from the dogs kept for 39 weeks: the total urinary excretion was 1.3% and 1.6%. Analysis here gave: $f_r = 0.2$ and an undefined very low value for s_s, consistent with assignment to Type M.

(716) Bair and Willard (1963) exposed 48 Beagle dogs by nose-only inhalation to $^{239}\text{PuO}_2$ aerosols, prepared by calcining plutonium oxalate at 325°C, with three particle size distributions: MMD = 0.65, 3.3 and 4.3 μm (GSD = 2.3). Dogs were killed immediately after exposure, and after 1, 7, and 14 days. Activity expressed as percent of initial alveolar deposit (IAD) was measured in lungs, systemic organs and in urine and faeces. At 14 days the lung content was about 50%, 88% and 95% IAD, the systemic content plus urine cumulative excretion was 20%, 5% and 2% IAD for the aerosols with MMD = 0.65, 3.3 and 4.3 μm respectively, and indicate that dissolution increases with decreasing particle size. There is insufficient information to estimate absorption parameter values: the results suggest Type M behavior.

(717) Park et al. (1972) studied the biological effects and the disposition of inhaled $^{239}\text{PuO}_2$ in 70 Beagle dogs. Thirty were given a single exposure as described in Bair and Willard (1962) and the other 40 were given single exposures via a mask. The $^{239}\text{PuO}_2$ was formed from plutonium oxalate calcined in air at 300-350°C or 450°C. Sixty dogs died or were euthanised when death was imminent due to plutonium-induced pulmonary fibrosis and/or neoplasia 2-135 months post-exposure. After 8-10 y, approximately 10% IAD was retained in the lungs, 40-50% was translocated to the tracheobronchial and mediastinal lymph nodes, 10-15% to the liver, 5% to the skeleton and 5% to the abdominal lymph nodes. The pathology in these tissues may have influenced the clearance and translocation rates of the plutonium. Analysis here gave: $f_r = 0.004$, $s_s = 5 \times 10^{-5}$ d$^{-1}$, and assignment to Type S.

(718) Bair et al. (1980) exposed 43 Beagle dogs to $^{239}\text{PuO}_2$, prepared by calcining plutonium oxalate at 300–430°C. The aerosol was inhaled through a mask. The ILD was determined from the body burden at death and excreta collection from a subset of dogs. All the dogs died or were euthanised when moribund. Radiation pneumonitis, pulmonary fibrosis and respiratory insufficiency were the primary causes of death. Activity measurements are available from 55 to 1549 days for lung and from 80 to 1549 days for skeleton. Analysis here gave: $f_r = 3 \times 10^{-4}$, $s_s = 6.5 \times 10^{-5}$ d$^{-1}$, and assignment to Type S.

(719) Stanley et al. (1980b) exposed 18 Beagle dogs by inhalation to $^{239}\text{PuO}_2$ (see description of the experiment in Monkey section above). Dogs showed slower lung clearance than monkeys and a larger transfer to TBLN compared to monkeys and rats. Activity in lung (and lymph nodes) was 66 (21)% and 53 (19)% ILD at 1 and 1.5 years, and 0.27% in liver after 1.5 years. Analysis gave here: $f_r = 6 \times 10^{-4}$, $s_s = 9 \times 10^{-6}$ d$^{-1}$, and assignment to Type S.

(720) Diel et al. (1980a, 1992) investigated the lifespan dose effects and disposition of inhaled monodisperse 0.75-µm $^{239}\text{PuO}_2$ particles in Beagle dogs after single (48 animals) or repeated (39 animals) exposure. For dogs exposed once, lung retention of plutonium over nearly 10 years could be represented by the sum of two exponentials with T_b of 63 and 1130 days associated with 28% and 62% ILD respectively. Systemic tissue and urine measurements were not reported because the activities found in tissues other than the lung were less than 5% of the body burden: 99% of the body burden at one year after initial exposure and 95% at two years was in either the lung or the lung associated lymph nodes and 99% of excreted activity was in the feces. This limited information does not allow precise estimating of dissolution parameters but values of f_r of the order of 0.005 and s_s of the order of 5 $\times 10^{-5}$ d$^{-1}$, and assignment to Type S, are consistent with the observations.
Guilmette et al. (1984, 1987) studied the retention and distribution of $^{239}\text{PuO}_2$ in Beagle dogs after inhalation of monodisperse aerosols with AMAD about 0.7, 1.5 or 3 μm. Guilmette et al. (1984) measured activity excreted in urine and feces and in lungs, thoracic lymph nodes, liver, and skeleton of dogs killed at times between 0.2 and 730 days. Guilmette et al. (1987) followed other animals which inhaled 1.5- or 3-μm aerosols over their life-span up to 3 years post-inhalation, with activity measured in the same tissues plus kidneys, spleen and other sets of lymph nodes. Analysis here gave: $f_r = 3 \times 10^{-4}$, $s_s = 10^{-5}$ d$^{-1}$ for all three particle sizes, consistent with assignment to Type S.

Park et al. (1990, 1986a) investigated the life-span dose effects and the disposition of $^{239}\text{PuO}_2$ in 130 Beagle dogs. The oxide was prepared by calcining the oxalate at 750°C for 2 hours. Dogs were given a single exposure to obtain six dose levels (generally lower than those used by Park et al., 1972), and were followed for up to 16 years. After 10 years, about 10% IAD was retained in the lungs, 40% was translocated to lymph nodes, and 10% to liver and skeleton combined. Analysis here gave: $f_r = 0.001$, $s_s = 3 \times 10^{-5}$ d$^{-1}$, and assignment to Type S.

Park et al. (1990) carried out a similar study with $^{238}\text{PuO}_2$, which showed greater long-term transfer of plutonium to systemic tissues, and a much higher value of s_s (see below).

Rats

Rhoads et al. (1986) exposed rats, by nose only inhalation, in groups of 35 to either high fired $^{239}\text{PuO}_2$ or to a mixed $^{239}\text{Pu}/^{244}\text{Cm}$ oxide. Groups were killed at times between 3 and 120 days. Activity was measured in lung, systemic organs and excreta. Less than 1% IAD was translocated to any of the systemic tissues. Lung clearance of plutonium was slightly slower for the mixed oxide than for the pure oxide. Analysis here for the pure oxide gave: $f_r = 0.0006$, $s_s = 9 \times 10^{-5}$ d$^{-1}$, and assignment to Type S.

Stradling et al. (1987) exposed rats by inhalation to the respirable fraction of ^{239}Pu oxide (the product of corrosion of the metal under ambient conditions over a period of about 15 years). After inhalation, groups were killed at times between 3 and 365 days. The ^{239}Pu IAD was determined from rats killed on day 3. The lung content reduced to 10% IAD at 365 days. The carcass content rose from 0.06% at 3 days to 0.7% at 365 days. Analysis here gave: $f_r = 4 \times 10^{-4}$ and $s_s = 3 \times 10^{-5}$ d$^{-1}$. After instillation, groups were killed at 7 and 21 days. The ^{239}Pu content of the lungs, liver, remaining carcass, urine and faeces were measured and the ILD was assessed from the total activity in the organs and excreta. Analysis here gave: $f_r = 4 \times 10^{-4}$ and $s_s = 3 \times 10^{-5}$ d$^{-1}$; both values were similar to those obtained after inhalation, and consistent with assignment to Type S.

Lataillade et al. (1995) exposed rats by inhalation to an aqueous solution of the respirable fraction of a reference industrial $^{239}\text{PuO}_2$ (heat treated at 950°C). Groups were killed at times between 1 and 180 days: the ^{239}Pu contents of the lungs, liver and skeleton (ten times the femora content) was measured. The IAD was estimated from lung contents measured at 1 day.
The lung content fell to about 12% IAD at 180 days. Analysis here gave: \(f_r = 0.008 \) and \(s_s = 5 \times 10^{-5} \text{ d}^{-1} \), and assignment to Type S.

Ramounet et al. (2000) exposed groups of 30 rats to an aerosol of industrial PuO\(_2\) obtained after calcination. Groups were killed at times between 7 days and 9 months. The initial deep lung deposit (IDLD) was defined as the mean lung content at 7 days. The Pu content of the liver, kidneys and the two femora were measured (assumed to be 10% of the skeleton). The Pu content of the skeleton remained fairly constant at 0.7% IDLD. Analysis here gave: \(f_r = 0.0012 \) and \(s_s = 3 \times 10^{-5} \text{ d}^{-1} \), and assignment to Type S.

Pellow et al. (2003) exposed 36 rats by inhalation (nose only) to an aerosol of 239PuO\(_2\) obtained from an industrial production line, filtered to obtain particle sizes mostly between 0.2 and 3 \(\mu \)m. Groups of rats were killed immediately after exposure and at times between 1 and 365 days. Plutonium was measured in the lungs, liver, other tissues and the remaining carcass, and reported as a percentage of the total activity associated with each animal. The lung content fell from 9% immediately after exposure to 0.7% at 365 days. The carcass content remained constant at about 0.2% from 28 to 365 days. Analysis here gave: \(f_r = 0.06 \), \(s_s = 9 \times 10^{-4} \text{ d}^{-1} \), and assignment to Type M.

Pellow et al. (2003) administered the same material to 40 rats by intratracheal instillation. Rats were killed in groups of four at times between 1 hour and 28 days. Plutonium was measured in the lungs, liver, head (plus head-pelt), pelt, gastro-intestinal tract and remaining carcass. The ILD was estimated from animals for which there was a complete activity balance. The lung content reduced from 78% ILD at 1 hour to 33% at 28 days. Analysis here gave: \(f_r = 0.03 \), \(s_s = 0.003 \text{ d}^{-1} \), and assignment to Type M.

Morgan et al. (1988a) exposed mice by nose-only inhalation to 238PuO\(_2\) (see below) and 239PuO\(_2\), fired at temperatures of 550, 750, 1000 and 1250°C. Groups were killed at times between 1 and 24 months. Measurements were made of 238Pu and 239Pu in the lungs, lung-associated lymph nodes, liver and skeleton. Lung retention was independent of firing temperature for 239Pu and translocation to liver and bone was smaller than for 238Pu. Davesne et al. (2010), using fixed values for \(s_r = 100 \text{ d}^{-1} \) and \(f_b = 0 \), estimated dissolution parameter values for the four 239Pu aerosols: \(f_r = 9 \times 10^{-5} \) (all four); and \(s_s = 7 \times 10^{-6} \text{ d}^{-1} \) (550°C); \(s_s = 5 \times 10^{-6} \text{ d}^{-1} \) (1000°C); and \(s_s = 5 \times 10^{-5} \text{ d}^{-1} \) (1250°C), all consistent with assignment to Type S.

<table>
<thead>
<tr>
<th>Species</th>
<th>Absorption parameter values(^a) and duration</th>
<th>T of study</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Man</td>
<td>(f_r = 0.006) (0.4) (s_s = 7 \times 10^{-6} \text{ d}^{-1}) (T = 4)</td>
<td>Ramsden et al. (1970)</td>
<td></td>
</tr>
<tr>
<td>Man</td>
<td>(f_r = 0.001) (9.9, 100) (s_s = 1 \times 10^{-5} \text{ d}^{-1}) (T = 18)</td>
<td>Carbaugh and La Bone (2003)</td>
<td></td>
</tr>
<tr>
<td>Man</td>
<td>(f_r = 0.005) (100) (s_s = 4 \times 10^{-6} \text{ d}^{-1}) (T = 30-38)</td>
<td>Gregoratto et al. (2010)</td>
<td></td>
</tr>
<tr>
<td>Man</td>
<td>(f_r = 0.01) (2) (s_s = 5 \times 10^{-6} \text{ d}^{-1}) (T = 18, 43)</td>
<td>Avtandilashvili et al. (2012, 2013)</td>
<td></td>
</tr>
<tr>
<td>Man</td>
<td>(f_r = 0.0026) (1) (s_s = 4.5 \times 10^{-5} \text{ d}^{-1}) (T = 18)</td>
<td>Puncher et al. (2016d)</td>
<td></td>
</tr>
<tr>
<td>Baboon</td>
<td>(f_r = 0.001) (0.4) (s_s = 10^{-5} \text{ d}^{-1}) (T = 3.5)</td>
<td>Métivier et al. (1978, 1989a)</td>
<td></td>
</tr>
<tr>
<td>Monkey</td>
<td>(f_r = 0.002) (0.4) (s_s = 2 \times 10^{-6} \text{ d}^{-1}) (T = 1.5)</td>
<td>Stanley et al. (1980b)</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Median</td>
<td>Geom. mean</td>
<td>Min</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>------------</td>
<td>-----</td>
</tr>
<tr>
<td>Monkey</td>
<td>0.001</td>
<td>(0.4)</td>
<td>6 x 10^{-6}</td>
</tr>
<tr>
<td>Baboon</td>
<td>0.002</td>
<td>(0.4)</td>
<td>4 x 10^{-6}</td>
</tr>
<tr>
<td>Dog</td>
<td>0.2</td>
<td>(0.4)</td>
<td>- 0.75</td>
</tr>
<tr>
<td>Dog</td>
<td>0.004</td>
<td>(0.4)</td>
<td>5 x 10^{-5}</td>
</tr>
<tr>
<td>Dog</td>
<td>3 x 10^{-4}</td>
<td>(0.4)</td>
<td>7 x 10^{-5}</td>
</tr>
<tr>
<td>Dog</td>
<td>6 x 10^{-4}</td>
<td>(0.4)</td>
<td>9 x 10^{-6}</td>
</tr>
<tr>
<td>Dog</td>
<td>(3 x 10^{-7})</td>
<td>(0.4)</td>
<td>1 x 10^{-3}</td>
</tr>
<tr>
<td>Dog</td>
<td>0.001</td>
<td>(0.4)</td>
<td>3 x 10^{-3}</td>
</tr>
<tr>
<td>Dog</td>
<td>0.005</td>
<td>(0.4)</td>
<td>5 x 10^{-3}</td>
</tr>
<tr>
<td>Rat</td>
<td>0.0011</td>
<td>(1)</td>
<td>3 x 10^{-6}</td>
</tr>
<tr>
<td>Rat</td>
<td>0.0006</td>
<td>(1)</td>
<td>9 x 10^{-5}</td>
</tr>
<tr>
<td>Rat</td>
<td>4 x 10^{-4}</td>
<td>(1)</td>
<td>5 x 10^{-3}</td>
</tr>
<tr>
<td>Rat</td>
<td>0.008</td>
<td>(1)</td>
<td>5 x 10^{-4}</td>
</tr>
<tr>
<td>Rat</td>
<td>0.012</td>
<td>(1)</td>
<td>3 x 10^{-5}</td>
</tr>
<tr>
<td>Rat</td>
<td>0.06</td>
<td>(1)</td>
<td>9 x 10^{-4}</td>
</tr>
<tr>
<td>Mouse<sup>a</sup></td>
<td>9 x 10^{-5}</td>
<td>(100)</td>
<td>7 x 10^{-6}</td>
</tr>
<tr>
<td>Mouse<sup>b</sup></td>
<td>9 x 10^{-5}</td>
<td>(100)</td>
<td>5 x 10^{-6}</td>
</tr>
<tr>
<td>Mouse<sup>c</sup></td>
<td>9 x 10^{-5}</td>
<td>(100)</td>
<td>5 x 10^{-6}</td>
</tr>
</tbody>
</table>

Man, baboon, monkey, dog

<table>
<thead>
<tr>
<th>Species</th>
<th>Median</th>
<th>Geom. mean</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td>0.002</td>
<td>1 x 10^{-5}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geom. mean</td>
<td>0.0023</td>
<td>1.2 x 10^{-5}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>3 x 10^{-4}</td>
<td>2 x 10^{-6}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>0.2</td>
<td>7 x 10^{-3}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All species

<table>
<thead>
<tr>
<th>Species</th>
<th>Median</th>
<th>Geom. mean</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td>0.0011</td>
<td>1 x 10^{-5}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geom. mean</td>
<td>0.0015</td>
<td>1.7 x 10^{-5}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>9 x 10^{-5}</td>
<td>2 x 10^{-6}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a f_r and s_s were assumed to be 0.002 and 0 d$^{-1}$ respectively.

^b From Davesne et al. (2010), Table 1.

In-vitro dissolution studies performed by Eidson et al. (1983) and Rateau-Matton et al. (2004) gave absorption parameter values of the same order of magnitude with $f_r = 0.003$, $s_s = 0.7$ d$^{-1}$ and $s_s = 0.8–7.0$ 10$^{-5}$ d$^{-1}$, all consistent with assignment to Type S. Estimates of absorption parameter values for plutonium-239 oxide derived above are summarised in Table 22.4. (Absorption parameter values from two rat instillation studies are not included, because they were of much shorter duration, and there are ample results from inhalation experiments.) In all studies the material was relatively insoluble in the lungs, with low values of f_r and s_s. Most sets of parameter values gave assignment to Type S.
With regard to f_r, there is considerable variation in the estimated values from animal experiments, with a range from about 1×10^{-4} to 0.2, which encloses the range of values, 0.001 to 0.01, from the human cases. The geometric mean from the human studies, 0.004, is chosen here.

As the rapidly-dissolved fraction was so small, in nearly all cases there was insufficient information to estimate the value of s_r, which was fixed in analyses conducted here at either 0.4 or 1 d$^{-1}$.

With regard to the slow dissolution rate, s_s, it is considered that the information from human cases and dog and monkey studies should be given more weight than rat and mouse studies, partly because of the uncertainty associated with estimates of such low rates in experiments of limited duration.

A number of accidental occupational intakes of plutonium oxides described above had shown long-term retention of plutonium in the lung exceeding that predicted by the original HRTM (ICRP, 1994) and default Type S slow dissolution rate. The results for the absorption parameter values reported in Table 22.4 have been obtained by using the revised HRTM (ICRP, 2015) or, by the authors of some of the studies, by slowing down the particle clearance within the original HRTM (ICRP, 1994).

The most informative case study is the 35-year follow up of a group of workers who inhaled plutonium dioxide in the 1965 RFP fire (Mann and Kirchner 1967; ORAUT, 2007). The estimated value of s_s is 4×10^{-6} d$^{-1}$. Factors giving it high weight are: a group of workers exposed to a very similar aerosol in the same incident, detailed lung and urine measurements and very long duration.

Two other informative case studies with long follow up reported here are Ramsden (1970) and Carbaugh and LaBone (2003). The estimated values of s_s are 1×10^{-5} and 7×10^{-6} d$^{-1}$ respectively. Factors giving both studies high weight are: a human study, detailed lung and excretion measurements, long duration. A potential problem with these human data is that each involved only one subject: the biokinetics might be exceptional and have been selected for publication because retention was so long.

Two other estimates were made from human studies. One is from analysis of autopsy data from 20 former MPA workers considered to be exposed only to plutonium oxide (Puncher et al., 2016d). The estimated value of s_s is 4.5×10^{-5} d$^{-1}$. Factors giving it high weight are: a human study, a large number of subjects, and long duration. However, the exposures are less well characterised than in the other studies considered, and there is very limited bioassay information.

The other estimate is from analysis of the USTUR autopsy and bioassay data of two workers involved in the 1965 RFP fire and with the two highest exposures (Avtandilashvili et al., 2012, 2013). The estimated value of s_s in both cases is 5×10^{-6} d$^{-1}$. Factors giving it high weight are: a human study, detailed measurements, both bioassay and autopsy, and long duration (many years between exposure and autopsy). However, the measurements are on two subjects who received unusually high exposures (3 Gy to AI by 18 y post-intake, and 3 Gy to AI 43 y post-intake). One subject also had previous exposure to coal mine dust and was a smoker. The values of s_s for the humans studies range from 4×10^{-6} to 4.5×10^{-5}, with geometric mean 9×10^{-6} d$^{-1}$.

The primate experiments reported here cannot be given high weight: the study of Métivier et al. (1989a) was intended primarily as a mortality study and lung function may have been impaired, with radiation pneumonitis, pulmonary fibrosis and respiratory insufficiency being the primary causes of death. The other studies, Stanley et al. (1980b), LaBauve et al.
of data, which gives more uncertain estimates of \(s_s \). Nevertheless, the geometric mean value of
the estimates of \(s_s \) is \(5 \times 10^{-6} \text{d}^{-1} \), similar to the value from the human studies.

(742) The dog experiment considered to be most reliable with respect to long duration and
relatively low doses is that of Park et al. (1990), which gave an estimated value of \(s_s \) of \(1 \times 10^{-5} \text{d}^{-1} \).

(743) Estimated values for rat and mice studies range from \(3 \times 10^{-6} \) to \(9 \times 10^{-4} \text{d}^{-1} \), but are
given much lower weight in consideration of a representative value, both because the studies
were in rodents, and because they were of shorter duration. Geometric mean values of \(s_s \) are
similar, about \(1 \times 10^{-5} \text{d}^{-1} \), for human studies alone, large animal studies only, or all species.

Based on the studies above, specific absorption parameter values of \(f_r = 0.004 \) and \(s_s = 1 \times 10^{-5} \text{d}^{-1} \), with the default value of \(s_r = 0.4 \text{d}^{-1} \), are used here for plutonium-239 dioxide. A
specific absorption parameter value of \(f_A = 1 \times 10^{-5} \) (see ingestion section) is also used.

Plutonium in mixed oxide (MOX: \((\text{UO}_2 + \text{PuO}_2)\) or \((\text{U,Pu})\text{O}_2)\)

Actinide-bearing mixed oxides (MOX) have been used as fuel in some pressurised
water reactors (PWR). These materials are prepared using different fabrication processes,
consisting either of a dry mix of plutonium and depleted uranium oxides, \(\text{UO}_2 + \text{PuO}_2 \), referred
to as the MIMAS process (Haas et al., 1994; Massiot et al., 1998a); or co-precipitation of
soluble forms of these actinides, \((\text{U,Pu})\text{O}_2\), referred to as the SOLGEL process, where the
powder forms are obtained by calcination or grinding (Massiot et al., 1998b; Stringer et al.,
1984). Plutonium can form between about 2.5% and 7% by mass, with an isotopic composition
depending on its history.

Man

Foster (1991) reported measurements of plutonium activity in lungs, urine and feces
made up to about 1000 days following inhalation of blended plutonium and uranium oxides
(approximate ratio 1:2 by mass) by a worker in an industrial fuel production facility.
Interpretation of the data was complicated by previous small exposures. The isotopic
composition by alpha-activity of the material from analysis of a nasal smear and a nose blow
sample was 7%, 55%, and 38% for \(^{239,240}\text{Pu} \), \(^{239+240}\text{Pu} \) and \(^{241}\text{Am} \), respectively. Analysis here of
the data, corrected by the authors for the observed levels of retention and excretion prior to the
last intake, gave \(f_r = 0.05 \), \(s_s = 2 \times 10^{-5} \text{d}^{-1} \), and assignment to Type S. Foster noted that
inhalation studies in rats and hamsters had been carried out on material from this working area:
but the materials studied showed very little absorption from the lung, giving lower values of
both \(f_r \) and \(s_s \) (James et al., 1978, see below).

Monkey

Stanley et al. (1980a) exposed monkeys (seven cynomolgus and two rhesus), dogs
and rats by inhalation to aerosols of mixed uranium-plutonium oxides, heat-treated at 1750°C in
the fabrication of nuclear fuel. Monkeys were killed at times between 4 hours, and 1.5 years.
Measurements of activity in lung, TBLN, liver and skeleton were made: activity in lung (lymph
nodes) was 44 (0.7)% and 38 (3)% ILD at 1 and 1.5 years, and 0.14% in liver after 1.5 years.
Because of the small number of data and the very similar experimental conditions to those of
Mewhinney and Eidson (1982), data were pooled for analysis (see below).
Stanley et al. (1982) exposed monkeys (six cynomolgus and three rhesus), dogs and rats to an aerosol containing a mixture of UO\(_2\) and 750°C heat-treated PuO\(_2\) (77% and 23% by mass respectively). Powders produced during the routine ball milling of mixed oxides were collected from the floor of the glove-box at an industrial facility and used to generate an aerosol with a size distribution similar to those observed in samples collected at the industrial site. Monkeys were killed at times between 4 hours and 2 years. ILDs were calculated by adding the activity found in all tissues at death to that estimated to have been excreted from day 4 onwards. The material was relatively insoluble in the lungs of all species. Monkeys and rats cleared plutonium from their lungs faster than dogs. Very little plutonium translocated in the first 2 years to tissues other than TBLN. Because of the small number of data and the very similar experimental conditions to those of Mewhinney and Eidson (1982), data were pooled for analysis (see below).

Mewhinney and Eidson (1982) exposed 6 cynomolgus monkeys, 12 dogs and 30 rats to aerosols derived from the industrial production of nuclear fuel, containing either mixed uranium-plutonium oxides heat-treated at 1750°C, or a mixture of UO\(_2\) and 750°C heat-treated PuO\(_2\). For each study, one monkey was killed shortly after exposure, at times between 64 days and 4 years. Plutonium content was measured in lungs, TBLN and liver. Because of the small number of data and the very similar experimental settings to the two previous studies above, Stanley et al. (1980a) and Stanley et al. (1982), data were pooled for each type of MOX, and analysis here gave: \(f_r = 0.0012, s_s = 5 \times 10^{-6} \text{ d}^{-1} \text{ (1750°C); and } f_r = 3 \times 10^{-4}, s_s = 3 \times 10^{-6} \text{ d}^{-1} \text{ (750°C)}, \) respectively, both giving assignment to Type S.

Lataillade et al. (1995) exposed three pairs of baboons by tracheal intubation to different forms of plutonium oxide. One pair was exposed to a mixed U-Pu oxide (see above for the oxide cases and a description of the experimental procedure). Plutonium translocation to the systemic organs after one year was greater after inhalation of the mixed oxides, about 2.1% ILD, than after the inhalation of the industrial and reference Pu oxides, about 0.85% and 0.05% ILD respectively. Analysis here gave: \(f_r = 0.03, s_s = 4 \times 10^{-4} \text{ d}^{-1}, \) and assignment to Type S.

Dog

Stanley et al. (1980a) exposed 18 Beagle dogs to aerosols of mixed U-Pu oxides (see above for description of the experiment). Dogs were killed at times between 4 hours and 2 years. Dogs showed slower clearance from lung and liver than monkeys and greater transfer to TBLN than monkeys or rats. Activity in lung (lymph nodes) was 53 (4)% and 38 (13)% ILD at 1 and 2 years, and 1.2% in liver after 1.5 years. Because of the small number of data and the very similar experimental conditions to those of Mewhinney and Eidson (1982), data were pooled for analysis (see below).

Stanley et al. (1982) exposed 18 Beagle dogs to a mixture of UO\(_2\) and PuO\(_2\) aerosols (see above for description of the experiment). Dogs were killed at times between 4 hours and 2 years. ILD was estimated as for the monkeys. The lungs and TBLN contained at least 95% of the body content of Pu and Am at all times. Because of the small number of data and the very similar experimental conditions to those of Mewhinney and Eidson (1982), data were pooled for analysis (see below).

Mewhinney and Eidson (1982) exposed 6 cynomolgus monkeys, 12 dogs and 30 rats to aerosols derived from the industrial production of nuclear fuel (see above for description of the experiment). For each study, dogs were killed shortly after exposure, and at times between 64 days and 4 years. Plutonium content was measured in lungs, TBLN and liver. Because of the
small number of data and the very similar experimental conditions to the two previous studies above, Stanley et al. (1980a) and Stanley et al. (1982), data were pooled for each type of MOX and analysis here gave: $f_r = 0.0012$, $s_s = 5 \times 10^{-5} \text{ d}^{-1} (1750^\circ \text{C})$; and $f_r = 0.001$, $s_s = 1.3 \times 10^{-5} \text{ d}^{-1} (750^\circ \text{C})$, respectively, both giving assignment to Type S.

Rat

James et al. (1978) exposed rats and hamsters to an aerosol of PuO_2 (and AmO_2), calcined at 550$^\circ$C, before blending with UO_2 in the ratio 1:2 by mass. The material was obtained from glove boxes in an experimental fast reactor fuel fabrication laboratory (Strong et al., 1977; Foster, 1991, see above). James et al. reported measurements of retention of Pu in lung, liver and 'remaining carcass' at times between 7 and 180 days in both species. Lung retention of Am was very similar to that of Pu over this period. Further data were reported by Stather et al. (1979a, 1984). For both species, the amounts of Pu deposited in tissues from the blood were <0.1% ILD at 30 d and <0.4% ILD at the end of the study (360 or 540 days; Stather et al., 1979a). Analysis here gave $f_r < 10^{-4}$, $s_s = 5 \times 10^{-6} \text{ d}^{-1}$, and assignment to Type S.

Lataillade et al. (1995) exposed rats by inhalation to the respirable fraction of a mixed industrial plutonium-uranium oxide, $(\text{U,Pu})\text{O}_2$ containing 20% (w/w) Pu (heat treated at 1680$^\circ$C). Groups of rats were killed at times between 1 and 180 days. The Pu content of the lungs, liver and skeleton was measured. The lung content fell to about 16% IAD at 150 days. Analysis here gave: $f_r = 0.008$, $s_s = 5 \times 10^{-4} \text{ d}^{-1}$, and assignment to Type S.

Ramounet et al. (2000) followed the tissue distribution of plutonium in rats for 360 days after inhalation of MOX prepared by either the MIMAS or SOLGEL process. Both contained ~4% (w/w) Pu. Groups were killed at times between 7 days and 12 months, and for MIMAS also at 18 months. The Pu contents of the liver, kidneys and femora (assumed to make up 10% of the skeleton). There were some differences in systemic uptake. For MIMAS, skeletal content peaked at 0.25% at 180 days: the SOLGEL showed a similar trend but with higher values, with a peak of 1.2% at 270 days. Analysis here gave: $f_r = 0.001$ and $s_s < 5 \times 10^{-4} \text{ d}^{-1}$ for MIMAS; and $f_r = 0.004$ with fixed $s_s < 5 \times 10^{-4} \text{ d}^{-1}$ for SOLGEL, both giving assignment to Type S.

Ramounet-Le Gall et al. (2003) exposed two groups of 30 rats to industrial MOX aerosols containing 2.5% and 5% (w/w) plutonium. Rats were killed at times between 7 and 180 days. The IDLD (estimated one week after exposure) and the lung content at death were determined from in-vivo x-ray measurements. The Pu content in organs was measured at death by alpha spectrometry. The authors estimated absorption parameter values f_r and s_s for each rat using the cumulative transfer to blood (2 x skeleton) and the lung content, and a fixed value $s_r=100 \text{ d}^{-1}$; $f_r = 0.004$ and $s_s = 2 \times 10^{-4} \text{ d}^{-1}$ for 2.5% Pu-MOX; and $f_r = 0.001$ and $s_s = 5 \times 10^{-5} \text{ d}^{-1}$ for 5% Pu-MOX, both giving assignment to Type S.

Table 22.5. Estimated absorption parameter values for inhaled plutonium in mixed oxide (MOX).

<table>
<thead>
<tr>
<th>Absorption parameter values1</th>
<th>and duration T of study</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_r (s_r)</td>
<td>s_s (d)</td>
<td>T (y)</td>
</tr>
<tr>
<td>Man</td>
<td>0.05 (0.4)</td>
<td>2.4 x 10^{-5}</td>
</tr>
<tr>
<td>Cynomolgus</td>
<td>0.0012 (0.4)</td>
<td>5 x 10^{-6}</td>
</tr>
<tr>
<td>Species</td>
<td>Median f_r</td>
<td>Median s_r</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Monkey</td>
<td>0.0012</td>
<td>1.8×10^{-5}</td>
</tr>
<tr>
<td>Baboon</td>
<td>0.03</td>
<td>4×10^{-5}</td>
</tr>
<tr>
<td>Dog</td>
<td>0.0012</td>
<td>5×10^{-5}</td>
</tr>
<tr>
<td>Rat</td>
<td>0.0011</td>
<td>3×10^{-5}</td>
</tr>
<tr>
<td>Rat</td>
<td>0.004</td>
<td>5×10^{-5}</td>
</tr>
<tr>
<td>Rat</td>
<td>0.001</td>
<td>5×10^{-5}</td>
</tr>
</tbody>
</table>

Man, baboon, monkey, dog

<table>
<thead>
<tr>
<th>Median f_r</th>
<th>Median s_r</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0012</td>
<td>4×10^{-5}</td>
<td></td>
</tr>
</tbody>
</table>

All species

<table>
<thead>
<tr>
<th>Median f_r</th>
<th>Median s_r</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0028</td>
<td>4.1×10^{-5}</td>
<td></td>
</tr>
</tbody>
</table>

1. f_r and s_r were assumed to be 0.002 and 0 d$^{-1}$ respectively
2. "ins" – material was instilled; otherwise material was inhaled
3. Parameter values published by the authors.

(757) In-vitro dissolution studies performed by Eidson et al. (1983) and Rateau-Matton et al. (2004) gave absorption parameter values of the same order of magnitude with $f_r = 0.001 – 0.05$, $s_r = 0.12 – 0.58$ d$^{-1}$ and $s_s = 0.46 – 1.6 \times 10^{-4}$ d$^{-1}$, giving assignment to Type S.

(758) In all studies the material was relatively insoluble in the lungs, with low values of f_r and s_s. All sets of parameter values derived from in-vivo studies (Table 22.5) gave assignment to Type S (see text above). As the rapidly-dissolved fraction was so small, there was insufficient information to estimate the value of s_s, which was fixed in analyses here at either 0.4 or 1 d$^{-1}$. Values of f_r were in the range 3×10^{-4} to 0.05, with a median and geometric mean of 0.0012 and 0.0028 respectively. Most values of s_s were in the range 3×10^{-6} to 5×10^{-4} d$^{-1}$ with a median and geometric mean of 4×10^{-5} d$^{-1}$. For plutonium-239 dioxide, estimates from the studies in man and other large animals are considered more reliable than those from rats which were in rodents and of shorter duration. These give median and geometric mean values of 2×10^{-5} d$^{-1}$. Median values of both parameters are lower than the corresponding values for default Type S ($f_r = 0.01$ and $s_s = 1 \times 10^{-4}$ d$^{-1}$).

(759) These results are similar to those summarised above for plutonium-239 dioxide. Plutonium in MOX is therefore given the same material-specific parameter values here as plutonium-239 dioxide.
Plutonium-238 dioxide

Plutonium-238 has a relatively short half-life of 87.7 years, and a correspondingly high specific activity and decay heat: 1 gram of 238Pu generates about 0.5 watts of thermal power. Pure 238Pu is produced by neutron irradiation of 237Np, recovered from spent nuclear fuel. It produces little hazardous penetrating radiation, and so has found industrial applications in Radioisotope Thermoelectric Generators (RTGs), used for example in cardiac pacemakers and spacecraft, and Radioisotope Heater Units (RHU) used in spacecraft to heat critical components. In 1964 a satellite containing a Space Nuclear Auxiliary Power supply (SNAP-9A) failed to achieve orbit and disintegrated, dispersing about 1 kilogram of 238Pu into the atmosphere. The ceramic dioxide form is generally used in such applications, being stable, with low solubility in water. Recent reviews of the applications and biokinetics of 238Pu include those of NCRP (2001) and Suslova et al. (2012).

However, it was found that 238PuO$_2$ in particulate form is more soluble in vitro and in vivo than 239PuO$_2$ formed under similar conditions, and that storage of 238PuO$_2$ particles in an aqueous medium results in a larger rapidly-absorbed fraction. Early observations, such as those of Raabe et al. (1973) and Patterson et al. (1974), that the in-vitro dissolution rate of 238PuO$_2$ particles was much higher than that of 239PuO$_2$ particles of similar size led to investigations of the mechanisms involved (NCRP, 2001).

Park et al. (1974) compared the effects of storage of aqueous suspensions of 238PuO$_2$ and 239PuO$_2$ particles (both produced by calcining the oxalate at 750°C) on their physico-chemical properties, and on the biokinetics of plutonium after inhalation by dogs. In freshly prepared suspensions of both forms, the fraction that was 'ultrafilterable' (using 2.4-nm pore-size membrane) was 0.2%. This increased to 25% in the 238PuO$_2$ after 6 months storage ('aging'), but remained at 0.2% in the 239PuO$_2$ after 16 months. X-ray diffraction of 19-month-old 238PuO$_2$ suspensions and 'fresh' (72-hour-old) 238PuO$_2$ suspensions showed the expected peaks, but a 238PuO$_2$ suspension stored for 9 months did not, indicating altered crystal structure.

A few months after inhalation by dogs, the 238Pu distribution after inhalation of 'fresh' 238PuO$_2$ suspension was similar to that of 239Pu after inhalation of an 'aged' 238PuO$_2$ suspension: nearly all plutonium in the body was in lungs. There was somewhat greater transfer of 238Pu to liver and skeleton, but far more after inhalation of an 'aged' 238PuO$_2$ suspension. They noted that in other studies in dogs and rats, greater transfer of plutonium to skeleton had been observed after inhalation of 238PuO$_2$ than after inhalation of 239PuO$_2$ (see below). This suggested that changes occurred to 238PuO$_2$ particles during suspension in water leading to a more soluble form, and similar changes might well occur in vivo. As this did not occur with 239PuO$_2$ suspensions, it suggested that it might be due to the higher specific activity of 238Pu and so might also occur with other high specific activity actinides.

Fleischer (1975) and Fleischer and Raabe (1977, 1978) carried out experiments involving analysis of fission tracks produced by neutron irradiation of 239PuO$_2$ particles, and developed models of radiation damage to PuO$_2$ particles. (For a summary, see NCRP, 2001.) They concluded that PuO$_2$ particles, "dissolve" in water as a result of damage by the nucleus recoiling after alpha decay, which produces "subparticles" (particle fragments). They observed that far more plutonium atoms were ejected from particles in water than in a vacuum, and concluded that the presence of water might result in loosening of fragments or etching along the recoil damage track. This process has sometimes been termed radiolytic fragmentation.
Stradling et al. (1978a) investigated sized fractions of \(^{238} \text{PuO}_2 \) particles, prepared by calcining the oxalate at 750°C (see the section below on Plutonium dioxide nanoparticles). It was shown that the <25-nm fraction consisted only of 1-nm diameter particles. 'Aging' increased the proportion of 1-nm particles in suspension from ~2% at 1 day to ~40% at 270 days. After intratracheal instillation into rats, there was negligible absorption up to 21 days from the fractions of \(^{238} \text{PuO}_2 \) particles >25 nm, but high absorption from the 1-nm fraction of both 'fresh' and 'aged' suspensions. The authors concluded that the higher in-vivo dissolution of \(^{238} \text{PuO}_2 \) than of \(^{239} \text{PuO}_2 \) is due to radiolytic fragmentation and formation of 1-nm particles.

To investigate fragmentation of \(^{238} \text{PuO}_2 \) particles \textit{in vivo}, Diel and Mewhinney (1983) studiedautoradiographs of lung sections from Beagle dogs sacrificed between 4 days and 2 years after inhalation of monodisperse \(^{238} \text{PuO}_2 \) (aerodynamic diameter, \(d_{ae} = 1.7 \mu\text{m}; \text{GSD} = 1.1 \)). The amount of activity in fragments, as a fraction of that in intact particles, increased from about 1% at a month to about 5% at 1 – 2 years. (Similar results were obtained by Diel and Mewhinney, 1980, in hamsters following inhalation of a monodisperse \(^{238} \text{PuO}_2 \) aerosol.) The study complemented that in which Mewhinney and Diel (1983) followed the biokinetics in dogs for 4 years after inhalation of \(^{238} \text{PuO}_2 \) aerosols (see below). The authors developed a complex simulation model that described absorption from lungs to blood, taking account of the increasing dissolution rate resulting from the increase in surface area due to fragmentation, and applied it to represent the tissue distribution and excretion of \(^{238} \text{Pu} \) in the dogs. Guilmette et al. (1994) and Hickman et al. (1995) developed the model further, adapted it to man, and applied it to urinary bioassay data from workers who inhaled \(^{238} \text{Pu} \) aerosols (see below).

In some of the studies outlined below, urinary excretion rates that increased with time were observed, indicating that the dissolution rate in the lungs increased with time. The 'default' HRTM representation of particle dissolution, with rapid and slowly dissolving fractions, can only represent decreasing dissolution rates (although in some circumstances a urinary excretion rate that increases with time can be predicted). However, the 'alternative' HRTM representation of particle dissolution (OIR Part 1, Fig 3.5b, ICRP, 2015) can do so, and is used here. In this, material deposited in the respiratory tract is assigned to compartments labelled 'Particles in initial state' in which it dissolves at a constant rate \(s_p \). Material is simultaneously transferred (at a constant rate \(s_{pt} \)) to a corresponding compartment labelled 'Particles in transformed state' in which it has a different dissolution rate, \(s_t \). With this system, the initial dissolution rate is approximately \(s_p \) and the final dissolution rate is approximately \(s_t \). Thus, with a suitable choice of parameter values, including \(s_t > s_p \), an increasing dissolution rate can be represented. Fits were also made to the data using the 'default' model with rapid and slowly dissolving fractions (Table 22.6), but, as noted later, generally they fit urine data less well, and in some cases very poorly. Note that the values of \(f_r \) and \(s_r \) (\(s_r \) was fixed) were derived from the data independently of the values of \(s_p \), \(s_{pt} \) and \(s_t \), and were not calculated from them using Equation 3.1 of OIR Part 1. They were used to assign the material in each study to Type M or S.

Man

Guilmette et al. (1994) and Hickman et al. (1995) reported urinary excretion of \(^{238} \text{Pu} \) for seven workers, up to 18 years after inhalation exposure in the same incident. The inhaled material was described as "plutonium ceramic", likely to be a PuO\(_2\) material containing a molybdenum binder for the fabrication of heat source pellets. The measurements of \(^{238} \text{Pu} \) in
urine showed an unusual pattern: shortly after the exposure they were near the limit of
detection, but they increased in the following months, reaching a plateau. One of the workers
died 18 years after the incident, and was a USTUR donor (Case 0259): post-mortem
measurements of 238Pu in his tissues have been reported (James et al., 2003, below). This
combination of long-term urinary excretion measurements on a group of workers, combined
with autopsy data on one of them, provides an exceptionally comprehensive set of human data.

Analysis here of the seven cases, including autopsy data for one of them, gave shared parameter
values: $s_{pt} = 0.0026$ d$^{-1}$ and $s_{f} = 6 \times 10^{-4}$ d$^{-1}$ ($s_{p} = 1 \times 10^{-6}$ d$^{-1}$, fixed as in the analysis by James
et al, 2003, below). Alimentary tract absorption was fixed at $f_{A} = 5 \times 10^{-8}$, based on the results
of Smith (1970), who measured absorption of 238Pu following intra-gastric administration to
pigs of crushed 238PuO$_{2}$ microspheres (as used in RTG). For completeness, analysis was carried
out here using rapid and slow dissolution compartments, which gave $f_{I} = 0.0$ and $s_{s} = 5 \times 10^{-4}$ d$^{-1}$
(s_{s} fixed at 0.4 d$^{-1}$) and assignment to Type S. However, the urinary excretion pattern was not
well represented.

(768) James et al. (2003) analysed 238Pu in tissues of a whole body donor (USTUR Case
0259) who accidentally inhaled plutonium (predominantly 238Pu) in the form of a highly
insoluble ceramic 238PuO$_{2}$-molybdenum. Along with six other workers exposed at the same
time (Hickman et al., 1995, above), this donor excreted little or no 238Pu in his urine for several
months. Subsequently, however, and with no further intakes, the urinary excretion of 238Pu
increased. James et al were able to model the urinary excretion pattern by applying the HRTM
representation of particle dissolution using particles in initial and transformed states with
parameter values $s_{pt} = 10^{-6}$ d$^{-1}$, $s_{pt} = 0.00189$ d$^{-1}$ and $s_{f} = 2.57 \times 10^{-4}$ d$^{-1}$. Combined with the
Publication 67 (ICRP, 1993) plutonium systemic model, it predicted well the total 238Pu activity
retained in the body, and the distribution between lungs and systemic organs. Small adjustments
to several rate constants in these models provided precise predictions of the absolute amounts of
238Pu in the individual tissues. Analysis here, using the revised HRTM and plutonium systemic
model (ICRP, 2015) gave: $s_{pt} = 0.0022$ d$^{-1}$ and $s_{f} = 4.3 \times 10^{-4}$ d$^{-1}$ ($s_{p} = 1 \times 10^{-6}$ d$^{-1}$ fixed as in
James et al. (2003), and $f_{A} = 5 \times 10^{-8}$, based on the results of Smith1970).

(769) Fleming and Hall (1978) analysed data from a worker exposed to airborne 'high-
333 fired' 238PuO$_{2}$. Activity in chest and in urinary and faecal excretion was measured up to one
year. The chest retention measurements showed a half-time of about 1000 days. Analysis here
gave $s_{pt} = 7 \times 10^{-4}$ d$^{-1}$, $s_{pt} = 0.01$ d$^{-1}$ and $s_{f} = 0.002$ d$^{-1}$. A reasonable fit was also obtained with $f_{I} = 4 \times 10^{-4}$ and $s_{s} = 0.0011$ d$^{-1}$ (giving assignment to Type M), but the urine data were less well
represented.

(770) Newton et al. (1983) studied the retention of 238PuO$_{2}$ and 241AmO$_{2}$ in the lungs of a
worker between 7 and 869 days after the simultaneous exposure to aerosols of both oxides. The
PuO$_{2}$ had been prepared by calcination at 750°C and 238Pu accounted for 94% of the activity.
After the initial fast mucociliary clearance 238Pu showed only a long-term retention with a
biological half-life of about 800 days with clearance predominantly by systemic or lymphatic
uptake. Little information was given about urinary excretion: it was only stated that urinary and
faecal excretions were roughly similar and accounted for about 15% of the 238Pu cleared from
the lungs between 7 and 700 days. In contrast, most of the 241Am was cleared within 50 days
and the small remaining fraction was cleared with a half-life similar to that of 238Pu (see
Ambericium section in this report). Analysis here for 238PuO$_{2}$ was limited by the lack of urine
data: only upper limits on absorption rates could be derived. Analysis with s_{pt} fixed at 0.005 d$^{-1}$
(a central value based on the other results in Table 22.6) gave $s_{pt} < 1 \times 10^{-4}$ d$^{-1}$, and $s_{f} < 1 \times 10^{-4}$ d$^{-1}$. Analysis here also gave $f_{I} < 0.004$ and $s_{s} < 1 \times 10^{-5}$ d$^{-1}$, and assignment to Type S.
Mewhinney and Diel (1983) followed the biokinetics of 238Pu in dogs after inhalation of three monodisperse aerosols (AMAD = 0.7, 1.7 or 2.7 µm and GSD <1.2), or a polydisperse aerosol (AMAD = 1.4 µm and GSD = 1.5) of 238PuO$_2$. Droplets containing 238Pu(OH)$_4$ in HCl were dried at 350°C, then fired at 1150°C. (Note that in this case the 'firing' was of very short duration.) Dogs were killed at times between 2 hours and 4 years. Activity was measured in lungs, systemic organs and in urine and faeces. Mewhinney and Diel noted an increased rate of transport of 238Pu out of the lung from 64 through 512 days after inhalation. This was interpreted as due to an increased rate of dissolution as particles fragmented because of the high specific activity of 238Pu. In analyses here, values of s_{pt} were not well defined, and were optimised as a shared parameter for the four experiments: $s_{pt} = 0.0079$ d$^{-1}$. Values of s_p are about 0.001 d$^{-1}$, and of s_t about 0.004 d$^{-1}$. Individual values are given in Table 22.6. Analysis here also gave $f_r < 1 \times 10^{-4}$ and values of s_s between 9 $\times 10^{-4}$ and 0.005 d$^{-1}$ (Table 22.6, most giving assignment to Type M): fits to lung and feces data were satisfactory, but 238Pu in systemic organs and urine was overestimated up to about 500 days. The dissolution parameter values are higher than those derived from the data of Hickman et al above, indicating that this material dissolved more rapidly in the lungs.

Park et al. (1990) investigated the life-span dose effects and the disposition of inhaled 238PuO$_2$ in 137 Beagle dogs. The oxide was prepared by calcining the oxalate at 700°C and subjecting it to steam in argon exchange at 800°C for 96 hours in order to be used as fuel in space-nuclear-power systems. Dogs were given a single exposure to obtain six dose levels and were followed for 16 years. After 10 years, less than 1% IAD was retained in the lungs, 3–4% was translocated to lymph nodes, and 15–20% to both liver and skeleton. Analysis here (using lung, liver and skeleton data) gave: $s_p = 4.1 \times 10^{-3}$ d$^{-1}$, $s_{pt} = 0.0013$ d$^{-1}$ (with s_t fixed at 7 $\times 10^{-4}$ d$^{-1}$). An equally good fit was obtained with $f_r = 0.0015$, $s_s = 6 \times 10^{-4}$ d$^{-1}$, giving assignment to Type S. The dissolution parameter values are similar to those derived from the data of Hickman et al above.

Morgan et al. (1988a) followed the tissue distribution of 238Pu and 239Pu in mice after nose-only inhalation of 238PuO$_2$ and 239PuO$_2$ fired at temperatures of 550°C and 750°C ('low-fired'), 1000°C and 1250°C ('high-fired') for 2 hours (see the Plutonium-239 dioxide section above). Mice were killed at 1 day to determine the average IAD. Further groups were killed at times between 3 and 24 months for tissue analysis. Fecal, but not urine samples were obtained. Translocation to liver and skeleton decreased with firing temperature and was about an order of magnitude higher than for 239Pu. With the 'low-fired' materials, the skeletal content reached ~2% IAD within 6 months, with little further change. With the 'high-fired' materials it increased throughout the 2 years, but only reached ~1% IAD. In analyses carried out here, systemic model parameter values were shared between the four inhalation studies and one on the biokinetics of plutonium following intra-peritoneal injection of the citrate into mice (Ellender et al., 1995). Results are given in Table 22.6. For the 'high-fired' materials, estimated values of s_t are less than those of s_p, and therefore show no evidence for an increasing dissolution rate. To estimate values f_r and s_s, that of s_t was optimised as a shared parameter across the four inhalation studies, giving 0.75 d$^{-1}$; the fits were as good as those obtained with the initial/
transformed particle model. The results (Table 22.6) give assignment to Types M and S for the 'low-fired' and 'high-fired' 238PuO$_2$ respectively.

Based mainly on the human studies (Hickman et al., 1995; James et al., 2003) above, specific absorption parameter values: $s_p = 1 \times 10^{-6} \text{ d}^{-1}$, $s_{pt} = 0.0026 \text{ d}^{-1}$, $s_t = 6 \times 10^{-4} \text{ d}^{-1}$ and $f_A = 1 \times 10^{-5}$ are used here for 'ceramic' 238PuO$_2$, as used in Radioisotope Thermoelectric Generators.

Based mainly on the dog studies (Mewhinney and Diel, 1983) above, specific absorption parameter values: $s_p = 0.001 \text{ d}^{-1}$, $s_{pt} = 0.008 \text{ d}^{-1}$ and $s_t = 0.004 \text{ d}^{-1}$ are used here for 'non-ceramic' 238PuO$_2$. A specific absorption parameter value of $f_A = 1 \times 10^{-5}$ (see Ingestion section) is also used.

Stradling et al. (1978a) observed that while the extrapulmonary tissue distribution of the 238Pu absorbed after intratracheal instillation of 1-nm 238PuO$_2$ was similar to that of Pu-citrate, urinary excretion in the first day was a few times higher (see the section below on Plutonium dioxide nanoparticles). This implies that application of plutonium systemic models based on citrate (as used here) to early urinary excretion after 1-nm 238PuO$_2$ deposition or formation in the lungs would overestimate systemic organ deposition. It is therefore notable that good agreement was found between estimates of organ contents based on urinary excretion and post-mortem measurements made on USTUR donor 0259 reported by James et al. (2003), which was confirmed by analyses here. Similarly, good fits were obtained here to tissue retention and excretion data following inhalation of 238PuO$_2$ by dogs, reported by Mewhinney and Diel (1983). Therefore no enhancement to urinary excretion of 238Pu transferring from the lungs to blood is applied here.

Table 22.6. Estimated absorption parameter values for inhaled plutonium in 238PuO$_2$. Values in parentheses were fixed in analyses. AMAD and firing (calcining) temperatures are given where known, usually for laboratory-produced aerosols.

<table>
<thead>
<tr>
<th>Species</th>
<th>Duration (y)</th>
<th>AMAD (µm)</th>
<th>Firing Temperature °C</th>
<th>s_p (d$^{-1}$)</th>
<th>s_{pt} (d$^{-1}$)</th>
<th>s_t (d$^{-1}$)</th>
<th>f_A (d$^{-1}$)</th>
<th>f_r (d$^{-1}$)</th>
<th>s_r (d$^{-1}$)</th>
<th>s_s (d$^{-1}$)</th>
<th>Type</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Man</td>
<td>18</td>
<td>(1 x 10$^{-3}$)</td>
<td>0.0026</td>
<td>6 x 10$^{-4}$</td>
<td>0</td>
<td>...</td>
<td>5 x 10$^{-5}$</td>
<td>Hickman et al. (1995)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Man</td>
<td>1</td>
<td>7 x 10$^{-4}$</td>
<td>0.0097</td>
<td>0.002</td>
<td>4 x 10$^{-4}$ (0.4)</td>
<td>0.0011</td>
<td>M Fleming and Hall (1978)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Man</td>
<td>2.4</td>
<td>750</td>
<td><1 x 10$^{-3}$ (0.005)</td>
<td><1 x 10$^{-4}$</td>
<td><0.004 (0.4)</td>
<td><1 x 10$^{-4}$</td>
<td>S Newton et al. (1983)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dog</td>
<td>4</td>
<td>0.74</td>
<td>7 x 10$^{-4}$</td>
<td>...</td>
<td>0.003</td>
<td>1 x 10$^{-4}$ (0.4)</td>
<td>0.003</td>
<td>Mewhinney and Diel (1983)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dog</td>
<td>4</td>
<td>1.74</td>
<td>6 x 10$^{-4}$</td>
<td>...</td>
<td>0.006</td>
<td>1 x 10$^{-4}$ (0.4)</td>
<td>9 x 10$^{-4}$</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dog</td>
<td>4</td>
<td>2.7</td>
<td>0.0010</td>
<td>...</td>
<td>0.004</td>
<td>1 x 10$^{-4}$ (0.4)</td>
<td>0.005</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dog</td>
<td>4</td>
<td>1.4</td>
<td>0.0022</td>
<td>...</td>
<td>0.002</td>
<td>1 x 10$^{-4}$ (0.4)</td>
<td>0.002</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dog</td>
<td>13</td>
<td>1.8</td>
<td>700</td>
<td>4.1 x 10$^{-4}$</td>
<td>0.0013</td>
<td>(7 x 10$^{-4}$)</td>
<td>0.0015</td>
<td>(0.4)</td>
<td>6 x 10$^{-4}$</td>
<td>S Park et al. (1990)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse</td>
<td>2</td>
<td>1.6</td>
<td>550</td>
<td>6 x 10$^{-3}$</td>
<td>0.011</td>
<td>...</td>
<td>3 x 10$^{-3}$</td>
<td>Morgan et al. (1988a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse</td>
<td>1.4</td>
<td>1000</td>
<td>0.0024</td>
<td>0.057</td>
<td>4.9 x 10$^{-4}$</td>
<td>0.0075</td>
<td>8 x 10$^{-4}$</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse</td>
<td>1.5</td>
<td>1250</td>
<td>0.0051</td>
<td>0.50</td>
<td>3.1 x 10$^{-4}$</td>
<td>0.0088</td>
<td>4 x 10$^{-4}$</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- a: monodisperse aerosols
- b: shared parameter value
- c: Values estimated for f_r, s_r and s_s are given for completeness and comparison purposes. However in some cases they greatly underestimate urinary excretion and systemic uptake at early times: see text

Plutonium dioxide nanoparticles

As noted in OIR Part 1 (ICRP, 2015), it was recognised in Publication 66 (ICRP, 1994, Annex E Section E.2.2) that there was evidence that particles smaller than a few nanometres are readily transported into the blood: "Smith et al. (1977) and Stradling et al. ...
(1978a,b) found that 1 nm particles of $^{239}\text{PuO}_2$ or $^{238}\text{PuO}_2$ were readily translocated from the lungs to the blood in rats, but there was negligible translocation of particles larger than 25 nm. This is consistent with observations that the intercellular clefts in pulmonary blood capillaries do not exceed 4 nm (Lauweryns and Baert, 1977). The concept was not new in 1977. For example, Anderson et al. (1970) noted that part of the rapid urinary excretion observed after accidental inhalation of ^{238}Pu was: "thought to be due to refractory particles of colloidal dimensions which were transferred very rapidly to the systemic system.

As described above, high-fired plutonium-239 dioxide particles dissolve extremely slowly in the lungs, although a small fraction of the ILD, usually less than 1%, is absorbed rapidly. Studies of the lung clearance of inhaled sodium-plutonium oxide aerosols, summarised in the section below, Plutonium dioxide formed in the presence of sodium, showed much higher rapidly absorbed fractions, up to 50%. Investigations indicated that this was related to the fraction of particles that penetrated a 100-nm filter, then referred to as the 'ultrafilterable' fraction, and probably to particles within it of about 1-nm diameter (e.g. Stather et al., 1979b; Stradling et al., 1980). Particles with physical diameters less than 100 nm are now described as 'ultrafine particles' or 'nanoparticles'. In recent years, there has been enormous growth in interest in nanoparticles, their applications, and their toxicology. NCRP established Scientific Committee 2-6 to develop a report on the current state of knowledge and guidance for radiation safety programmes involved with nanotechnology (Hoover et al., 2015).

Studies conducted to investigate the properties and lung clearance of the 'ultrafine fraction' of Pu$_2$O$_5$ aerosols, and ultrafine Pu$_2$O$_5$ aerosols, are summarised here. Studies of the inhalation of aerosols formed from plutonium mixed with sodium and other metals (except MOX) are summarised below.

Stather et al. (1975) followed the tissue distribution of 239Pu in rats after inhalation of aerosols produced by the 'exploding wire' technique, with or without sodium present at a Na:Pu ratio of 20:1 (see below). They also carried out experiments in which the aerosol was collected with an 'impinger' (inertial impaction into distilled water) and sized fractions of the suspension were obtained by sequential filtering. The tissue distribution and cumulative urinary and fecal excretion of 239Pu were determined at 7 days after intratracheal instillation into rats. For comparison, similar experiments were carried out with plutonium nitrate and citrate. The 'transportable fraction' (systemic uptake) was estimated from the 'extrapulmonary tissue deposit' (ETD = skeleton + liver + soft tissues). For material passing through filters with pore size 200 nm or larger, the ETD was <1% ILD. However, for material penetrating a 100-nm filter (for pure $^{239}\text{PuO}_2$ this was only ~0.3% of the original suspension), the ETD was ~20% ILD. Similar transportable fractions were measured with material penetrating a 25-nm filter from aerosols generated with Na:Pu ratios up to 87:1. Deposition in the liver accounted for ~16% ETD, for
the suspensions as well as for the nitrate and citrate, indicating that it was in a monomeric form.

However, cumulative urinary excretion at 7 days ranged from 5 – 10% ETD for the suspensions, somewhat higher than for nitrate and citrate (~4% ETD).

(782) Stather et al. (1977a) measured the ultrafilterable fraction of plutonium from aerosols generated from a range of Pu-Na mixtures: it was <1% for Na:Pu ratios up to 1:1, and increased with sodium content up to a maximum of ~55% for ratios of 20:1 to 87:1.

(783) Smith et al. (1977) fractionated, by sequential filtering, a suspension of $^{239}\text{PuO}_2$ particles produced from plutonium foil using the exploding wire technique, into size ranges <25 nm; 25–200 nm (0.2 µm); and 0.2–1.2 µm. Further filtration of the <25 nm fraction (~0.1% of the total $^{239}\text{PuO}_2$), supported by electron microscopy, indicated that the particle size was uniform and ~1-nm diameter. They measured tissue distribution and excretion of ^{239}Pu at 18 hours, 6 and 17 d after intratracheal instillation of the three fractions, and, for comparison, Pu citrate solution. (See Plutonium citrate section above.) For the 1-nm $^{239}\text{PuO}_2$ and citrate, there was rapid absorption of ~70% ILD, and similar distributions between extra-pulmonary tissues (liver, blood, remaining carcass) and faecal excretion at all times. Analysis here for 1-nm $^{239}\text{PuO}_2$ gave $f_r = 0.8$ and $s_r = 3$ d$^{-1}$. The lack of long-term measurements prevented a reliable assessment of s_r.

(784) However, for 1-nm $^{239}\text{PuO}_2$, urinary excretion in 18 hours was higher (~5% ILD) than for citrate (~1.5% ILD). Lung contents were similar (~30% ILD) at 1 day, but fell more slowly for the 1-nm $^{239}\text{PuO}_2$, (~25% and ~20% ILD at 6 and 21 days) than for the citrate (10% and 7% ILD, respectively). In contrast, there was no detectable systemic uptake of the 25 – 200 nm and 0.2–1.2 µm $^{239}\text{PuO}_2$ fractions, and ~90% ILD remained in the lungs at 17 days. In similar complementary experiments, all three $^{239}\text{PuO}_2$ fractions and Pu citrate were administered to rats by intravenous (IV) injection (measurements were also made at 50 days). Tissue distributions were similar for the 1-nm $^{239}\text{PuO}_2$ and citrate. However, for 1-nm $^{239}\text{PuO}_2$, urinary excretion at 18 hours was much higher than for citrate: ~10% and 1.5% injected activity (IVA), respectively. In contrast, for the larger-sized fractions, most of the ^{239}Pu was deposited in liver and spleen (~85% and 5% IVA) and retained there. Ca-DTPA administered 1 hour after IV injection had no effect on urinary excretion of ^{239}Pu administered as particles >25 nm, but significantly increased urinary excretion at 7 days after administration of 1-nm $^{239}\text{PuO}_2$ (from 13% to 43% IVA), similar to the effect on Pu-citrate (from 3% to 35% IVA). Investigations of the chemical form of plutonium in blood and urine in vitro, and in animals intravenously injected, indicated that a form "intermediate" between PuO$_2$ and Pu citrate was present, and possibly associated with the enhanced urinary excretion. (Ultimately the Pu was complexed by transferrin (~95%) and citrate (~5%) in blood and by citrate in urine.) It was estimated that 1-nm diameter PuO$_2$ particles contain about 25 plutonium atoms, most of which lie at the surface, and so are accessible to react with citrate ions in vivo.

(785) Stradling et al. (1978b) carried out a study similar to that of Smith et al. (1977), except that the particles were produced (by the exploding wire technique), with sodium present at Na:Pu ratios of 3:1 and 20:1. The amounts of plutonium in the 1-nm fraction were 1.6% and 48% respectively, much higher than for plutonium alone (~0.1%, Smith et al 1977), but were also negligible in the size range 4–25 nm. They measured tissue distribution and excretion of plutonium at 1, 6 and 21 d after intratracheal instillation of the 1-nm fraction from both aerosols, and, for comparison, Pu citrate solution. For all three there was rapid absorption of ~70% ILD, and similar distribution between extra-pulmonary tissues. However, for 1-nm $^{239}\text{PuO}_2$, urinary excretion in 1 day was higher (~7% ILD) than for citrate (~1.5% ILD). Lung contents were similar for all three (~30% ILD) at 1 day, but fell more slowly for the 1-nm
239\(^{\text{Pu}}\)O\(_2\), (~25% and ~20% ILD at 6 and 21 days) than for the citrate (7% and 5% ILD, respectively). Analysis here for 1-nm 239\(^{\text{Pu}}\)O\(_2\) gave \(f_r = 0.7\), \(s_r = 3 \text{ d}^{-1}\) and \(s_t = 0.015 \text{ d}^{-1}\), and \(f_r = 0.7\), \(s_r = 3 \text{ d}^{-1}\) and \(s_t = 0.019 \text{ d}^{-1}\), respectively. These values are similar to those derived from the results of Smith et al. (1977) above. In similar complementary experiments, the materials were administered to rats by IV injection. Again, tissue distributions were similar, and for 1-nm 239\(^{\text{Pu}}\)O\(_2\), urinary excretion in 1 day was much higher than for citrate: ~10% and 2% IVA, respectively. Investigations of the chemical form of plutonium in blood and urine indicated that a complex "intermediate" between PuO\(_2\), and Pu citrate was present, and accounted for the high urinary excretion. The findings thus supported those of Smith et al. 1977, and indicated that the behaviour of the 1-nm 239\(^{\text{Pu}}\)O\(_2\), was related to its size, not the initial presence of sodium in the aerosol.

(786) Stradling et al. (1978a) similarly investigated sized fractions of 238\(^{\text{Pu}}\)O\(_2\) particles, prepared by calcining the oxalate at 750\(^\circ\)C. As for the 239\(^{\text{Pu}}\)O\(_2\) produced by the exploding wire technique, ultrafiltration and electron microscopy showed that the <25-nm fraction consisted only of 1-nm diameter particles. 'Aging' (storing the 238\(^{\text{Pu}}\)O\(_2\) in aqueous suspension: see Plutonium-238 dioxide section) increased the proportion of 1-nm particles in the suspension from ~2% at 1 day to ~40% at 270 days. The biokinetic behaviour was similar to that of 239\(^{\text{Pu}}\)O\(_2\) suspensions (see above). After intratracheal instillation into rats, there was negligible absorption (<0.5% ILD) up to 21 days from the 25–200 nm and 0.2–1.2 \(\mu\text{m}\) fractions, but high absorption from the 1-nm fraction of either 'fresh' (1-day) and 'aged' (32 weeks) suspensions: the extrapulmonary tissue distribution was similar to that of Pu-citrate. Analysis here for 1-nm 238\(^{\text{Pu}}\)O\(_2\) gave \(f_r = 0.6\), \(s_r = 3 \text{ d}^{-1}\), and \(s_t = 0.016 \text{ d}^{-1}\); and \(f_r = 0.6\), \(s_r = 3 \text{ d}^{-1}\), and \(s_t = 0.010 \text{ d}^{-1}\), respectively for fresh and aged suspensions.

(787) The authors considered that the findings supported the view that the higher in-vivo dissolution of 238\(^{\text{Pu}}\)O\(_2\) than of 239\(^{\text{Pu}}\)O\(_2\) is due to radiolytic fragmentation and formation of 1-nm particles. As for 1-nm 239\(^{\text{Pu}}\)O\(_2\) particles, urinary excretion was higher than for Pu-citrate: to account for this, the authors proposed that a fraction of 1-nm particles passed from lungs to blood and urine, which was possible because the pore diameters of the alveolar epithelium (0.12 –2 nm) and the glomerular membrane (up to 7 nm) could allow the passage of such particles. However, as described in the Plutonium-238 dioxide section, studies in which measurements of urinary excretion and tissue distribution are available, following inhalation of 238\(^{\text{Pu}}\)O\(_2\) by men and dogs, do not support the assumption of enhanced urinary excretion of nanoparticles transferred from lungs to blood compared to a citrate-based systemic model.

(788) Cooper et al. (1979) studied the reactions of 1-nm 238\(^{\text{Pu}}\)O\(_2\) particles prepared as described by Stradling et al. (1978a), with rat lung fluid in vivo and in vitro, in order to elucidate the mechanisms by which plutonium is transferred to blood. For the in-vivo experiments, 1-nm 238\(^{\text{Pu}}\)O\(_2\) particles were administered by intratracheal instillation into rats, and 238\(^{\text{Pu}}\)-labelled lung fluid removed by lung lavage; for the in-vitro experiments, lung fluid was removed by lavage and incubated with an aqueous suspension of 1-nm 238\(^{\text{Pu}}\)O\(_2\) particles. In both cases the lung fluid was fractionated by gel-permeation chromatography and sucrose density gradient centrifugation. It was concluded that the 238\(^{\text{Pu}}\)O\(_2\) particles reacted rapidly with pulmonary surfactant in vitro: after 2 hours incubation 238\(^{\text{Pu}}\)-labelled pulmonary surfactant was the major 238\(^{\text{Pu}}\)-bearing species. The biokinetics of 238\(^{\text{Pu}}\) was measured at 1, 6 and 21 days after intratracheal instillation into rats of several forms. Urinary excretion at 1 day was higher (5.5% ILD) for 1-nm 238\(^{\text{Pu}}\)O\(_2\) than for Pu-citrate (1.5% ILD) and much higher (17% ILD) for 238\(^{\text{Pu}}\)-labelled pulmonary surfactant. It was concluded that the formation of plutonium-labelled pulmonary surfactant could account for the faster translocation of plutonium from lungs to
blood and high urinary excretion of 1-nm PuO$_2$ relative to plutonium citrate. In similar
experiments, Cooper et al. (1980) compared the reactions of 1-nm 238PuO$_2$ particles with rat
lung fluid, with those of 1-nm 244CmO$_2$. Previous studies (Stradling et al., 1979) had shown that
for 244CmO$_2$ the presence or formation of 1-nm particles in the lungs was an important factor
influencing transfer to blood. However, the physical and chemical properties of the 1-nm
244CmO$_2$ particles, and their transfer mechanisms, were found to be different from those of
238PuO$_2$. Electrophoresis showed that the 1-nm 238PuO$_2$ are positively charged, whereas the
244CmO$_2$ particles are negatively charged. The latter did not combine with surfactant, which is
also negatively charged. The authors proposed that the 1-nm 244CmO$_2$ particles diffuse
passively through pores in the alveolar epithelium.

(789) Kanapilly (1977) carried out a review of the alveolar microenvironment and material
transport across the air-blood barrier, and concluded that nanometer-size insoluble particles
such as PuO$_2$ might be transported from the alveoli into the blood by a pinocytotic mechanism
similar to protein transport.

(790) Kanapilly and Diel (1980) generated ultrafine 239PuO$_2$ aerosols by vapourising a
chelate prepared with THD (2,2,6,6, tetramethyl-3,5-heptane dione): Pu(THD)$_3$. The vapour
was oxidised at 280°C to obtain the desired particle size, then fired at 1150°C. Electron
microscopy showed the aerosol to consist of compact clusters of primary particles <10-nm
diameter. X-ray diffraction confirmed that the structure was ‘standard’ 239PuO$_2$. In-vitro tests
were carried out on aerosol samples. Dissolution of the ultrafine PuO$_2$ varied considerable
between the four solvents used, but the highest was only 0.3% over 16 days (in 0.1M HCl). This
was much less than expected for such small particles, based on their high specific surface
area and dissolution rate constants measured for micron-sized 239PuO$_2$. The biokinetics of 239Pu
was followed for 16 days after inhalation of an aerosol with primary particle diameter 9±5 nm,
and it was estimated that <1% ILD was absorbed in that time. The authors assessed that this
was no more than would be expected for micron-sized 239PuO$_2$. Thus the high absorption
observed elsewhere for 1-nm particles was not seen with 9-nm particles in this study.

(791) Reflecting current interest in potential exposure to radioactive nanoparticles, Cash
(2014) carried out a study to assess: (1) whether the biological behaviour and associated
dosimetry of PuO$_2$ nanoparticles (<100-nm diameter) might differ significantly from the default
assumptions in current dosimetric models based on particles in the micrometer size range; and
(2) how any differences might influence health protection of persons potentially exposed to
PuO$_2$ nanoparticles. Cash derived biokinetic information for PuO$_2$ nanoparticles from the
studies by Smith et al. (1977) and Stradling et al. (1978a) summarised above. She used
simulation software to develop respiratory tract and systemic models from the experimental
data that took account of the rapid absorption from lungs to blood, and the relatively high
urinary excretion. She found that the use of default ICRP models led to large overestimates of
assessed intake and dose from bioassay samples for PuO$_2$ nanoparticles, compared to models
based on the experimental data.

(792) Specific parameter values are adopted here for 1-nm PuO$_2$ (either 238PuO$_2$ or
239PuO$_2$) because there is evidence that they are formed in condensation aerosols in which
plutonium is mixed with a metal with a soluble oxide (see below), and their behaviour is very
different from that of larger PuO$_2$ particles. Specific parameter values for 1-nm PuO$_2$ (either
238PuO$_2$ or 239PuO$_2$) derived above from experiments in which particle suspensions were
instilled into rats are approximately: $f_i = 0.7; s_r = 3$ d$^{-1}$ and $s_s = 0.01$ d$^{-1}$. However, it is
considered that the mechanisms involved in the rapid absorption of the plutonium in this form
would apply only in the AI region. To reduce calculated absorption from the upper respiratory
tract (ET and BB regions), a lower value of \(s_r \) is adopted instead (0.4 d\(^{-1}\), the default for soluble forms of plutonium). Because this competes with much higher rates of particle transport (10 d\(^{-1}\) in BB and 100 d\(^{-1}\) in ET, see Part 1, Fig. 3.4, ICRP, 2015), little absorption takes place in these regions. Since the experiments were of short duration (21 days), \(s_s \) was not well determined. However, the slow phase of absorption was clearly lower than for citrate. Estimates of \(s_s \) for citrate are in the range 0.005 – 0.007 d\(^{-1}\) (see Plutonium citrate section above): a value of 0.005 d\(^{-1}\) (Type M default value) is adopted here. Thus for 1-nm PuO\(_2\), material-specific parameter values of \(f_r = 0.7 \); \(s_r = 0.4 \) d\(^{-1}\) and \(s_s = 0.005 \) d\(^{-1}\) are adopted here. In the absence of any measured values of \(f_A \) for 1-nm PuO\(_2\), the default \(f_A \) value for inhaled materials is applied: i.e., the (rounded) product of \(f_r \) (0.7) and the \(f_A \) value for ingested soluble forms of plutonium (1 × 10\(^{-4}\)), i.e. 1 × 10\(^{-4}\) (rounded).

(793) The greater transfer from blood to urine (typically about a factor of three) compared to plutonium citrate, is not implemented here, because it was not confirmed in the case of \(^{239}\)PuO\(_2\), where a similar enhanced urinary excretion was indicated from instillation experiments, but not observed following inhalation. Assumption of enhanced urinary excretion would make little difference to the inhalation dose coefficient, because urinary excretion would still be small compared to systemic deposition. However, systemic uptake (and intake) estimated from urinary excretion would be much lower, and could be underestimated if enhanced urinary excretion did not occur in practice.

Plutonium dioxide aerosols formed in the presence of sodium

(794) Some fast breeder reactor designs use liquid sodium as a coolant. The possibility that, under certain conditions, mixtures of plutonium, uranium and sodium could be released into the environment, prompted experimental studies on the biokinetics of \(^{239}\)Pu formed in a condensation aerosol from vaporised mixtures of metallic sodium and plutonium (Na-Pu).

(795) Métivier et al. (1976b) studied the biokinetics of \(^{239}\)Pu present in an aqueous solution formed from combustion of a mixture of sodium and plutonium oxides (Na:Pu ratio 20:1) preheated to 450°C. The tissue distribution, urinary and faecal excretion were measured at times up to 30 days after intramuscular injection of the suspension into rats and up to 6 months in baboons (Papio papio). A larger fraction of activity was transferred from the injection site to the systemic circulation than after injection of an acidic nitrate solution, up to 20% in rats and 40% in baboons. Skeletal retention was always higher than liver retention. Urine was the main route of early excretion but faecal excretion was preponderant after a week in rats and a month in baboons. DTPA treatment was found to be less effective than after Pu nitrate injection. The plutonium and sodium aqueous solution was also administered to rats by inhalation. Rats were killed at times between 30 minutes and 14 days and the contents of the lung, liver, skeleton, blood, urine and faeces measured. At the end of the one hour long inhalation, about 20% Pu ILD was absorbed to blood. Afterwards, up to 6% ILD and 14% ILD respectively were retained in liver (after 30 min) and in skeleton (after 4 days) respectively. Lung retention fell to 11% ILD after 14 days, while 80% ILD had been excreted in faeces, mostly through muco-ciliary clearance. The authors discuss the results in two articles (Métivier et al 1976a, Métivier et al 1976b) and suggest that the increased absorption and transfer to skeleton is not explained here by small particle sizes but by the production of diffusible hexavalent and heptavalent plutonium forms, strongly bound to a protein complex which reduces the efficacy of DTPA treatment.
Brightwell and Carter (1977) followed the tissue distribution of 239Pu in mice up to 35 days after inhalation of aerosols produced by the 'exploding wire' technique (see section above on Plutonium dioxide nanoparticles). They compared plutonium vaporised alone, or with sodium in atomic ratio Na:Pu between 1.5:1 and 16:1. Lung clearance, and transfer to liver and skeleton, increased with increasing Pu:Na ratio. At 7 days, the liver + skeleton content was only 0.06% ILD for pure 239PuO$_2$, as expected, but about 8% ILD at a Na:Pu ratio of 16.

Stather et al. (1975) followed the tissue distribution of 239Pu in rats up to 28 days after inhalation of aerosols produced by the 'exploding wire' technique, with or without sodium present. At 28 days the 'extrapulmonary tissue deposit' (ETD = skeleton + liver + soft tissues) was about 0.1% ILD for pure 239PuO$_2$, and ~4% ILD at a Na:Pu ratio of 20:1. The authors noted that deposition in the liver accounted for ~16% ETD, indicating that it was in a monomeric form.

Stather et al. (1977a) measured the tissue distribution of 239Pu in hamsters 30 days after inhalation of aerosols (produced by the 'exploding wire' technique) of 239PuO$_2$, alone or with sodium present. For pure 239PuO$_2$ the ETD was ~0.06% ILD, similar to that seen in mice and rats (see above). In the presence of sodium the ETD was far higher, between 6% and 38% ILD at Na:Pu ratios between 7:1 and 270:1, but there was no correlation with the ratio. (Stather et al., 1979b, reported the result for an Na:Pu ratio of 27:1, for which the ETD was 34% ILD.) Autoradiographs of the lungs showed a much more diffuse deposit after inhalation of the Na-Pu aerosol than after inhalation of pure 239PuO$_2$, but no differences that could be correlated with the transportable fraction.

In further experiments, Stather et al. (1977a, 1978a) measured the tissue distribution of 239Pu in hamsters at times up to 550 days after inhalation of pure 239PuO$_2$, or with sodium at a Na:Pu ratio of 27:1; and up to 365 days with sodium at a Na:Pu ratio of 104:1. For the pure 239PuO$_2$, the ETD at 7 days was 0.06 (±0.02)% ILD and increased slowly, reaching ~0.4% by 550 days. For the Na-Pu (27:1) aerosol the ETD increased from ~20% ILD at 7 days to ~30% at 28 days, with little change thereafter. For the Na-Pu (104:1) aerosol the ETD was lower: ~7% ILD from 7 to 365 days. The plutonium contained ~10% 241Am (by alpha activity): measurements following inhalation of the pure 239PuO$_2$, and the Na-Pu (27:1) aerosol showed somewhat higher absorption of the 241Am than of the 239Pu, but not enough to change the 239Pu: 241Am ratio in the lungs. The authors concluded that the Na-Pu aerosols consisted of a soluble fraction that is rapidly absorbed into blood, and an insoluble fraction that is cleared very slowly by particle transport. In a complementary study, Stather and Rodwell (1978) found that following inhalation by hamsters of a Na-Pu (27:1) aerosol, administration of Ca-DTPA reduced both the lung and ETD contents of 239Pu and 241Am (measured at 30 days) significantly. This indicates that even if the soluble form consists initially of 239PuO$_2$ nanoparticles, the 239Pu and 241Am within them was available to complexing with DTPA.

Thus it appears that Na-Pu aerosols behave as a mixture of 1-nm PuO$_2$ (see above) and "normal" plutonium-239 dioxide, with the proportions depending on the Na:Pu ratio. Specific parameter values are not given here for any "reference" Na:Pu ratio. If an estimate can be made of the proportion of 1-nm PuO$_2$ out of the total PuO$_2$ present in the aerosol, according to the circumstances of the exposure, then assessments can be made using the dose coefficients and bioassay functions given here for 1-nm PuO$_2$ and high-fired PuO$_2$.

239PuO$_2$ formed in presence of other metals
DRAFT REPORT FOR CONSULTATION: DO NOT REFERENCE

Stather et al. (1977b, 1979b) applied the ‘exploding wire’ technique to mixtures of plutonium with other metals which could be associated with plutonium in accidents in the nuclear industry: uranium, potassium, calcium, and aluminium. They measured lung retention, and as a measure of absorption, the ETD, at 30 days after inhalation of the aerosols by hamsters. For pure 239PuO$_2$, the ETD was 0.06 (±0.01)% ILD. It was somewhat higher for U-Pu and Al-Pu aerosols: 0.2% ILD for U-Pu (1:1), 0.5% for U-Pu (4:1) and 0.5% for Al-Pu (4:1). It was considerably higher, 3% ILD, for Ca-Pu (20:1); and 25% for K-Pu (36:1), similar to values for Na-Pu aerosols. The trend reflected the solubility of the predominant species in the aerosol matrix. For the U-Pu aerosols, tissue distributions were measured up to 360 days: continuing absorption was slow, but somewhat higher than for pure 239PuO$_2$.

Métivier et al. (1980) studied the biokinetics of 239Pu formed from vaporised mixtures of metallic plutonium and magnesium, because magnesium is used in many metallurgical and chemical processes, and, like sodium, is highly inflammable in air. Rats inhaled an aerosol generated by the arc ignition of a plutonium-magnesium alloy (atomic ratio Mg:Pu = 66:1). Rats were killed at times between 1 and 30 days, and the contents of the lung, spleen, kidneys, blood, femora were measured (the skeletal burden was estimated as 10 times the femora burden). The IAD was estimated from the lung content at four days after inhalation. Lung content fell to ~60% IAD at 30 days. There was significant deposition in skeleton (~2% IAD) at 1 day, increasing to ~8% IAD at 30 days. Early treatment with DTPA was effective at enhancing excretion. Analysis here (with s_r fixed at 1 d$^{-1}$) gave $f_r = 0.05$, $s_s = 0.007$ d$^{-1}$, and assignment to Type M.

Rhoads et al. (1986) exposed rats, by nose-only inhalation, to high fired 239PuO$_2$ (see above), 244Cm oxide, or to a mixed Pu-Cm oxide prepared by calcining the oxalates together at 750°C. The mass ratio of Pu:Cm was 1385:1, and the alpha-activity ratio ~ 1:1. The purpose of the experiments was to determine whether the kinetics of these two radionuclides changed from those in the single compounds when they were calcined together. Rats were killed at times between 3 and 120 days. Activities were measured in lung, systemic organs and excreta. Less than 1% IAD of 239Pu was translocated to any of the systemic tissues. Clearance of 239Pu from the lungs was slightly slower for the mixed oxide than for the pure oxide. Analysis here gave (with s_r fixed at 1 d$^{-1}$): $f_r = 0.003$, $s_s < 2 \times 10^{-3}$ d$^{-1}$, and assignment to Type S. The 244Cm cleared more slowly from the mixed oxide than from the 244Cm oxide, but much faster than the 239Pu (see Curium section in this report).

Miscellaneous industrial dusts

Magnox storage pond residues

Cooling pond storage of spent fuel from a Magnox reactor (magnesium-alloy clad uranium metal) could result in workplace contamination through suspension in air of sediment formed by corrosion. Stradling et al. (1989c) measured the tissue distribution in rats of $^{238+239}$Pu, 241Am, 144Ce, and 137Cs, after intratracheal instillation of a suspension of residues present in a sample of pond water (see Americium section in this report, and Caesium section in OIR Part 2). The particles consisted almost entirely of uranium, but the potential hazard was considered to be mainly from $^{238+239}$Pu and 241Am. Groups were killed at times between 28 and 360 days, and the lung, liver and carcass contents measured. Lung content fell from about 46% ILD at 28 days to 5% ILD at 360 days, whilst the carcass content rose from about 3% to 8.5%
ILD. Analysis here (with \(s_r \) fixed at 1 \(d^{-1} \)) gave: \(f_r = 0.04, \ s_s = 0.002 \ d^{-1} \), and assignment to Type M.

Residues from refining process

Stradling et al. (1987) measured the tissue distribution in rats of \(^{239} \)Pu (and \(^{241} \)Am: see Americium section in this report) after inhalation or intratracheal instillation of the respirable fraction of residues obtained from a plutonium electro-refining process. It was considered that plutonium could be present in the residue as Pu\(^{3+} \) chloride and finely divided metal. After inhalation, the ILD was determined by analysing tissues from rats killed at 3 days. Groups were killed at times between 10 and 365 days, and the \(^{239} \)Pu content of the lungs, liver and remaining carcass measured. The lung content fell to 6% at 365 days. The carcass content rose from 1.2% at 3 days to 1.6% at 84–365 days. For intratracheal instillation, the ILD was determined by analysing aliquots of the suspension. Rats were killed at times between 1 and 84 days. Urine and faeces were collected. The lung content reduced to 39% at 84 days. The carcass content rose from 1.3% at 1 day to 1.7% at 84 days. Analysis here for both experiments gave: \(f_r = 0.02, \ s_s = 3 \times 10^{-4} \ d^{-1} \), and assignment to Type S.

Oxide mixtures of plutonium with uranium, beryllium and aluminium

Stradling et al. (1990) (also reported by Moody et al., 1991; Stradling and Moody, 1995) investigated the biokinetics of \(^{239} \)Pu (and \(^{241} \)Am: see Americium section in this report) in four site-specific industrial dusts after deposition in the rat lung by inhalation or intratracheal instillation (Table 22.7). One was PuO\(_2 \) (coded ALDP9, see Plutonium-239 dioxide section above). The others consisted of:

- a mixed oxide of PuO\(_2 \), UO\(_2 \) and Al\(_2\)O\(_3 \) (estimated relative atomic proportions 1.0Pu: 2.0U: 13Al) produced by oxidation of a molten mixture of the metals (ALDP10);
- a mixed oxide dust containing \(^{239} \)PuO\(_2 \), \(^{235} \)U\(_3\)O\(_8 \) and BeO (1.0Pu: 3.1U: 26Be) produced by combustion of the metals separately (ALDP11);
- a mixed oxide dust containing \(^{239} \)PuO\(_2 \) and BeO (1.0Pu: 46Be) produced by combustion of the metals separately with prolonged sintering at 900 – 1050ºC to give 'high-fired' oxides (ALDP13).

In each case, the respirable fraction was obtained by sedimentation in alcohol. For inhalation, the ILD was obtained from tissue analysis of rats killed at 2 days. Further groups were killed at times between 7 and 730 days and the lung, liver and carcass contents measured. Following instillation, urine and feces were also measured. In two experiments groups were killed at 7 and 21 days, in the third, at times between 7 and 365 days. Absorption parameter values derived here are given in Table 22.7. However, estimates of \(s_s \) from the 21-day instillation studies are considered less reliable than the others because of their short duration. Results for ALDP10 give assignment to Type M, the others to Type S.

Table 22.7. Summary of experimental data and derived absorption parameter values for some plutonium-metal oxides (Stradling et al., 1990).

<table>
<thead>
<tr>
<th>Material code</th>
<th>ALDP10</th>
<th>ALDP11</th>
<th>ALDP13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metals present with plutonium</td>
<td>U, Al</td>
<td>U, Be</td>
<td>Be</td>
</tr>
<tr>
<td>Inhalation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration, days</td>
<td>730</td>
<td>730</td>
<td>730</td>
</tr>
</tbody>
</table>
Lungs, %ILD at 7 (730 d) | 81 (1.5) | 88 (2.8) | 81 (1.6)
---|---|---|---
Carcass %ILD at 7 (730 d) | 1.5 (12) | 0.12 (0.5) | 0.11 (0.4)
---|---|---|---
f_i, | 0.023 | 0.0018 | 0.0026
---|---|---|---
s_i, $x 10^{-4}$ d$^{-1}$ | 17 | 0.9 | 1.3

Instillation
Duration, days (T_i)	21	21	365
Lungs, %ILD at 7 (T_i) days | 73 (52) | 84 (63) | 71 (7)
---|---|---|---
Carcass,%ILD at 7 (T_i) days | 1.3 (3.3) | 0.12 (0.14) | 0.13 (0.26)
---|---|---|---
f_i, | <10$^{-4}$ | 0.0018 | 0.0029
---|---|---|---
s_i, $x 10^{-4}$ d$^{-1}$ | 45 | 0.9 | 0.8

Unknown compounds

Reports in the literature of monitoring following accidental occupational exposures demonstrate the very wide range of dissolution characteristics that plutonium can exhibit in situations such as mixed laboratory waste or long-term contamination. La Bone et al. (1992) reported an occupational case of 238Pu inhalation due to a contaminated shipping container. The worker received Zn-DTPA treatment shortly after the incident and her urine excretion was monitored over more than 500 d after intake. No information was obtained on the chemical form or the particle size distribution of the aerosol. However, the measurements of 238Pu in urine suggested a high solubility of the inhaled material and a poor effectiveness of DTPA treatment. The analysis of the case by the authors, confirmed by a group of experts, indicated that the bioassay data were best modeled assuming an intake of very fine (0.4 µm AMAD) and very soluble (Class D i.e. Type F in the framework of the current HRTM) plutonium.

Blanchin et al. (2008) reported two occupational cases of exposure to mixtures of plutonium isotopes and 241Am. The first subject inhaled an aerosol from a MOX pot that had been stored for many years. A chemical analysis revealed high chloride concentration most likely linked to the deterioration of the polyvinyl chloride envelope on the pot. The second subject inhaled an aerosol formed from old acid (nitrate, chloride and oxalate) solutions in a glovebox. Both workers were treated with Ca-DTPA and monitored by measurements of 241Am in lungs, 241Am, 238Pu and $^{239+240}$Pu in urine and faecal samples. They were followed up to 50 d and 210 d after their respective incidents. The measurement results appeared inconsistent with Types M and S. In both cases, the authors obtained a best fit to the data by assuming Type F, an AMAD of 0.1 µm and no significant effect of DTPA treatment.

Wernli and Eikenberg (2007) reported the follow-up of a worker who inhaled a mixture of plutonium isotopes and 241Am following a glove box accident in which waste material related to nuclear fuel overheated. No information was obtained on the chemical form or the particle size distribution of the aerosol. The radionuclide composition of the fuel samples used in the solution that overheated and was dispersed in the accident is known, and is given as per cent of the total alpha activity: 9% 238Pu, 55% 239Pu, 26% 240Pu, 10% 241Am, 75% 241Pu (beta activity). There has been an extensive series of follow-up measurements on the subject. The data collected over nearly 30 years include measurements of plutonium in bronchial mucus and nasal swabs, plutonium and 241Am in faeces and urine, and 241Am in chest, lymph nodes, bone and liver. About 60% ILD was retained in lungs from 30 d to 180 d post-intake. The amount does not decrease appreciably for over twenty years but a significant fraction of the
Am retained after 1000 d is due to ingrowth from 241Pu. Analyses of the data available at various times have been reported (e.g. ICRP, 2002 Annex E; IAEA, 2007; Wernli and Eikenberg, 2007). In the most recent analysis, Wernli et al. (2015) fit the plutonium and 241Am data simultaneously, taking into account the ingrowth of 241Am from 241Pu. Assuming $f_b=0.002$ and $s_b=0$ d$^{-1}$, they obtained parameter values for plutonium of $f_r=0.003$, $s_r=0.4$ d$^{-1}$, and $s_s=8 \times 10^{-5}$ d$^{-1}$, giving assignment to Type S. The dissolution rates s_r and s_s were not significantly different for plutonium and 241Am (although the value of s_r for plutonium was not well defined), but the value of f_r (0.003) was lower than that estimated for 241Am (0.08).

Plutonium in dust and soils

There have been a number of studies of plutonium released into the environment. Although generally related more to public than to occupational, exposure, information is included here for completeness. Some might also be relevant to occupational exposure at contaminated site.

Plutonium in nuclear weapons fallout

Numerous measurements have been made of the concentration of 239Pu, resulting from the atmospheric testing of nuclear weapons, in tissues (notably lung, liver, skeleton and tracheo-bronchial lymph nodes) taken at autopsy from non-occupationally exposed people (e.g. Fisenne et al., 1980; McInroy et al., 1981; Bunzl and Kracke, 1983; Popplewell et al., 1985). Comparisons with levels predicted from measured air concentrations using the then current ICRP models were broadly consistent with Class Y (Bennett, 1976; ICRP, 1986). Publication 66 (ICRP, 1994, Table E.25) summarised information relating to concentrations in lungs and lymph nodes of non-occupationally exposed persons, which demonstrated the long-term retention of fallout plutonium in these tissues.

(814) Jones and Prosser (1997) compared published results with levels predicted from measured air concentrations using the HRTM and the Publication 67 plutonium systemic model. They found good agreement for concentrations in liver and bone assuming Type M absorption, and for concentrations in lung and lymph nodes assuming Type S absorption. This suggests that good overall agreement would be obtained assuming a rapid fraction similar to that for Type M (~0.1) and a slow dissolution rate similar to that for Type S (~10^{-4} d$^{-1}$) defaults in the original HRTM (ICRP, 1994).

Plutonium in estuarine sediment

A large fraction of the actinides discharged to sea from the Windscale (now Sellafield) nuclear fuel reprocessing plant rapidly became associated with sediments, some of which were deposited on shorelines such as those of the nearby Ravenglass Estuary, from which they could become resuspended in air by the action of tides, waves, and winds.

(816) Stather et al. (1978b) followed the biokinetics, after intratracheal instillation into rats and hamsters, of 239Pu and 241Am associated with a suspension of Ravenglass sediment. Particles greater than 10 µm were removed by sedimentation. Because the specific activity of the sample was considered too low for in-vivo measurements, 239Pu and 241Am were added to the suspension: it was confirmed that they attached rapidly. Tissue distributions and cumulative excretion were measured in rats at 7 and 14 days; tissue distributions in rats and hamsters at 28
233 days. The 239Pu lung content decreased to 53% ILD at 7 days, with most of the clearance to systemic tissues: only ~10% ILD went to feces. It then decreased more slowly: to ~35% ILD at 28 days. Lung clearance of 241Am was similar but somewhat slower. (See Americium section in this report.) Tissue distributions in hamsters at 28 days were similar to those in rats. Analysis here gave: $f_t = 0.36$, $s_s = 0.008$ d$^{-1}$, and assignment to Type M.

(817) Morgan et al. (1988b, 1990) followed the biokinetics, after intratracheal instillation into rats, of 238Pu, $^{239(+240)}$Pu and 241Am associated with a suspension of Ravenglass sediment. Unlike Stather et al. (1978b), they did not 'spike' the sediment with additional activity, but administered a much larger mass: ~25 mg. As it was undesirable to administer so much in a single dose, it was fractionated into five 5-mg portions given over 7 weeks. Tissue distributions were determined in rats killed at 2 days after the final instillation and at times between 47 and 548 days. The lung content at 2 days was taken to be the initial lung (alveolar) deposit (IAD). Lung retention of all three radionuclides decreased with a half-time of ~240 days, much slower than seen in rats administered low masses of insoluble particles (ICRP, 2002), and demonstrating, as expected, that the high mass led to 'overload': impaired alveolar clearance by particle transport (see e.g. Muhle et al., 1990). What effect, if any, 'overload' has on dissolution and absorption is not known. Some transfer to liver and skeleton (2–4% IAD) occurred during the 7-week administration period. For plutonium, there was little further change in liver content, but that of the skeleton increased to about 20% IAD by 90 days. Values for 241Am were lower, but not significantly. (See Americium section in this report.) The authors noted that absorption of actinides was lower than observed by Stather et al. (1975), but whether this was due to differences in speciation between 'spiked' and 'naturally' labelled sediment, or to 'overload' was not known. Analysis here gave: $f_t = 0.08$ and $s_s = 0.0025$ d$^{-1}$ for 238Pu; $f_t = 0.06$ and $s_s = 0.0025$ d$^{-1}$ for $^{239(+240)}$Pu, and assignment to Type M for both.

Palomares nuclear weapon accident

(818) On 17 January 1966, there was an aviation accident above the town of Palomares in south-eastern Spain. Four thermonuclear bombs carried by one of the planes fell, and on impact, the nuclear fuel in two of them partially ignited. This gave rise to an aerosol which contaminated approximately 230 hectares of underbrush, farmland and urban areas (Iranzo et al., 1987). Biokinetic studies of 239Pu and 241Am associated with contaminated dust were conducted in order to improve the basis for assessing internal doses and interpreting bioassay data (Stradling et al., 1993, 1996, 1998; Espinosa et al., 1998). A soil sample was fractionated and four fractions investigated: 'total soil'; '125–250 µm'; '20–40 µm'; '<5 µm'. The three larger fractions were ground and the respirable fraction (defined as <5 µm aerodynamic diameter) of each obtained by sedimentation in ethanol. Because of the low specific activity, about 7 mg of dust was administered by intratracheal instillation to each rat in three aliquots over a 5-day period. Groups were killed at times between 7 and either 330 or 365 days after the first administration, and 239Pu (and 241Am in the 125–250 µm and <5 µm fractions) measured in the lungs, liver and carcass. In the four experiments, the 239Pu lung content fell from about 70% ILD at 7 days, to between 22 and 32% ILD at the last measurement. Lung clearance of 241Am was somewhat faster (19–27% ILD retained at the last measurement), (see Americium section in this report). It was noted that the retention half-times (220–310 days) were longer than typically observed for insoluble particles in rats, but this was not unexpected because the large mass administered would have impaired alveolar particle transport ('overload': see above). The
estimated amount of 239Pu absorbed into blood by 7 days ranged from 0.5% ILD (125–250 µm fraction) to 3.4% ILD (<5 µm fraction). Thereafter, absorption was similar: a further 2–4% ILD absorbed between 7 days and 1 year. Absorption of 241Am was somewhat greater. Analysis here gave parameter values for 239Pu as follows; all give assignment to Type S:

<table>
<thead>
<tr>
<th>Fraction</th>
<th><5 µm</th>
<th>20–40 µm</th>
<th>125–250 µm</th>
<th>Total soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_i</td>
<td>0.05</td>
<td>0.02</td>
<td>0.007</td>
<td>0.02</td>
</tr>
<tr>
<td>s_c, x 10$^{-4}$ d$^{-1}$</td>
<td>6</td>
<td>7</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 22.8. Parameter values for 239Pu.

Maralinga

Between 1953 and 1963 nuclear weapons trials were conducted at Maralinga in South Australia. These included "minor trials" involving chemical explosions and the dispersal of radioactive materials, which in some cases included plutonium. As a result, residual activity remains, and studies were conducted to assess the radiation exposure to people living a semi-traditional lifestyle in the area (Johnston et al., 1992; Haywood and Smith, 1992; Burns et al., 1995).

Stradling et al., (1989b, 1992, 1994) followed the biokinetics of 239Pu and 241Am (see Americium section in this report) present in the respirable fraction of three samples of contaminated dusts from Maralinga, after their deposition in the rat lung. One sample (Q380) was supplied with a nominal AMAD of 5 µm. For the other two (TM100 and TM101) the respirable fraction was separated by sedimentation in alcohol. All three dusts were administered to groups of 36 rats by intratracheal instillation. To administer sufficient activity, several mg were deposited in three aliquots over a 5-day period. It is considered that the large mass administered impaired alveolar particle transport (‘overload’: see above). ILDs were determined by analysing the suspensions administered. Groups were killed at times between 7 and 365 days after the initial instillation, and the 239Pu content of the lungs, liver and carcass measured. For Q380, TM100 and TM101 the lung contents fell to 26%, 27% and 17% ILD at 365 days, and estimated total amounts absorbed to blood were 6%, 1% and 10% ILD. The biokinetics of 239Pu (and 241Am) in rats was also followed after inhalation of TM101. The ILD was determined by analysing tissues of rats killed 30 minutes later. Groups were killed at times between 7 and 365 days and 239Pu was measured in lungs, liver and carcass. Lung content fell from 70 to 3% ILD between 7 and 365 days. Lung clearance was faster than following instillation, indicating that although the ILD mass (0.4 mg) was relatively high, there was less, if any, impairment of clearance. Estimated total amounts absorbed to blood were 0.4% and 0.5% ILD at 7 and 365 days. Analysis here gave parameter values for 239Pu as follows; results for TM100 give assignment to Type M, the others to Type S:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Q380</th>
<th>TM100</th>
<th>TM101</th>
<th>TM101</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration</td>
<td>Instillation</td>
<td>Instillation</td>
<td>Instillation</td>
<td>Inhalation</td>
</tr>
<tr>
<td>f_i</td>
<td>0.02</td>
<td>0.01</td>
<td>0.007</td>
<td>0.007</td>
</tr>
<tr>
<td>s_c, x 10$^{-4}$ d$^{-1}$</td>
<td>7</td>
<td>15</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>
It is of interest that in these studies the plutonium remained mainly in insoluble forms even after two or three decades of environmental exposure. Mewhinney et al., (1987) found with in-vitro dissolution tests, that alternate wet-dry cycling, simulating that occurring under environmental conditions such as intermittent rainfall in an otherwise arid climate, led to much faster dissolution. The enhancement in total dissolution ranged from two to ten times during each wet-dry cycle compared to studies involving continuous immersion in the same solvents.

Rapid dissolution rate

In seventeen in vivo studies of the biokinetics of inhaled soluble plutonium compounds (citrate and nitrate), sufficient early retention data were available to allow estimates of s_r to be made. These comprised one human volunteer, one monkey, three dog, and twelve rat studies. The results of individual analyses performed using data from these studies are summarised in Table 22.10. All analyses were performed using $f_b = 0.002$, and $s_b = 0$ d$^{-1}$. In order to judge the effect of assuming this small bound fraction on estimates of f_r, s_r and s_s, the analysis for one study (Stather and Howden, 1975) was repeated with $f_b = 0$. Very minor differences in the estimated absorption parameter values were found (0.1 – 1%). For the specific purpose of analysing data from the rat studies (Table 22.2), a best estimate value of 1 d$^{-1}$ was estimated from the results for the twelve rat studies (Smith, 20xx).

Table 22.10. Case-specific absorption parameter values estimated for soluble compounds in studies reporting early retention data

<table>
<thead>
<tr>
<th>Materials and administration</th>
<th>Animal species</th>
<th>Absorption parameter valuesa</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>f_r</td>
<td>s_r (d$^{-1}$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nitrate</td>
<td>Man</td>
<td>0.16</td>
<td>0.39</td>
</tr>
<tr>
<td>nitrate</td>
<td>Monkey</td>
<td>0.1</td>
<td>>0.1</td>
</tr>
<tr>
<td>nitrate, 238Pu</td>
<td>Dog</td>
<td>0.83</td>
<td>0.28</td>
</tr>
<tr>
<td>nitrate</td>
<td>Dog</td>
<td>0.13</td>
<td>0.14</td>
</tr>
<tr>
<td>nitrate</td>
<td>Dog</td>
<td>0.27</td>
<td>0.17</td>
</tr>
<tr>
<td>nitrate, 235Pu</td>
<td>Rat</td>
<td>0.13</td>
<td>0.2</td>
</tr>
<tr>
<td>nitrate, 239Pu</td>
<td>Rat</td>
<td>0.05</td>
<td>9</td>
</tr>
<tr>
<td>nitrate, 235Pu</td>
<td>Rat</td>
<td>0.14</td>
<td>0.16</td>
</tr>
<tr>
<td>Nitrate, ins</td>
<td>Rat</td>
<td>0.04</td>
<td>0.83</td>
</tr>
<tr>
<td>nitrate, 235Pu, ins</td>
<td>Rat</td>
<td>0.59</td>
<td>1.4</td>
</tr>
<tr>
<td>nitrate, 239Pu, ins</td>
<td>Rat</td>
<td>0.36</td>
<td>78</td>
</tr>
<tr>
<td>nitrate, 235Pu</td>
<td>Rat</td>
<td>0.49</td>
<td>0.36</td>
</tr>
<tr>
<td>nitrate</td>
<td>Rat</td>
<td>0.47</td>
<td>0.1</td>
</tr>
<tr>
<td>nitrate</td>
<td>Rat</td>
<td>0.52</td>
<td>8</td>
</tr>
<tr>
<td>nitrate</td>
<td>Rat</td>
<td>0.13</td>
<td>12</td>
</tr>
<tr>
<td>nitrate, ins</td>
<td>Rat</td>
<td>0.69</td>
<td>17</td>
</tr>
<tr>
<td>nitrate</td>
<td>Dog</td>
<td>0.25</td>
<td>0.47</td>
</tr>
<tr>
<td>citrate, ins</td>
<td>Rat</td>
<td>0.76</td>
<td>2.3</td>
</tr>
<tr>
<td>-------------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>Nitrate only: all species</td>
<td>Median</td>
<td>0.22</td>
<td>0.39</td>
</tr>
<tr>
<td>Geometric mean</td>
<td>0.22</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>0.04</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>0.83</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>Nitrate only: rats only</td>
<td>Median</td>
<td>0.36</td>
<td>1.4</td>
</tr>
<tr>
<td>Geometric mean</td>
<td>0.23</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>0.04</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>0.69</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>Nitrate only: rats only; instillation vs inhalation</td>
<td>Median</td>
<td>0.54; 0.13</td>
<td>9.2; 0.83</td>
</tr>
<tr>
<td>Geometric mean</td>
<td>0.52; 0.14</td>
<td>5.1; 1.1</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>0.36; 0.04</td>
<td>0.36; 0.1</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>0.69; 0.52</td>
<td>78; 12</td>
<td></td>
</tr>
</tbody>
</table>

Notes.

a. \(f_b \) and \(s_r \) were assumed to be 0.002 and 0 \(d^{-1} \) respectively.

In selecting a default \(s_r \) value for plutonium from the results for the various species, a high weighting is given to the value determined for the human volunteer study (Puncher et al., 2016), see plutonium nitrate section above. This value is broadly consistent with the values determined for the monkey study and the dog studies. Conversely, the values determined for the rat studies are very broadly distributed, although the best estimate value for rats of 1 \(d^{-1} \) remains close to the value determined for the human volunteer study. From a consideration of these results, giving increased weight to results for humans, an \(s_r \) value for plutonium of 0.4 \(d^{-1} \) is recommended.

Consideration was given to rounding the value of \(s_r \) from 0.4 \(d^{-1} \) to 1 \(d^{-1} \), to reflect uncertainty in the estimate. Although overall uptake from the lungs is insensitive to the value of \(s_r \), it does affect the pattern of urinary excretion over the first few days, and therefore estimates of dose per content. Fig. 22.1 shows that (for a Reference Worker exposed briefly to a 5-\(\mu \)m AMAD \(^{239} \text{Pu nitrate aerosol} \) urinary excretion in the first day is predicted to be approximately twice as high assuming a value of \(s_r \) of 1 \(d^{-1} \), than assuming 0.4 \(d^{-1} \); this is compensated by lower excretion from about 5 – 10 d, after which rates are similar. As a result, the calculated dose per excretion on the first day after intake is about twice as high assuming a value of \(s_r \) of 0.4 \(d^{-1} \) as it is assuming 1 \(d^{-1} \). Measurements of urine samples taken on the first day after exposure are particularly important in assessing the consequences of accidental intakes and it is important not to underestimate the dose per daily urine. It was therefore decided not to round the value to 1 \(d^{-1} \).
Fig. 22.1. Effect of the value of s_r on (a) daily urinary excretion (b) dose per daily excretion
(Reference worker exposed briefly to a 5-μm AMAD 239Pu nitrate aerosol)
Because this value (0.4 d\(^{-1}\)) is lower than the general default value of 3 d\(^{-1}\) for Type M and S materials, it is also applied to Type M and S forms of plutonium.

Extent of binding of plutonium in the respiratory tract

Early applications of the HRTM to plutonium nitrate made use of a short-term bound fraction (ICRP, 2002, Annexe E Section E2). For example, Birchall et al. (1995) analysed the results of experiments in which the biokinetics of \(^{239}\)Pu was followed for 180 d after instillation of plutonium nitrate into the pulmonary region of the lungs of rats (Stather and Howden, 1975; Stather and Priest, 1977). At 30 minutes, 1 d and 7 d respectively, lung retention was \(\sim 77\%\), 65\% and 45\% ILD, and deposition in the carcass \(\sim\)9\%, 20\% and 30\% ILD. Absorption over this period was represented by a high rapid dissolution rate \((s_r \sim 50 \text{ d}^{-1})\), and bound fraction \((f_b \sim 0.5)\) with \(s_b \sim 0.2 \text{ d}^{-1}\). However, while it enabled good fits to be made to the experimental data, including this bound fraction had little effect on dose.

More recent studies indicate the presence of a small, but very long-term bound state for plutonium (e. g. James et al., 2007; Nielsen et al., 2012), which could potentially increase equivalent doses to the lungs significantly, particularly if it occurs in the bronchial (BB) and bronchiolar (bb) regions. Consideration is therefore only given here to such a long-term bound state. Because binding occurs after dissolution of the inhaled material, it is assumed to be independent of the initial chemical form. Three studies have investigated the specific issue of the presence or absence of a long-term bound state for inhaled plutonium nitrate, and its likely magnitude.

The first study (Pellow et al., 2016b; Puncher et al., 2016a) involved analysis of lung retention data from a 15-year life span effects study (Dagle et al., 1993; PNL, 1994) in which groups of Beagle dogs inhaled different concentrations of \(^{239}\)Pu nitrate aerosol. Lung clearance of \(^{239}\)Pu was modelled using simplified and modified versions of the original HRTM (ICRP, 1994) and the revised HRTM (ICRP, 2015). A Bayesian analysis using Markov Chain Monte Carlo calculations was performed, and inclusion of a small bound fraction was found to be required to produce model predictions of lung retention that were consistent with the lung retention data. The arithmetic mean of the posterior distribution for \(f_b\), determined using a model based on the *Publication 66* HRTM, was 0.0023 (95\% confidence interval \(\text{CI} = 6 \times 10^{-4}\) to 0.007). The half time associated with this bound fraction was greater than 200 y, and so the uptake rate to blood from the bound state \((s_b)\) was assigned a value of 0 d\(^{-1}\). This study is considered to provide strong evidence for the existence of a long-term retained component in the respiratory tract, for which the bound state provides the simplest explanation.

In the second study, Puncher et al. (2016b) performed a reanalysis of the autopsy and bioassay data of United States Trans-Uranium and Uranium Registries (USTUR) donor 269, a plutonium worker who received a high (58 kBq) acute intake of plutonium nitrate by inhalation. This is the only USTUR case studied to date that involved exposure only to plutonium nitrate, and therefore the only one which can be used to assess bound state parameter values for inhaled plutonium. The original investigation of the case (James et al., 2007) inferred a bound fraction of around 0.08 from the unexpectedly high lung retention, and low (thoracic lymph node content):(lung content) ratio at the time of death, many years after intake. For the reanalysis, the revised HRTM was used to predict the measured quantities, and a Bayesian analysis using Markov Chain Monte Carlo calculations was performed that accounted for uncertainties in model parameter values, including those for clearance by particle transport, which were not
considered in the original analysis. The reanalysis also used the results of recent measurements (Tolmachev et al., 2016) on plutonium in the ET₂, BB, bb and AI regions and in the thoracic lymph nodes for donor 269. The results indicate that a small bound fraction is required to explain the data, largely because plutonium was present in the ET₂, BB and bb airways at the time of death. However, it is not known whether the plutonium present in these tissues was associated with the epithelium, as assumed in the dosimetric model for the bound fraction, or in underlying tissues, such as lymphatic channels. Métivier et al. (1989b) observed (following inhalation of \(^{239}\text{PuO}_2\) by baboons) for some animals a high \(^{239}\text{Pu}\) content in the trachea, which "was probably due to micro lymph nodes embedded in the external part of the trachea, removed with difficulty during autopsy". After the measured systemic (liver and skeleton) retention data were corrected to remove the effect of DTPA treatment, the mean value for \(f_b\) was determined as 0.0037 (95% CI = 0.0037 to 0.0039). There was no evidence for an \(s_b\) value other than zero.

Lung measurements from a further two USTUR donors (631 and 745) have recently become available; these also show significant plutonium activity remaining in the ET₂, BB and bb airways, in addition to the AI region and in the thoracic lymph nodes, more than 40 years after high acute exposures to plutonium nitrate. These are currently being analysed using the same methodology applied to donor 269 (Puncher, 2015, personal communication).

In the third study (Puncher et al., 2016c), autopsy data (plutonium amount in skeleton, liver, lungs, and thoracic lymph nodes) from 20 former MPA plutonium workers exposed only to plutonium nitrates and 20 workers exposed only to plutonium oxides were analysed. These analyses were carried out as part of a three-year study, commissioned by USDOE, to develop a methodology (Birchall et al., 2016) and then to derive internal doses for 8000 MPA workers. As for the studies described above, Bayesian analyses were performed using Markov Chain Monte Carlo calculations. Given the evidence for a long-term bound state provided by the two studies described above, the analyses were performed assuming that a bound state is present, with the value of \(f_b\) to be determined. The revised HRTM was used, with uniform prior distributions on \(f_b\) and \(s_b\), together with log-normal prior distributions on particle transport rates and breathing parameters with median values set at the reference HRTM values (ICRP, 2015, Fig. 3.4). The posterior distributions determined for the particle transport parameters were largely consistent with the HRTM reference values, although the analysis suggested possibly a lower rate from ALV to INT, particularly for the oxides (\(2 \times 10^{-4}\)). The mean value for \(f_b\) was determined as 0.0014 (95% CI = 1.1 x 10⁻⁴ to 0.003). There was no evidence for an \(s_b\) value other than zero. The mean value determined for \(s_b\) for plutonium nitrate was \(2.5 \times 10^{-4} \text{ d}^{-1}\) (95% CI = 2.1 x 10⁻⁴ to 2.8 x 10⁻⁴ d⁻¹). It should be noted, however, that the same data could be explained when \(f_b\) was fixed at zero, and this also largely unaffected the estimate of \(s_b\). This result was consistent with the fact that the distribution obtained in the analysis where \(f_b\) was varied, was a normal distribution, left truncated at zero.

Strong evidence for the existence of a bound state comes from the reanalysis of the Beagle dog data (Pellow et al., 2016b; Puncher et al. 2016a) and of USTUR Case 269, with estimated values of \(f_b\) of 0.0023 and 0.0037, respectively. On the assumption that a bound state exists, the best estimate from the MPA worker study is 0.0014 (Puncher et al., 2016c). The reanalysis of USTUR Case 269 (Puncher et al., 2016b) indicates that if a bound state exists, then material in the ET₂, BB, and bb regions as well as material in the AI region is subject to binding. From the perspective of radiation protection, the assumption that the data from these studies represent a small bound state rather than a second long-term particle dissolution component provides an appropriate degree of conservatism. The evidence provided by the three studies therefore indicates a value for \(f_b\) of about 0.2%, to be applied to the whole of the
respiratory tract except for ET$_1$, for all plutonium compounds. There is no evidence to indicate an s_b value other than 0 d$^{-1}$. This small long-term bound state results in an additional contribution to the committed equivalent dose coefficient for the lungs from inhaled 239Pu nitrate of about 20%.

Table 22.11. Absorption parameter values for inhaled and ingested plutonium.

<table>
<thead>
<tr>
<th>Inhaled particulate materials</th>
<th>Absorption parameter values</th>
<th>Absorption from the alimentary tract, f_A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific parameter valuesb</td>
<td>f_A</td>
<td>s_r (d$^{-1}$)</td>
</tr>
<tr>
<td>Plutonium nitrate, Pu(NO$_3$)$_4$</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>Plutonium Tri-Butyl-Phosphate (Pu-TBP)</td>
<td>0.5</td>
<td>30</td>
</tr>
<tr>
<td>Plutonium-239 dioxide, 239PuO$_2$</td>
<td>0.004</td>
<td>0.4</td>
</tr>
<tr>
<td>Plutonium in mixed oxide (MOX: (UO$_2$ + PuO$_2$) or (U, Pu)O$_2$)</td>
<td>0.002</td>
<td>0.4</td>
</tr>
<tr>
<td>Plutonium-238 dioxide, 238PuO$_2$ ceramic</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>Plutonium-238 dioxide, 238PuO$_2$ non-ceramic</td>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>Plutonium dioxide 1-nm nanoparticles, 1-nm PuO$_2$</td>
<td>0.7</td>
<td>3</td>
</tr>
</tbody>
</table>

Default parameter values1,5

<table>
<thead>
<tr>
<th>Absorption Type</th>
<th>Assigned forms</th>
<th>f_A</th>
<th>s_r (d$^{-1}$)</th>
<th>s_t (d$^{-1}$)</th>
<th>Absorption from the alimentary tract, f_A</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>—</td>
<td>1</td>
<td>0.4</td>
<td>—</td>
<td>1 \times 104</td>
</tr>
<tr>
<td>Mb</td>
<td>Plutonium citrate</td>
<td>0.2</td>
<td>0.4</td>
<td>0.005</td>
<td>2 \times 104</td>
</tr>
<tr>
<td>S</td>
<td>—</td>
<td>0.01</td>
<td>0.4</td>
<td>1 \times 104</td>
<td>1 \times 104</td>
</tr>
</tbody>
</table>

Ingested materials

Soluble forms (nitrate, chloride, bicarbonates,..)	1 \times 104
Insoluble forms (oxides, ..)	1 \times 105
All other unidentified chemical forms	5 \times 104

It is assumed that for plutonium a bound fraction $f_b = 0.002$ with an uptake rate $s_b = 0$ d$^{-1}$ is applied throughout the respiratory tract, except in the ET$_1$ region. The values of s_r for Type F, M and S forms of plutonium (0.4 d$^{-1}$) are element-specific.

See text for summary of information on which parameter values are based, and on ranges of parameter values observed for individual materials. For plutonium specific parameter values are used for dissolution in the lungs, and in most cases, where information is available, for absorption from the alimentary tract. However, for plutonium dioxide nanoparticles, the default value of f_A is used (footnote f).

Plutonium in the dioxide form used in the production of nuclear fuel is predominantly 239Pu by activity, and for simplicity is here termed 239PuO$_2$; it may, however, contain varying amounts of other isotopes, notably 238Pu, 240Pu, 241Pu and 242Pu.

For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the alimentary tract, the default f_A values for ingested materials are applied: i.e., the (rounded) product of f_b for the absorption Type (or specific value where given) and the f_A value for ingested soluble forms of plutonium (1 \times 10$^{-4}$).

Materials (e.g. plutonium citrate) are generally listed here where there is sufficient information to assign to a default absorption Type, but not to give specific parameter values (see text).

Default Type M is recommended for use in the absence of specific information on which the exposure material can be assigned to an Absorption Type, e.g. if the form is unknown, or if the form is known but there is no information available on the absorption of that form from the respiratory tract.

22.2.2. Ingestion

Gastrointestinal absorption of plutonium is influenced by its initial oxidation state. Popplewell et al. (1994) and Ham and Harrison (2000) measured the absorption of 244Pu administered in citrate solution with a mid-day meal to five volunteers. The values obtained were in the range of 10^{-4} to 10^{-3}, with a mean value of 6 \times 10$^{-4}$. 240
Animal data on the absorption of Pu in species including rodents, pigs, dogs and primates was extensively reviewed in Publication 48 (ICRP, 1986) and by Harrison (1983, 1991). The chemical form ingested is an important factor affecting absorption. The lowest values obtained are for the oxide, ranging from about 2×10^{-4} (Sullivan, 1980) to about 3×10^{-8} (Smith, 1970). This large range for the oxides probably reflects the solubility of the oxide preparations, affected by the temperature of production (Mewhinney et al., 1976), the proportion of small particles present (Stather et al., 1975), and the specific activity of the isotope (Fleischer and Raabe, 1977). The lowest oxide values were obtained by Smith (1970) in studies where intact or crushed 238PuO$_2$ ceramic microspheres as used in RTG were administered to pigs. High levels of lung deposition were observed following feeding of the crushed microspheres and were attributed to inhalation of material resuspended from feces. If allowance is made for those high lung levels, reasonably comparable values in the order of 5×10^{-8} are obtained for both intact and crushed 238PuO$_2$ microspheres. Mixed Pu-sodium oxides contain a higher proportion of very small particles (about 1 nm diameter) than the pure oxides (Stather et al., 1975) and suspensions of 238Pu oxide are more prone than those of 239Pu oxide (6.27×10^8 and 2.25×10^6 kBq g$^{-1}$, respectively) to radiolytic breakdown to small particles (Fleischer and Raabe, 1977). Comparisons of the behaviour of inhaled Pu oxide and mixed U/Pu oxides in rats and baboons showed that, although solubility in the lung was low in each case, transfer of Pu to liver and bone was about two to three times greater for the mixed oxide (Lataillade et al., 1995). Conway et al. (2009) analysed the in vitro dissolution of hot particles from soils sampled at two locations within the Semipalatinsk Nuclear Test Site: Tel’kem 1 (TK1) and 2 (TK2). From particle sampled in TK2, 0.1% to 2% Pu activity was extracted in 2-hour digestion by a simulated stomach solution, and less than 0.04% additional Pu activity was extracted in 4-hour digestion by a simulated small intestine solution. From particles isolated at TK1, 3% to 27% alpha activity was extracted in 2-hour digestion by a simulated stomach solution, and 3.3% additional alpha activity was extracted by the simulated small intestine solution.

The range in values of uptake for Pu administered to animals as the nitrate, chloride or bicarbonate is not as large as for the oxide. In general, the results are between 10^{-4} and 10^{-5}. Fasting has been shown to increase absorption by up to an order of magnitude. For example, absorption in mice fasted for 8 hours before and 8 hours after the administration of 236Pu bicarbonate was about 10^{-3} compared with 2×10^{-4} in fed animals (Larsen et al., 1981). High values of 10^{-3} to 2×10^{-3} have been reported for uptake of 237Pu nitrate given as a single dose to rats and mice (Sullivan, 1981; Sullivan et al., 1982). These results were taken as evidence of increased absorption at low masses. However, in experiments to determine the effect of chronic ingestion at low concentrations, a value of 3×10^{-5} was obtained for the nitrate in rats (Weeks et al., 1956) and 10^{-5} for the bicarbonate in hamsters (Stather et al., 1981). It would appear that in general ingested mass and valence are not important factors affecting absorption. However, at high masses of Pu(V), absorption may be increased by an order of magnitude as demonstrated by Métivier et al. (1985) in studies using baboons.

The absorption of Pu administered to animals as organic complexes or incorporated into food materials is generally greater than for inorganic forms (ICRP, 1986). For example, most of the reported values for Pu citrate are in the range 6×10^{-5} to 6×10^{-4} compared with the range of 10^{-5} to 10^{-4} for the nitrate. An organic form of importance in reprocessing is Pu-tributylphosphate for which Métivier et al. (1983) measured absorption in rats as about 10^{-4} to 2×10^{-4}.

(834) The range in values of uptake for Pu administered to animals as the nitrate, chloride or bicarbonate is not as large as for the oxide. In general, the results are between 10^{-4} and 10^{-5}. Fasting has been shown to increase absorption by up to an order of magnitude. For example, absorption in mice fasted for 8 hours before and 8 hours after the administration of 236Pu bicarbonate was about 10^{-3} compared with 2×10^{-4} in fed animals (Larsen et al., 1981). High values of 10^{-3} to 2×10^{-3} have been reported for uptake of 237Pu nitrate given as a single dose to rats and mice (Sullivan, 1981; Sullivan et al., 1982). These results were taken as evidence of increased absorption at low masses. However, in experiments to determine the effect of chronic ingestion at low concentrations, a value of 3×10^{-5} was obtained for the nitrate in rats (Weeks et al., 1956) and 10^{-5} for the bicarbonate in hamsters (Stather et al., 1981). It would appear that in general ingested mass and valence are not important factors affecting absorption. However, at high masses of Pu(V), absorption may be increased by an order of magnitude as demonstrated by Métivier et al. (1985) in studies using baboons.

(835) The absorption of Pu administered to animals as organic complexes or incorporated into food materials is generally greater than for inorganic forms (ICRP, 1986). For example, most of the reported values for Pu citrate are in the range 6×10^{-5} to 6×10^{-4} compared with the range of 10^{-5} to 10^{-4} for the nitrate. An organic form of importance in reprocessing is Pu-tributylphosphate for which Métivier et al. (1983) measured absorption in rats as about 10^{-4} to 2×10^{-4}.

(833) Animal data on the absorption of Pu in species including rodents, pigs, dogs and primates was extensively reviewed in Publication 48 (ICRP, 1986) and by Harrison (1983, 1991). The chemical form ingested is an important factor affecting absorption. The lowest values obtained are for the oxide, ranging from about 2×10^{-4} (Sullivan, 1980) to about 3×10^{-8} (Smith, 1970). This large range for the oxides probably reflects the solubility of the oxide preparations, affected by the temperature of production (Mewhinney et al., 1976), the proportion of small particles present (Stather et al., 1975), and the specific activity of the isotope (Fleischer and Raabe, 1977). The lowest oxide values were obtained by Smith (1970) in studies where intact or crushed 238PuO$_2$ ceramic microspheres as used in RTG were administered to pigs. High levels of lung deposition were observed following feeding of the crushed microspheres and were attributed to inhalation of material resuspended from feces. If allowance is made for those high lung levels, reasonably comparable values in the order of 5×10^{-8} are obtained for both intact and crushed 238PuO$_2$ microspheres. Mixed Pu-sodium oxides contain a higher proportion of very small particles (about 1 nm diameter) than the pure oxides (Stather et al., 1975) and suspensions of 238Pu oxide are more prone than those of 239Pu oxide (6.27×10^8 and 2.25×10^6 kBq g$^{-1}$, respectively) to radiolytic breakdown to small particles (Fleischer and Raabe, 1977). Comparisons of the behaviour of inhaled Pu oxide and mixed U/Pu oxides in rats and baboons showed that, although solubility in the lung was low in each case, transfer of Pu to liver and bone was about two to three times greater for the mixed oxide (Lataillade et al., 1995). Conway et al. (2009) analysed the in vitro dissolution of hot particles from soils sampled at two locations within the Semipalatinsk Nuclear Test Site: Tel’kem 1 (TK1) and 2 (TK2). From particle sampled in TK2, 0.1% to 2% Pu activity was extracted in 2-hour digestion by a simulated stomach solution, and less than 0.04% additional Pu activity was extracted in 4-hour digestion by a simulated small intestine solution. From particles isolated at TK1, 3% to 27% alpha activity was extracted in 2-hour digestion by a simulated stomach solution, and 3.3% additional alpha activity was extracted by the simulated small intestine solution.
In *Publication 30* (ICRP, 1979), the recommended absorption values were 10^{-5} for oxides and hydroxides and 10^{-4} for all other forms. In *Publication 48* (1986), values of 10^{-5} for oxides and hydroxides and 10^{-4} for nitrates were recommended. In addition, on the basis of animal data, a value of 1×10^{-3} was recommended for all other forms of Pu and was taken to apply as a general value for all actinides other than U. This value was also adopted in *Publication 56* (ICRP, 1989). However, in this report available data provided a sufficient basis for the use of a general value of 5×10^{-4} for all actinides other than U. An f_A of 1×10^{-5} for oxides and hydroxides and 1×10^{-4} for nitrates, chlorides and bicarbonate forms are adopted here. For unidentified chemical forms, an f_A of 5×10^{-4} is adopted here as a default value for direct ingestion.

22.2.3. Systemic distribution, retention and excretion of plutonium

22.2.3.1. Summary of the database

Data for human subjects

In the mid-1940s, 18 seriously ill persons were injected with tracer amounts of Pu citrate or nitrate to investigate the relation of the systemic burden and excretion rate of Pu (Langham et al., 1950; Langham, 1959). The life expectancies of the subjects of the “Langham study” were judged to be short at the time of injection, but eight were still alive after 8 y and four survived at least 3 decades (Rowland and Durbin, 1976). Measurements of activity in blood and excreta were made frequently during the early weeks after injection, and a few additional excretion measurements were made for two of the subjects through 4.5 y (Langham et al., 1950; Durbin, 1972). The concentration of Pu in tissues was determined in samples collected at autopsy from subjects dying in the first 15 months after injection (Langham et al., 1950; Durbin, 1972). Langham and coworkers estimated on the basis of the autopsy results that on average 66% of Pu entering blood deposited in the skeleton and 23% deposited in the liver. Durbin (1972) reanalysed the data to account for the non-uniformity of Pu in bone samples and estimated that about 50% of the systemic burden was contained in the skeleton and 30% was contained in the liver at 4-457 d after injection.

Excretion data from the Langham study were used by ICRP as the primary basis for bioassay models (e.g. power functions or sums of exponential terms) for Pu until the 1990s, when the systemic model of *Publication 67* was adopted as both a dosimetric and bioassay model (ICRP, 1993, 1997). Parameter values of the *Publication 67* model describing the short- and intermediate-term behavior of Pu, including its urinary and faecal excretion rates and initial division between bone and liver, were heavily influenced by data from the Langham study. However, modeling of the long-term distribution and excretion of Pu was guided largely by excretion and autopsy data for Pu workers (Leggett, 1985; Leggett and Eckerman, 1987; Kathren et al., 1988; McInroy et al., 1989; McInroy and Kathren, 1990; Kathren and McInroy, 1991), which differed greatly from projections based on the Langham data with regard to long-term urinary and faecal excretion rates.

Much additional excretion and autopsy data for Pu workers have been published since the completion of *Publication 67* (e.g. Khokhryakov et al., 1994, 2000; Suslova et al., 1996, 2002, 2009, 2012; Ehrhart and Filipy, 2001; Filipy, 2001, 2003; James and Brooks, 2006). Newer (post-1993) information on the systemic behavior of Pu also includes results of two studies involving intravenous administration of Pu isotopes to healthy volunteers. One of
the studies, initiated at the Harwell Laboratory in Great Britain, involved six adult males and six
adult females (Talbot et al., 1993, 1997; Warner et al., 1994; Newton et al., 1998; D. Newton,
private communication). The other, conducted at the National Radiological Protection Board
(NRPB) in Great Britain, involved five adult males (Popplewell et al., 1994; Ham and Harrison,
2000; J. Harrison, private communication). Data from the Harwell study include measurements
of urinary and fecal excretion rates up to 5 y, the concentration of Pu in blood up to 6 y,
external measurements of Pu in the liver for more than a year after injection, and limited
measurements on other tissues. In the NRPB subjects, the urinary excretion rate was determined
over two decades after injection.

Comparisons of the post-1993 data with information underlying the Publication 67
(ICRP, 1993) model show reasonable consistency with regard to blood clearance (Fig. 22.2),
total-body retention, daily urinary and faecal excretion (Fig. 22.3 and Fig. 22.4), the time-
dependent fraction of systemic plutonium in skeleton plus liver, and the long-term division of
Pu between skeleton and liver. However, the newer information provides a different picture of
certain aspects of the early behavior of Pu, most notably the initial division between the liver
and skeleton. For example, in the subjects of the Harwell injection study, peak estimates of the
liver content based on external counts averaged more than 70% of the administered activity
(Fig. 22.5), compared with earlier indications that the liver typically accumulates 30% or less of
the Pu reaching blood. The expanded set of autopsy data for Pu workers indicates that there is
considerable variability in the division of activity between the liver and skeleton at all
measurement times (Fig. 22.6), with the skeleton containing more Pu than the liver in some
cases and less in others (Schofield and Dolphin, 1974; McInroy et al., 1989; Suslova et al.,
1996, 2002; Ehrhardt and Filipy, 2001). The central tendencies of the autopsy data (means or
medians of the skeleton and liver contents as a percentage of the systemic content) indicate,
however, that the liver typically is the more important repository soon after exposure and that
there is a gradual shift of activity from the liver to the skeleton (Fig. 22.6).

Data for laboratory animals

The systemic behavior of Pu has been studied in many different animal types
including baboons, monkeys, dogs, swine, rats, mice, hamsters, rabbits, tree shrews, and sheep
(Durbin, 1972, 1973, 2011; Taylor, 1984). As is the case for humans, the various animal species
generally have shown high deposition and tenacious retention in the skeleton, as well as a high
initial concentration in the liver. However, considerable differences among species are seen
regarding the residence time of Pu by the liver. For example, the residence time in liver is
measured in days, weeks, or months in rats, monkeys, and baboons but in years or decades in
hamsters, dogs, and pigs, as well as in humans (Taylor, 1984). The short retention time in the
liver seen in many species appears to be primarily the result of a high rate of biliary secretion of
Pu.

The beagle dog has proved to be a particularly useful laboratory model for humans
with regard to the behavior of plutonium, as it shows qualitatively similar behavior and broadly
similar quantitative behavior to humans with regard to liver kinetics as well as deposition and
retention of Pu in bone (Leggett, 1985, 2001). Data for beagles have played an important role in
the development of a number of biokinetic models for Pu including the systemic model used in
this report. For example, the biological half-time for Pu in bone marrow (0.25 y) assumed here,
as well as in precursors to the present model (Leggett, 1985; ICRP, 1989, 1993), was derived
from long-term studies of the gradual transfer of Pu from bone to marrow in beagles and the
subsequent kinetics of Pu in marrow (Jee, 1972; Wronski et al., 1980).
22.2.3.2. Biokinetic model

The biokinetic model for systemic plutonium applied in this report is described in Section 18.2.3.

22.2.3.3. Treatment of progeny

The treatment of radioactive progeny of plutonium produced in systemic compartments or absorbed to blood after production in the respiratory or gastrointestinal tract is described in Section 18.2.4.
Fig. 22.2. Time-dependent blood content of intravenously administered Pu as measured in human injection studies (Langham et al., 1950; Newton et al., 1998) and generated by the model used in this report.
Fig. 22.3. Urinary excretion of Pu predicted by the model used in this report and measured in human injection studies and Mayak workers (Langham et al., 1950; Durbin, 1972; Rundo et al., 1976; Talbot et al., 1993, 1997; Popplewell et al., 1994; Warner et al., 1994; Khokhryakov et al., 1994, 2000; Newton et al., 1998; Ham and Harrison, 2000; J. Harrison, private communication; D. Newton, private communication).

Fig. 22.4. Faecal excretion of Pu as predicted by the model used in this report and measured in human injection studies (Langham et al., 1950; Durbin, 1972; Rundo et al., 1976; Talbot et al., 1993, 1997; Newton et al., 1998; D. Newton, private communication).
Fig. 22.5. Content of Pu in the liver as predicted by the model used in this report and measured in human injection studies (Langham et al., 1950; Newton et al., 1998).

Fig. 22.6. Division of Pu between liver and skeleton in occupationally exposed subjects, based on data of Schofield and Dolphin, 1974; McInroy et al., 1989; Suslova et al., 1996, 2002; and Filipy, 2001 (after Leggett, 2005).
Fig. 22.7. Shift with time in the systemic distribution of Pu as indicated by central estimates of the skeleton and liver contents (% systemic Pu), based on data reported by Suslova et al. (2002) for Mayak workers (after Leggett, 2005).

22.3. Individual monitoring

^{238}Pu

Measurements of ^{238}Pu concentrations in urine and faeces are used to determine intakes of the radionuclide for routine monitoring. The main technique used for in vitro bioassay is alpha spectrometry. In vivo lung measurements of ^{238}Pu may be used as an additional technique for special investigations. The main technique for in vivo measurement is x-ray spectrometry.

Table 22.12. Monitoring techniques for ^{238}Pu.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Monitoring Technique</th>
<th>Method of Measurement</th>
<th>Typical Detection Limit</th>
<th>Achievable detection limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{238}Pu</td>
<td>Urine Bioassay</td>
<td>α spectrometry</td>
<td>0.3 mBq/L</td>
<td>0.05 mBq/L</td>
</tr>
<tr>
<td>^{238}Pu</td>
<td>Faecal Bioassay</td>
<td>α spectrometry</td>
<td>2 mBq/24h</td>
<td>0.2 mBq/24h</td>
</tr>
<tr>
<td>^{238}Pu</td>
<td>Lung Measurementa</td>
<td>x-ray spectrometry</td>
<td>1000 Bq</td>
<td>300 Bq</td>
</tr>
</tbody>
</table>

a Measurement system comprised of two Broad Energy Germanium Detectors (BEGe), counting time of 36 minutes and chest wall thickness of 2.54 cm.

$^{239}\text{Pu}/^{240}\text{Pu}$

Measurements of ^{239}Pu concentrations in urine and faeces are used to determine intakes of the radionuclide for routine monitoring. The main techniques used for in vitro bioassay are alpha spectrometry and ICP-MS; which is the more sensitive and preferable technique to be applied. Industrial sources of plutonium usually consist of a mixture of...
plutonium isotopes and 241Am from ingrowth of 241Pu. *In vivo* lung measurement of 241Am may permit evaluation of intake of the mixture or it can, in certain circumstances, be used as a marker for plutonium. For quantitative interpretation, the radionuclide ratios in the inhaled material should be determined either by analysis of material collected in the working environment or by analysis of faecal excretion.

Table 22.13. Monitoring techniques for 239Pu.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Monitoring Technique</th>
<th>Method of Measurement</th>
<th>Typical Detection Limit</th>
<th>Achievable detection limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>239Pu</td>
<td>Urine Bioassay</td>
<td>α spectrometry</td>
<td>0.3 mBq/L</td>
<td>0.05 mBq/L</td>
</tr>
<tr>
<td>239Pu</td>
<td>Urine Bioassay</td>
<td>ICP-MS<sup>a</sup></td>
<td>100×10^{-15} g/L</td>
<td>1.0×10^{-15} g/L</td>
</tr>
<tr>
<td>239Pu</td>
<td>Urine Bioassay</td>
<td>ICP-SFMS<sup>b</sup></td>
<td>9.0×10^{-15} g/L</td>
<td>1.0×10^{-15} g/L</td>
</tr>
<tr>
<td>239Pu</td>
<td>Faecal Bioassay</td>
<td>α spectrometry</td>
<td>2 mBq/24h</td>
<td>0.2 mBq/24h</td>
</tr>
<tr>
<td>239Pu</td>
<td>Lung Measurement<sup>c</sup></td>
<td>X-ray spectrometry</td>
<td>4000 Bq</td>
<td>600 Bq</td>
</tr>
</tbody>
</table>

^a Inductively Coupled Plasma Mass Spectrometry (ICP-MS),

^b Sector field inductively coupled plasma mass spectrometry (ICP-SFMS)

^c Measurement system comprised of two Broad Energy Germanium Detectors (BEGe), counting time of 36 minutes and chest wall thickness of 2.54 cm.

Table 22.14. Monitoring techniques for 241Pu.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Monitoring Technique</th>
<th>Method of Measurement</th>
<th>Typical Detection Limit</th>
<th>Achievable detection limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>241Pu</td>
<td>Urine Bioassay</td>
<td>Liquid Scintillation</td>
<td>10 Bq/L</td>
<td>0.03 Bq/L</td>
</tr>
</tbody>
</table>

Table 22.15. Monitoring techniques for 242Pu.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Monitoring Technique</th>
<th>Method of Measurement</th>
<th>Typical Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>242Pu</td>
<td>Urine Bioassay</td>
<td>α spectrometry</td>
<td>0.2 mBq/L</td>
</tr>
<tr>
<td>242Pu</td>
<td>Faecal Bioassay</td>
<td>α spectrometry</td>
<td>0.2 mBq/24h</td>
</tr>
</tbody>
</table>
22.4. Dosimetric data for plutonium

Dosimetric data will be provided in the final version of the document.

REFERENCES

Albuquerque, New Mexico.

Pellow, P. G. D., Hodgson, A., 2016c. in preparation. The biokinetics of plutonium deposited in the rat lung as the nitrate. PHE-CRCE report.

PHE-CRCE report.

23. AMERICIUM (Z=95)

23.1. Chemical Forms in the Workplace

Americium is an actinide element which occurs in oxidation states (III to VI) but mostly in oxidation state (III). Lanthanides such as Eu(III) or Gd(III) are good chemical analogues of Am(III). Americium may be encountered in industry in a variety of chemical and physical forms, including hydroxides, oxides (AmO$_2$), chlorides, oxalates, nitrates and citrates, and together with plutonium compounds, including as mixed oxide reactor fuel (MOX).

Americium-240 and 241Am are the two major isotopes of plutonium found in nuclear reactors.

Table 23.1. Isotopes of americium addressed in this report.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Physical half-life</th>
<th>Decay mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Am-237</td>
<td>73.0 m</td>
<td>EC, A</td>
</tr>
<tr>
<td>Am-238</td>
<td>98 m</td>
<td>EC, B+, A</td>
</tr>
<tr>
<td>Am-239</td>
<td>11.9 h</td>
<td>EC, A</td>
</tr>
<tr>
<td>Am-240</td>
<td>50.8 h</td>
<td>EC, A</td>
</tr>
<tr>
<td>Am-241a</td>
<td>432.2 y</td>
<td>A</td>
</tr>
<tr>
<td>Am-242</td>
<td>16.02 h</td>
<td>B, EC</td>
</tr>
<tr>
<td>Am-242m</td>
<td>141 y</td>
<td>IT, A</td>
</tr>
<tr>
<td>Am-243a</td>
<td>7.37E+3 y</td>
<td>A</td>
</tr>
<tr>
<td>Am-244</td>
<td>10.1 h</td>
<td>B-</td>
</tr>
<tr>
<td>Am-244m</td>
<td>26 m</td>
<td>B-</td>
</tr>
<tr>
<td>Am-245</td>
<td>2.05 h</td>
<td>B-</td>
</tr>
<tr>
<td>Am-246</td>
<td>39 m</td>
<td>B-</td>
</tr>
<tr>
<td>Am-246m</td>
<td>25.0 m</td>
<td>B-</td>
</tr>
<tr>
<td>Am-247</td>
<td>23.0 m</td>
<td>B-</td>
</tr>
</tbody>
</table>

aDose coefficients and bioassay data for this radionuclide are given in the printed copy of this report. Data for other radionuclides listed in this table are given in the accompanying electronic annexes.

23.2. Routes of Intake

23.2.1. Inhalation

Absorption Types and parameter values

There is a substantial amount of information available on the behaviour of americium (Am) after deposition in the respiratory tract from animal experiments, in vitro dissolution studies, and some accidental human intakes. *Publication 48* (ICRP, 1986) reviewed the biokinetics of americium, including data from animal studies and reported human exposure cases. The results indicated that for all americium compounds investigated, the americium was absorbed into blood with half times of several tens of days, in broad agreement with the definition of a Class W compound. *Publication 71* (ICRP, 1995) provided a brief review of the
literature relating to inhaled americium compounds in the context of the HRTM, and with emphasis on forms to which members of the public might be exposed as a result of environmental releases.

Reference biokinetic models were used here (i.e. by the Task Group) for the analysis of the data and the determination of absorption parameter values: the Human Respiratory Tract Model (ICRP, 1994a, OIR Part 1), the Gastro-Intestinal Tract Model (ICRP, 1979), the Human Alimentary Tract Model (ICRP, 2006), the human systemic model for Am (ICRP, 1993), the Am model for the dog of Luciani et al. (2006), the rat model for particle transport in the respiratory tract of the Guide for the Practical Application of the ICRP Human Respiratory Tract Model (ICRP, 2002) and the function describing the whole body retention of injected Am in the rat from Ménétrier et al. (2008). Unless specific data indicated otherwise, in analyses carried out here, \(s_r, f_b, \) and \(s_b \) were fixed at the values assessed for americium below: \(s_r = 1 \text{ d}^{-1} \), \(f_b = 0.01 \), and \(s_b = 1 \times 10^{-4} \text{ d}^{-1} \). As described in the general actinide section, absorption parameter values based on plutonium (\(s_r = 0.4 \text{ d}^{-1} f_b = 0.002; s_b = 0 \text{ d}^{-1} \)) are applied in this document to the transplutonium elements for radiation protection purposes. Absorption parameter values and Types, and associated \(f_A \) values for particulate forms of americium, are given in Table 23.3.

Americium citrate

Lyubchanskiy and Nifatov (1972) measured the tissue distribution of \(^{241}\text{Am} \) in rats at times up to 650 d after inhalation of \(^{241}\text{Am} \) citrate or nitrate. At 32 d after inhalation of the citrate, about 5% of the initial lung deposit (ILD) was retained in the lungs and more than 40% ILD had been absorbed into blood. Analysis of the citrate data carried out here gave \(f_b = 0.006 \) (\(s_b \) assumed to be \(1 \times 10^{-4} \text{ d}^{-1} \) by default), \(f_r = 0.7, s_r = 0.7 \text{ d}^{-1} \) and \(s_s = 0.04 \text{ d}^{-1} \), giving assignment to Type F.

Crawley and Goddard (1976) followed the tissue distribution and excretion of \(^{241}\text{Am} \) and \(^{242}\text{Cm} \) administered either as nitrates or citrates to rats by instillation into the nasopharyngeal (NP), tracheobronchial (TB) and pulmonary (P) regions of the respiratory system for 7 d. At one week after instillation of \(^{241}\text{Am} \) citrate into the pulmonary region, only 7% ILD was retained in lungs while more than 80% ILD had been absorbed to blood. This is consistent with assignment to Type F. Following deposition in the NP or TB region, there was less retention in both lung and extrapulmonary tissues, because of faster mucociliary clearance. Analysis carried out here of data on citrate deposited in the pulmonary region gave \(f_r = 0.8 \) and \(s_r = 6 \text{ d}^{-1} \). The data from deposition in the NP and TB regions were not detailed enough for further analysis and the limited time scale of the experiment (one week) prevented a reliable estimate of \(s_s \) in any case.

Stradling et al. (1978) investigated the mobility of Am dioxide in the rat over 106 d after pulmonary instillation (see below). Am citrate was also administered as a control to four rats for each of four time periods considered. At three weeks post instillation, 4% ILD was retained in lungs and 61% ILD had been absorbed into blood, consistent with assignment to Type F. The analysis of citrate data here gave \(f_b = 0.007 \) (\(s_b \) assumed to be \(1 \times 10^{-4} \text{ d}^{-1} \) by default), \(f_r = 0.9, s_r = 6 \text{ d}^{-1} \) and \(s_s = 0.02 \text{ d}^{-1} \).

Although absorption parameter values for americium citrate based on *in vivo* data were derived, inhalation exposure to it is unlikely. Therefore specific parameter values for americium citrate are not used here. Instead, it is assigned to Type F. However, the results contributed to the selection of the rapid dissolution rate for americium.
Americium chloride

Zalikin et al. (1968) studied the distribution of 241Am in rats for a month after intratracheal administration as chloride. After 32 d, 9% ILD was retained in the lungs and more than 44% had been absorbed into blood. Analysis here gave: $f_r = 0.5$, $s_r = 0.8$ d$^{-1}$ and $s_s = 0.01$ d$^{-1}$, consistent with assignment to Type M.

Il’in et al. (1975) studied the biokinetics of 241Am in rats for 64 d after inhalation of 241Am chloride. The radionuclide transferred from the lung to other tissues with a half-time of about 8 d. At 32 d, 5% ILD was in lungs and more than 40% ILD had been absorbed. Analysis here gave: $f_r = 0.2$, $s_r = 1$ d$^{-1}$, $s_s = 0.07$ d$^{-1}$, giving assignment to Type F.

Zalikin and Popov (1977) studied the biokinetics of 241Am in rats over two months after inhalation or intratracheal administration of the isotope as a chlorous salt solution. After 8 d, 34% ILD had been transferred to systemic tissues, and at 32 d, 5–7% ILD remained in lungs. The separate analysis here of the instillation and inhalation data gave respectively $f_r = 0.4$, $s_r = 1$ d$^{-1}$, $s_s = 0.02$ d$^{-1}$; and $f_r = 0.2$, $s_r = 8$ d$^{-1}$, $s_s = 0.06$ d$^{-1}$, both giving assignment to Type M.

Although absorption parameter values for americium chloride based on in vivo data were derived, inhalation exposure to it is unlikely. Therefore specific parameter values for americium chloride are not used here. Instead, it is assigned to Type M. However, the results contributed to the selection of the rapid dissolution rate for americium.

Americium nitrate

One exposure case has been described in which a worker received a combination of wound and inhalation exposures to 241Am in nitric acid, presumably a nitrate form (Robinson et al., 1983). In this case, the lung retention was described as 86% associated with a 1.8-d half-time, 13% with a 27-d half-time and 1% with a 170-d half-time. The follow-up of the contamination was updated for the lifetime of the worker, during 11 years after the accident, by Breitenstein and Palmer (1989) and the results of an autopsy were reported afterwards by McInroy et al. (1995). However, the interpretation of these data is complicated by a significant wound intake, by the DTPA decorporation therapy employed and by the lasting skin contamination. The analysis here of lung retention, systemic retention and cumulative excretion gave: $f_r = 0.1$, $s_r = 0.2$ d$^{-1}$ and $s_s = 8 \times 10^{-4}$ d$^{-1}$, consistent with assignment to Type M.

Nénot et al. (1971) compared the tissue distribution of Am in rats at 1, 10 and 90 d after inhalation of a nitrate aerosol or after intramuscular injection of a sulphate solution, with or without DTPA treatment. One month after intratracheal administration, 6% ILD was retained in the lungs while more than 8% ILD had been transferred to blood. After 180 d, 3.5% ILD remained in the lungs. Analysis here of the data from intratracheal administration gave: $f_r = 0.6$, $s_r = 0.2$ d$^{-1}$ and $s_s = 0.005$ d$^{-1}$, consistent with assignment to Type M.

Nénot et al. (1972) compared the biokinetics of several actinides following intramuscular injection or pulmonary administration to rats as nitrates, over three months. At 30 d after inhalation, 17% ILD of 241Am had been transferred to blood, while more than 8% was
still retained in lungs. After 90 d, 25% ILD was in bone and 4% ILD was in lung. This is consistent with assignment to Type M. The analysis of the Am nitrate data here gave $f_r = 0.2$ and $s_r = 0.03 \text{ d}^{-1}$. However, these values are subject to significant uncertainty since the limited data regarding the time-dependent overall body burden do not allow a fully reliable fit of the model.

Lyubchanskiy and Nifatov (1972) measured the tissue distribution of 241Am in rats at times up to 650 d after inhalation of 241Am citrate or nitrate. At 32 d after inhalation of the nitrate, lung retention was only 5% ILD, with absorption of more than 52% ILD to blood, suggesting Type F behaviour, close to the criterion for Type M. Analysis here gave $f_b = 0.006$, $s_b = 2\times10^{-4} \text{ d}^{-1}$, $f_r = 0.7$, $s_r = 0.8 \text{ d}^{-1}$ and $s_s = 0.04 \text{ d}^{-1}$.

Buldakov et al. (1972) studied the biokinetics of 241Am and 239Pu in dogs for two years after inhalation of the nitrates. At 180 d, 27% ILD of 241Am was retained in the lungs and 59% ILD in the liver and skeleton. This is consistent with assignment to Type M. Analysis of the Am data here gave $f_r = 0.2$, $s_r = 3 \text{ d}^{-1}$ and $s_s = 0.005 \text{ d}^{-1}$.

Crawley and Goddard (1976) studied the tissue distribution and excretion of 241Am and 242Cm in citrate or nitrate solutions 1 and 7 d after administration to rats by instillation into the NP, TB and pulmonary regions of the respiratory system. At 7 d, 72% initial pulmonary deposit of 241Am was in lungs while 25% had been absorbed. Following deposition in the NP or TB region, there was less retention in both lung and extrapulmonary tissues, because of faster mucociliary clearance. The analysis here of the data from Am nitrate deposited in the pulmonary region gave $f_r = 0.2$ and $s_r = 3 \text{ d}^{-1}$. The data from deposition in the NP and TB regions were not detailed enough for further analysis and the limited time scale of the experiment (one week) prevented a reliable estimate of s_s in any case.

Stather and Priest (1977) studied the biokinetics of Pu, Am and Cm in rats for 120 d after pulmonary instillation as nitrates. In a first experiment with Pu and Am, 20% ILD and 6% ILD of 241Am were retained in lungs after 30 and 120 d respectively. In a second experiment with Am and Cm, 13% ILD and 2% ILD of 241Am were retained in lungs after 30 and 120 d respectively. This is consistent with assignment to Type M. The data were analysed in Annex E.7 of the Guide for the Practical Application of the ICRP Human Respiratory Tract Model (ICRP, 2002). A somewhat different analysis was conducted here, notably assuming the parameter values for the americium bound fraction defined above. This gave $f_r = 0.5$, $s_r = 0.2 \text{ d}^{-1}$ and $s_s = 0.008 \text{ d}^{-1}$ for the first experiment, and $f_r = 0.7$ and $s_s = 0.01 \text{ d}^{-1}$ for the second experiment.

Ballou and Gies (1978) followed the clearance from rat lung to liver, kidney and skeleton of a nitric acid solution of Am for 200 d after nose-only inhalation of particles with three different AMADs. At 30 d post-inhalation about 9% ILD was retained in lungs and about 40% ILD had been transferred to other tissues, indicating Type M behaviour. The joint analysis of the data here gave $f_r = 0.7$ and $s_s = 0.03 \text{ d}^{-1}$, consistent with assignment to Type M.

Buldakov and Kalmykova (1979) studied the biokinetics of 241Am in dogs up to 7 years after inhalation of a nitrate aerosol. The authors fit multi-exponential functions of time to their results of organ retention and urinary and faecal excretion. For example, 54% ILD was eliminated from the lungs with a half-time of 0.72 d, 17.5% ILD with 19.7 d, and 5.2% with 1035 d. The biokinetic functions provided by the authors were consistent with the following parameter values: $f_r = 0.9$, $s_r = 0.2 \text{ d}^{-1}$ and $s_s = 0.001 \text{ d}^{-1}$, giving assignment to Type F.

Stradling et al. (1987) compared their studies of industrial dusts with inhalation experiments they conducted on rats exposed to actinide nitrates and followed up to 252 d. After 28 d, 27% ILD of 241Am was retained in lungs and 22% ILD had transferred to blood. After 168
d, 5% ILD was in lungs and 27% ILD had been absorbed to blood. This is consistent with assignment to Type M. Analysis here of these Am nitrate data gave \(f_r = 0.2 \) and \(s_s = 0.004 \text{ d}^{-1} \).

Absorption parameter values for americium nitrate based on \textit{in vivo} data are available from several studies. The results are variable: most are consistent with assignment to Type M, but some to Type F. Some values are very different from the default values for Type M or Type F. The estimated values of \(f_r \) range from 0.1 to 0.9 (median 0.6), greater than the default value for Type M (0.2). Estimated values of \(s_r \) range from 0.2 to 3 \text{ d}^{-1} (median 0.5 \text{ d}^{-1}), similar to the default value for plutonium (0.4 \text{ d}^{-1}). Estimated values of \(s_s \) range from 8 x 10\(^{-4}\) to 0.04 \text{ d}^{-1} (median 0.006 \text{ d}^{-1}), similar to the default value for Type M (0.005 \text{ d}^{-1}). Inhalation exposure to americium nitrate is not unlikely. Specific parameter values of \(f_r = 0.6, s_r = 0.4 \text{ d}^{-1} \) and \(s_s = 0.005 \text{ d}^{-1} \) are used here for americium nitrate.

\textit{Americium dioxide} (875) Several cases of known human inhalation exposure to oxide forms of americium have been reported. However, some are of limited value here because the \textit{in vivo} measurements were not begun until months or years after the likely exposure times. Generally, most (≥80%) of the \(^{241}\)Am lung contents were stated to have cleared from the lung with half-times of tens of days, and the remainder with half-times of the order of hundreds and/or thousands of days.

(876) Sanders (1974) described a case of accidental inhalation by a worker of mixed oxides of \(^{244}\)Cm (75% of activity) and \(^{241}\)Am (25% of activity). The worker was monitored by chest measurement, urine and fecal analyses for up to 410 d, and treated with DTPA. The isotopic ratio appeared to remain constant with time in faeces and presumably in lung. According to the author and based on a model of ICRP (1959), 37% of the intake was deposited in the lung. In the first 7 d post inhalation, 1.5% ILD was transported to the rest of body, 90% ILD was excreted in faeces and 8% ILD remained in lungs. The remaining lung activity was cleared with a 28-d half-time, 96% to the rest of body, 4% to faeces. Although the interpretation of the data was complicated by the DTPA treatment, analysis here gave \(f_r = 0.1 \) and \(s_s = 0.02 \text{ d}^{-1} \), consistent with assignment to Type M.

(877) Edvardsson and Lindgren (1976) followed the elimination of \(^{241}\)Am from a worker exposed to an aerosol of americium oxide, for 100 d, by \textit{in vivo} measurements in lung and whole body geometries and by urine and faeces analyses. About 80% of the intake was eliminated in the first week. The remaining activity in lung was cleared with a half-time of about 17 d. Analysis here gave values of \(f_b = 0.005, f_r = 0.3 \) and \(s_s = 0.05 \text{ d}^{-1} \) and assignment to Type M.

(878) Fry (1976) studied the retention of \(^{241}\)Am in two workers by \textit{in vivo} measurement from about 6 months to 4 years after accidental inhalation of Am oxide. At the first measurement, about half of the body content was located in the thorax and it slowly cleared with a half-time of at least 900 d. Analysis here of the lung and whole body retention data gave \(f_r = 0.5 \) and \(s_s = 2 \times 10^{-4} \text{ d}^{-1} \) for both subjects, consistent with assignment to Type M.

(879) Toohey and Essling (1980) reported the late \textit{in vivo} measurement of \(^{241}\)Am in the lung and whole body of a worker at 2, 8, 10 and 12 years following inhalation of the dioxide. The authors estimated the lung content at 2 years as 16% of the total activity, which would suggest Type M behaviour. Between 5% and 10% ILD remained in the lung region after 12 years. DTPA chelation therapy administered from 2 to 9 years contributed to the excretion of over one-half ILD. Analysis here gave \(f_r = 0.5 \) and \(s_s = 0.0001 \text{ d}^{-1} \), consistent with assignment to Type M.
Newton et al. (1983) reported the 870-d follow-up of a case of accidental inhalation exposure of a worker to aerosols of both 238PuO$_2$ and 241AmO$_2$. Half of the ILD of each nuclide was removed during the first few days by ciliary clearance mechanisms. Most of the residual 241Am was cleared relatively quickly, with a half-time of about 11 d while a small proportion was subject to long-term retention with a half-time of about 900 d. Analysis here gave $f_r = 0.2$ and $s_s = 6 \times 10^{-4}$ d$^{-1}$, consistent with assignment to Type M.

Truckenbrodt et al. (2000) presented the results and interpretation of in vivo measurement of 241Am in the lung, skeleton and liver of a worker exposed approximately 26 years earlier by repeated inhalation of Am oxide, and urine and faeces bioassay analyses performed at the same time period. Using ICRP (1997) series biokinetic models, the authors estimated $f_r = 0.001$ and $s_s = 3 \times 10^{-4}$ d$^{-1}$, consistent with assignment to Type S.

Bull et al. (2003) assessed a case of 241AmO$_2$ powder inhalation by a worker on the basis of a nose blow, lung and whole-body measurement two hours after the incident, faecal and urine sampling over 37 d. An intake of about 200 Bq was estimated but the urine bioassay results below the limit of detection were in contradiction with ICRP (1993) default lung parameter values for Am. To make the model prediction consistent with the observations, the authors used modified Type S model parameter values, setting f_r to 10^{-5} and f_1 to 10^{-4} or f_1 to 10^{-5} and f_r to 10^{-4} or a modified systemic model.

Kathren et al. (2003) reported the follow-up of a worker for 6 years after accidental acute inhalation of 241Am assumed to be in oxide form. Lung, skeleton and liver in vivo measurements were supplemented with four urine analyses. The authors described the lung clearance by two exponentials with half-times of 110 and 10,000 d. Although some inconsistency with the reference systemic model for Am (ICRP, 1993) was observed, data analysis here gave $f_r = 0.3$ and $s_s = 7 \times 10^{-4}$ d$^{-1}$, consistent with assignment to Type M.

Carbaugh et al. (2010) reported three cases of worker inhalation exposure to 241Am oxide. The workers were followed over about 300 d by in vivo lung measurements of 241Am, fecal and urine analysis over about three months, and were treated with DTPA. One or two in vivo liver and skeleton measurements were performed on each subject. The DTPA therapy makes the interpretation of data uncertain, but parameter values of $f_r = 0.01$, 0.2 and 0.03; and $s_s = 0.01$, 0.006 and 0.007 d$^{-1}$ respectively were assessed here for the three workers, which are all consistent with assignment to Type M.

Lung retention data for 241Am inhaled or instilled in various chemical forms by several species of experimental animals have been published, including rats, hamsters, dogs and monkeys. In addition, Mewhinney and Muggenburg (1985) studied the influence of age at inhalation on the biokinetics of 241AmO$_2$ in beagles. In the studies of americium oxides, the lung retention data have usually shown 70–90% clearance with half times from 10 to 30 d. One exception was the clearance of 241Am from monkeys in which 32% ILD cleared with a 0.1-d half-time. The second clearance component was on the order of hundreds of days.

McClellan (1972) reported the progress of studies on the biokinetics of transuranic elements in rodents and dogs at the Lovelace Foundation, Albuquerque. The figures presented included data on retention of 241Am in lung, liver and skeleton over 1000 d after inhalation by dogs of the dioxide, as well as urinary excretion data for 3 weeks. 241AmO$_2$ appeared to leave the lung much more rapidly than plutonium dioxide or even plutonium nitrate with a consequent two-order of magnitude difference in urinary excretion rate at early times post-inhalation. Most of the 241Am leaving the lung was translocated to skeleton and liver. Analysis here gave $f_1 = 0.9$, $s_r = 0.1$ d$^{-1}$ and $s_s = 8 \times 10^{-4}$ d$^{-1}$, consistent with assignment to Type F, but very close to the criterion for Type M.
When investigating the respiratory carcinogenesis in rats after inhalation of actinides, Lafuma et al. (1974) observed the same lung clearance for 241Am nitrate and dioxide: 99% ILD being cleared with a 12.5-d half-time and 1% with a 250-d half-time, suggesting Type M behaviour.

Craig et al. (1975, 1979) followed the disposition of 241Am in dogs for up to 810 d after a single inhalation exposure to 241AmO$_2$ at three levels of initial body burden: low (190 Bq), medium (7.4 kBq) and high (70 kBq). Urine and faeces were analysed as well as tissue distribution after sacrifice. The lung retention of Am was ~60% ILD at 10 d, ~50% ILD at 30 d and ~3% at 810 d, with mainly translocation to liver and skeleton: ~50% ILD had been absorbed to blood after 30 d. This is consistent with assignment to Type M. The joint analysis of all data here gave $f_r = 0.5$ and $s_r = 0.001$ d$^{-1}$.

Mewhinney et al. (1976) studied the distribution of 241Am in the lung, liver and skeleton of hamsters for up to 670 d after inhalation of 241AmO$_2$ as monodisperse aerosols of 0.8 µm, 1.7 µm and 3.3 µm aerodynamic diameters (d_{ae}) and as a polydisperse aerosol of 1.3 µm AMAD. The measured lung retention indicated that AmO$_2$ behaved as a relatively soluble material. The half-time of the long-term component increased with aerosol size from 92 d for 0.8 µm to 162 d for 3.3 µm. It represented less than 30% ILD for the 0.8 and 1.7 µm groups but more than 55% ILD for the 1.3 µm and 3.3 µm groups. Lung retention was of the order of 26%–60% ILD at 30 d and 3%–22% ILD at 180 d, with retention in skeleton and liver amounting to 15%–45% ILD at 30 d and 20%–45% ILD at 180 d. These results are consistent with assignment to Type M for all particle sizes. The analysis of data for the 0.8 µm, 1.7 µm, 3.3 µm and 1.3 µm groups here gave $f_r = 0.2, 0.2, 0.4$ and 0.3 respectively and $s_r = 0.004, 0.005, 0.003$ and 0.004 d$^{-1}$ respectively.

Stradling et al. (1978) investigated the effect on Am lung clearance of particle size and age of a dioxide form over 106 d after pulmonary instillation into rats. Rapid movement of Am from lungs to blood was observed for all aerosols, AmO$_2$ behaving as a soluble compound comparable to the citrate control. At 21 d, 3% – 20% ILD was retained in lungs and 57% – 79% had been absorbed to blood, indicating Type F or Type M behaviour. Analysis here (assuming $s_r = 10^{-4}$ d$^{-1}$) gave for a freshly prepared Am oxide: $f_r = 0.6$ and $s_r = 1$ d$^{-1}$ (giving assignment to Type M) for particles of size less than 0.025 µm, $f_r = 0.9$; and $s_r = 4$ d$^{-1}$ (giving assignment to Type F) for particle size range 0.025–1.2 µm. For an AmO$_2$ suspension aged for 4 months in water, analysis here gave $f_r = 0.9$ and $s_r = 3$ d$^{-1}$ for particles of size less than 0.025 µm; and $f_r = 0.7$ and $s_r = 3$ d$^{-1}$ for particles in the size range 0.025–1.2 µm, giving assignment to Type M.

Stather et al. (1979) studied the clearance from the lungs of hamsters after inhalation of actinide oxides, either alone or in combination with other metals. For Am dioxide, at 30 d, 66% ILD was still in lungs while 19% ILD was in extrapulmonary tissues. At 274 d, 13.5% ILD was in lungs and 45% ILD was in other tissues. Analysis here gave $f_r = 0.06$ and $s_r = 0.005$ d$^{-1}$, consistent with assignment to Type M.

Mewhinney et al. (1978, 1982) and Mewhinney and Griffith (1983) studied the tissue distribution of Am in dogs following inhalation of monodisperse (0.75, 1.5 and 3.0 µm d_{ae}) and polydisperse (1.8 µm AMAD) 241AmO$_2$ aerosols over six years. A short-term retention half-time for 80% ILD ranged from 7 to 39 d, increasing with the aerosol size. A second component of retention appeared as 20% ILD retained with a half-time of 165–180 d. At 730 d after inhalation, about 2% ILD remained in lung. A small third component of 0.6–0.7% ILD showed a long effective half-time of 5000 – 5500 d. The effective retention half-time for this fraction was longer than expected for insoluble particles subject to mechanical clearance (particle transport): see section on "Extent of binding of americium to the respiratory tract". From the
observed rate of 241Am accumulation in liver and skeleton, dissolution appeared to dominate lung clearance. At 4 and 6 years after inhalation, ~20% ILD was present in either liver or skeleton. The analysis conducted here gave values of absorption parameters for the groups exposed to aerosol sizes 0.75 µm, 1.5 µm, 3.0 µm and 1.8 µm respectively: $f_b = 0.01$ (assigned by default), 0.02, 0.01 and 0.03; $f_r = 0.4, 0.4, 0.2$ and 0.3; $s_s = 0.02$ d$^{-1}$, 0.007 d$^{-1}$, 0.005 d$^{-1}$ and 0.01 d$^{-1}$ respectively, and assignment to Type M for all aerosol sizes.

(893) Sanders and Mahaffey (1983) studied the content and carcinogenicity of 241Am in the lung and skeleton of rats over about 880 d after a single inhalation exposure to 241AmO$_2$. About 55% ILD was cleared from lung with a half-time of 0.5 d, 37% with a half-time of 7 d and 8% with a half-time of 580 d. This resulted in retentions of ~5% ILD in lung and in bone at both 30 d and 180 d post-inhalation. Analysis here gave $f_r = 0.4$ and $s_s = 0.001$ d$^{-1}$, consistent with assignment to Type M.

(894) Mewhinney and Muggenburg (1985) investigated the influence of species and age on lung retention, tissue distribution and excretion of 241Am by following its retention in lung, liver and skeleton of dogs of three age groups, and of adult monkeys, for two years after a single inhalation exposure to aerosols of 241AmO$_2$. The retention of 241Am in lungs of aged dogs was greater than for immature and young adults dogs through about 200 d after exposure. It was 35%–80% ILD after 30 d and 13%–40% ILD after 130 d while the retention in liver and skeleton amounted to 7%–27% ILD at 30 d and 26%–58% ILD after 130 d. This is consistent with assignment to Type M. For the purpose of the present document, all dog data were analysed together and gave $f_r = 0.2$ and $s_s = 0.004$ d$^{-1}$. Monkeys exhibited a rapid initial clearance of 32% ILD with 0.1-d half-time. At 30 d, 55% ILD was retained in lung and 13% ILD had been transferred to liver and skeleton. After 180 d, the retention was 37% ILD in lungs and 18% ILD in liver and skeleton. This is also consistent with assignment to Type M. By about one year, the percentages of ILD remaining in lung were comparable for dogs and monkeys. The analysis here of monkey data gave $f_r = 0.2$ and $s_s = 0.001$ d$^{-1}$.

(895) Malátová et al. (2007) studied the in vitro dissolution of 241Am, mainly as the dioxide, from an aerosol collected at a workplace, in the synthetic serum ultrafiltrate described by Eidson and Mewhinney (1983). The mean values from three experiments indicated $f_r = 0.2$, $s_r = 4$ d$^{-1}$, $s_s = 0.002$ d$^{-1}$ and assignment to Type M. These experimentally determined parameter values were applied by Fojtik et al. (2013) in the analysis of a contamination case detected during routine monitoring of a worker exposed to 241AmO$_2$ from the same producer. A good fit of the model to urine, faeces, skeleton, lung and whole body measurement results collected over 5 years was then obtained.

(896) Although absorption parameter values for americium oxide based on in vivo data were derived, wide ranges of values of f_r (10$^{-5}$ – 0.9) and s_s (10$^{-4}$ – 0.05 d$^{-1}$) were obtained in different studies. Nevertheless, most studies support the assignment to Type M. Furthermore, the median values obtained here from 32 analyses: $f_r = 0.3$, $s_r = 3$ d$^{-1}$, $s_s = 0.004$ d$^{-1}$ are very close to the default parameter values of Type M. Therefore specific parameter values for americium oxide are not used here. Instead, it is assigned to Type M. However, the results contributed to the selection of the bound state parameter value for americium.

Plutonium oxide forms

(897) A significant effort was invested in the dose reconstruction for workers exposed to plutonium (Pu) at the Mayak Production Association, Russia (Vasilenko et al., 2007). To document lung absorption, the transportability of industrial Pu aerosols were categorised by
solubility factors for soluble compounds (nitrate), moderately soluble compounds and insoluble
compounds (dioxide and metal) (Khokhryakov et al., 1998). Suslova et al. (2013) reviewed the
biokinetics of 241Am, associated with Pu, and built up from the decay of 241Pu, on the basis of
290 autopsy cases, bioassay data and whole body counting of exposed Mayak workers. For the
three transportability categories, about 14 years after exposure, the fraction of body Am
retained in the lung was slightly less than that of Pu, but the difference was not statistically
significant. Sokolova et al. (2013) confirmed that applying the Pu absorption parameters to Am
resulted in a limited overestimation of the Am lung burden by 48% on average over 456
autopsied cases, suggesting a slightly faster lung clearance for Am than for Pu.

An informal feedback from French decommissioning worksites is that the dissolution
kinetics of an Am and Pu mixture is intermediate between the Type M of Am oxide and the
Type S of Pu oxide (SFMT, 2011). The results of animal studies indicate that the availability of
241Am for absorption to blood depends on the solubility characteristics of the major chemical
components of the matrix in which the 241Am is present.

James et al. (1978) studied the clearance from the lungs of rats of 239Pu and 241Am
inhaled as dioxides calcined at 550°C and blended with uranium dioxide in the ratio Pu:U 1:2
by mass. The data indicated Am lung retention of 49% ILD at 30 d after inhalation and 12%
ILD at 180 d. This is consistent with assignment to Type M but close to the criterion for Type
S.

Stather et al. (1979) also studied the clearance from hamster lung of oxide fumes of
plutonium and americium mixed with sodium (Na:Pu atomic ratio 27:1) or potassium (K:Pu
atomic ratio 36:1). At 30 d, 44% ILD of Am within Na:Pu and 19% ILD of Am within K:Pu
remained in the lungs. At 180 d, 27% ILD of Am within Na:Pu remained in the lungs while
33% was in other tissues. This would indicate Type M for both mixtures and $f_r = 0.4$ and $s_s = 0.003$ d$^{-1}$ for Am within Na:Pu. Such behaviour is clearly different from other Pu oxide
compounds (see plutonium inhalation section).

Stanley et al. (1982) studied the clearance from lung and distribution in other tissues
of Pu and Am after inhalation exposure to a mixture of UO$_2$ and 750°C heat-treated PuO$_2$
obtained from ball milling in rats, dogs and monkeys. The UO$_2$-PuO$_2$ aerosol was relatively
insoluble in the lungs of all species. Monkeys and rats cleared Pu and Am from their lungs
faster than dogs. Very little Pu and Am translocated within the first 2 years after exposure to
the tissues other than tracheobronchial lymph nodes. Am systemic burdens below 5% ILD in dogs
and monkeys and lung burden of 16% ILD in rats after 1 year indicate assignment to Type S.
Analysis here of the americium data gave $f_r = 0.004$ and $s_s = 4 \times 10^{-5}$ d$^{-1}$ for dogs, $f_r = 0.002$ and
$s_s = 1 \times 10^{-4}$ d$^{-1}$ for monkeys, $f_r = 0.1$ and $s_s = 1 \times 10^{-4}$ d$^{-1}$ for rats, all consistent with
assignment to Type S.

Eidson and Mewhinney (1983) assessed the dissolution characteristics of
representative industrial mixed-oxide (U, Pu and Am) powders obtained from fuel fabrication
enclosures by in vitro dissolution tests over 30 d in two different solutions. No strong influence
of the temperature history of the mixed-oxides or of the solvent was demonstrated. The
dissolution of Am was slightly higher than that of Pu and much lower than that of U. Less than
10% dissolution at 30 d in any case indicates Type M or S. The absorption parameters values
derived here from the two dissolution components observed by the authors for Am in the
different combinations of plutonium oxide compound and solvent are summarised in Table
23.2.
Table 23.2. Absorption parameter values for Am within forms of plutonium oxide derived from Eidson and Mewhinney (1983).

<table>
<thead>
<tr>
<th>Solvent</th>
<th>SUF (^a)</th>
<th>0.1 M HCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material containing Am</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{PuO}_2) calcined at 750°C mixed with (\text{UO}_2) and ball milled</td>
<td>(f_r)</td>
<td>(s_r, \text{d}^{-1})</td>
</tr>
<tr>
<td></td>
<td>0.02</td>
<td>0.4</td>
</tr>
<tr>
<td>(\text{PuO}_2) calcined at 850°C, mixed with (\text{UO}_2) and organic binders and suspended during the pellet pressing operation</td>
<td>0.006</td>
<td>0.7</td>
</tr>
<tr>
<td>Single phase solid solution ((\text{U,Pu})\text{O}_1.96) produced by grinding pellets sintered at 1750°C</td>
<td>0.07</td>
<td>0.6</td>
</tr>
<tr>
<td>(\text{PuO}_2) calcined at 850°C and blended with other lots of feed (\text{PuO}_2)</td>
<td>0.004 (^b)</td>
<td>1</td>
</tr>
</tbody>
</table>

\(^a\) Synthetic serum ultrafiltrate (SUF) solution containing DTPA
\(^b\) Not observed

(903) Ramounet et al. (2000) and Ramounet-Le Gall et al. (2002) compared the biokinetics of Pu and Am in rats over 540 d after inhalation of industrial \(\text{PuO}_2\) from calcination and after inhalation of mixed oxides (MOX): MIMAS involved dry oxide mixing; SOLGEL was obtained from a co-precipitation procedure. About 80% of the actinides were cleared with a half-time of 30 d and the remainder with a half-time of 200 d. Rateau-Matton et al. (2004) analysed the resulting \textit{in vivo} data with the approach applied here and studied the \textit{in vitro} dissolution of the three compounds in the same synthetic serum ultrafiltrate as Eidson and Mewhinney (1983). All results were consistent with assignment to Type S. In the same laboratory, Sérandour and Fritsch (2008) observed \textit{in vivo} an increased solubility for an old \(\text{PuO}_2\) studied more than 15 years after its fabrication, giving assignment to Type M. The absorption parameter values derived by the authors for Am in the different forms of plutonium oxide are summarised in Table 23.3.

Table 23.3. Absorption parameter values for Am within forms of plutonium oxide, rounded from Rateau-Matton et al. (2004) and Sérandour and Fritsch (2008).

<table>
<thead>
<tr>
<th>Material containing Am</th>
<th>(f_r)</th>
<th>(s_r, \text{d}^{-1})</th>
<th>(s_s, \text{d}^{-1})</th>
<th>(f_r)</th>
<th>(s_r, \text{d}^{-1})</th>
<th>(s_s, \text{d}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOX from MIMAS process</td>
<td>(7 \times 10^{-4})</td>
<td>0.4</td>
<td>(4 \times 10^{-5})</td>
<td>0.05</td>
<td>0.4</td>
<td>(2 \times 10^{-4})</td>
</tr>
<tr>
<td>MOX from SOLGEL process</td>
<td>0.001</td>
<td>0.9</td>
<td>(4 \times 10^{-4})</td>
<td>0.1</td>
<td>0.2</td>
<td>(1 \times 10^{-4})</td>
</tr>
<tr>
<td>(\text{PuO}_2)</td>
<td>0.01</td>
<td>0.5</td>
<td>(5 \times 10^{-5})</td>
<td>0.04</td>
<td>1.2</td>
<td>(3 \times 10^{-5})</td>
</tr>
<tr>
<td>old (\text{PuO}_2)</td>
<td>0.1</td>
<td>(^a)</td>
<td>0.004</td>
<td>(^a)</td>
<td>(^a)</td>
<td>(^a)</td>
</tr>
</tbody>
</table>

\(^a\) Not observed

(904) Although absorption parameter values for americium in forms of plutonium oxide based on \textit{in vivo} data were derived, wide ranges of values of \(f_r\) \((7 \times 10^{-4} – 0.1)\) and \(s_s\) \((3 \times 10^{-5} –\)
0.004 d\(^{-1}\) were obtained in different studies. Nevertheless, most of them support the assignment to Type S. Furthermore, the median values obtained here: \(f_r = 0.02, s_r = 0.7 \text{ d}^{-1}, s_s = 1 \times 10^{-4} \text{ d}^{-1}\) are very close to the default parameter values of Type S. (An element-specific value of \(s_s = 1 \text{ d}^{-1}\), is adopted here for Type S americium.) Therefore specific parameter values for americium in plutonium oxide are not used here. Instead, it is assigned to Type S. However, it is noted that the dissolution kinetics of Am may well depend on the state of the PuO\(_2\) matrix, notably after aging or mixture with other metals.

Unspecified forms

(905) Jeanmaire and Ballada (1970) followed two researchers contaminated with a soluble 241\(^{\text{Am}}\) salt by the measurement of 241\(^{\text{Am}}\) in lungs and in excreta for nearly one year after inhalation. The lung retention (R) decreased approximately as a power function of time (T): \(R = T^{-0.9}\). After a month, only 5 – 6% ILD was left in lungs, suggesting Type F behaviour. The analysis of the data here was complicated by DTPA therapy and by the pooling of urinary and faecal excretion, but gave values of \(f_r = 0.6, s_r = 0.04 \text{ d}^{-1}, f_b = 0.03\) and \(f_r = 0.8, s_r = 0.03 \text{ d}^{-1}, f_b = 0.02\) respectively for the two researchers, both consistent with assignment to Type F.

(906) Cohen et al. (1979) reported 8 years of follow-up of a father and his son who were unknowingly contaminated in their home about 6 years before, at the ages of 50 and 4 years. In vivo measurements of the 241\(^{\text{Am}}\) burden in lung, liver and skeleton were performed. A significant decrease of the activity in lung was observed over the 8 years: 38% for the adult and more than 95% for the adolescent. The interpretation of the measurements was complicated by the little knowledge of the conditions of exposure, by a pentetate chelation therapy and by the growth of the adolescent. However, values of \(f_r = 0.6\) and 0.7, respectively; \(s_r = 2 \times 10^{-4}\) and 4 x \(10^{-4}\) d\(^{-1}\), respectively, were determined here for the adult and adolescent. These values are consistent with assignment to Type M.

(907) Wernli et al. (2014) reported the 30-year follow-up of a worker who inhaled a mixture of plutonium isotopes and 241\(^{\text{Am}}\) following a glove box accident in which waste material related to nuclear fuel overheated. Absorption parameter values for 241\(^{\text{Am}}\) fit by the authors (assuming \(f_b=0.002\) and \(s_b=0 \text{ d}^{-1}\)) were \(f_r = 0.08, s_r = 0.4 \text{ d}^{-1}\), and \(s_s = 8 \times 10^{-5} \text{ d}^{-1}\), consistent with assignment to Type S. For additional information on this case see the description in the plutonium inhalation section of this document.

(908) Thomas et al. (1972) studied the retention and excretion of 241\(^{\text{Am}}\) in five dogs after inhalation of an aerosol formed by passing droplets of 241\(^{\text{Am}}\) oxide dissolved in hydrochloric and oxalic acids through a heating column at 600°C. Urine and faeces were collected and analysed for 60 d; whole body measurement was performed over about 1000 d. Following sacrifice shortly after inhalation, or from 127 to 1022 d afterwards, the 241\(^{\text{Am}}\) content was measured in lung, lymph nodes, skeleton, liver, kidney and thyroid. At 180 d, less than 4% ILD was retained in lung while more than 30% ILD was transferred to systemic tissues. Continuing high urinary excretion in the first two months pointed to a large fraction of activity being absorbed at a moderate rate. Analysis here gave \(f_r = 0.9, s_r = 0.08 \text{ d}^{-1}, s_s = 0.005 \text{ d}^{-1}\) and \(f_b = 0.01\), consistent with assignment to Type M.

(909) Stradling et al. (1987) studied the biokinetics of 239\(^{\text{Pu}}\) and 241\(^{\text{Am}}\) in site-specific industrial dusts after deposition in the rat lung. Residues from a purification process, highly enriched with 241\(^{\text{Am}}\) as a chloride, were administered to rats either by inhalation or by intratracheal instillation and followed up to one year. After instillation, 241\(^{\text{Am}}\) was cleared from the lungs with a half-time of 16 d. After inhalation, a second half-time of 90 d was observed.
Lung retentions of ~30% ILD at 28 d (with ~25% ILD absorbed to blood) and less than 15% ILD at 168 d (with more than 28% ILD absorbed to blood) were consistent with assignment to Type M. The separate analysis here of inhalation and intratracheal instillation data gave consistent values of $f_r = 0.2$, $s_s = 0.003 \text{ d}^{-1}$ and $f_r = 0.2$, $s_s = 0.008 \text{ d}^{-1}$ respectively. ^{241}Am in an atmospherically degraded mixture of Pu, Am and U nitrates from a process line, intimately mixed and highly diluted with inactive debris, was retained in lung as 51% ILD at 168 d after intratracheal instillation while 12% had been absorbed to blood. The analysis here of data from 74 to 365 d gave $f_r = 0.06$ and $s_s = 5 \times 10^{-4} \text{ d}^{-1}$, consistent with assignment to Type S.

(910) Stradling et al. (1989) followed the biokinetics of ^{241}Am over a year after intratracheal instillation into rats of irradiated Magnox fuel from a storage pond. At 168 d, 14% ILD was retained in lungs and the same amount had been absorbed to blood. This indicates intermediate behaviour between Types M and S. The analysis of data here gave $f_r = 0.03$ and $s_s = 0.002 \text{ d}^{-1}$, consistent with assignment to Type M.

(911) Americium is ubiquitously present in most plutonium-bearing materials as well as unprocessed nuclear waste materials that have undergone substantial neutron irradiation. As such, it is probable that exposures to americium environmental contamination will involve americium as a trace radioactive contaminant of other matrices, which may also contain other radionuclides. See the Plutonium section in this document for further information on the studies summarised below.

(912) Stather et al. (1978b) followed the biokinetics, after intratracheal instillation into 17 rats (and 6 hamsters), of ^{239}Pu and ^{241}Am associated with a suspension of Ravenglass sediment. Particles greater than 10 µm were removed by sedimentation. Because the specific activity of the sample was considered too low for in-vivo measurements, ^{239}Pu and ^{241}Am were added to the suspension: it was confirmed that they attached rapidly. Tissue distributions and cumulative excretion were measured in rats at 7 and 14 days; tissue distributions in rats and hamsters at 28 days. The ^{241}Am lung content decreased to 76% ILD at 7 days, with most of the clearance to systemic tissues: only ~8% ILD went to feces, and to ~45% ILD at 28 days. Lung clearance of ^{239}Pu was similar but somewhat faster. Tissue distributions in hamsters at 28 days were similar to those in rats. There is insufficient information to estimate s_r or s_s. Analysis here gave: $f_r = 0.2$, $s_s < 0.003 \text{ d}^{-1}$, and assignment to Type M.

(913) Morgan et al. (1990) studied the solubility of Pu and Am associated with estuarine silt from West Cumbria, England, by intratracheal instillation of 5 doses in 7 weeks and follow-up of lung, skeleton and liver content over 550 d. Most of the actinides were cleared from the lung with a half-time of about 240 d. At 220 d post intake, 59% ILD of ^{241}Am remained in the lungs while ~12% had been transferred to liver and skeleton. Analysis here gave $f_r = 0.02$ and $s_s = 0.001 \text{ d}^{-1}$, consistent with assignment to Type M.

(914) Stradling et al. (1992) investigated the biokinetics of Pu and Am present in three dust samples from the former nuclear weapons test site at Maralinga, South Australia, for one year after intratracheal instillation into rats. For two samples, the lung retention of ^{241}Am at one year was more than 23% ILD and the total absorption to blood was less than 6% ILD, consistent with assignment to Type S. For the third sample, 19% ILD was retained in lungs at one year when 16% ILD was absorbed to blood, indicating intermediate behaviour between Types M and S. The analysis performed here provided values of $f_r = 0.01$ and $s_s = 4 \times 10^{-4} \text{ d}^{-1}$; $f_r = 0.008$ and $s_s = 8 \times 10^{-2} \text{ d}^{-1}$; and $f_r = 0.05$ and $s_s = 0.001 \text{ d}^{-1}$ respectively for these three samples. An
inhalation experiment performed with the second sample led to the same conclusions. The first two sets of parameter values are consistent with assignment to Type S, the third to Type M.

(915) Stradling et al. (1998) determined the absorption parameters in the rat lung of Pu and Am present in soil samples from the site of the aviation accident and conventional explosions of nuclear weapons at Palomares, Spain. One year after intratracheal instillation, 22 – 27% ILD of 241Am was still in lungs, 6 – 14% ILD had been absorbed to blood. This indicates Type S (possibly Type M) behaviour. The authors evaluated $f_r = 0.08$ and $s_r = 4 \times 10^{-4} \text{ d}^{-1}$ for the particle size fraction < 5 µm; and $f_r = 0.007$ and $s_r = 4 \times 10^{-3} \text{ d}^{-1}$ for the fraction 125 – 250 µm. Both sets of parameter values are consistent with assignment to Type S.

Rapid dissolution rate

In fifteen studies of inhaled soluble compounds (chlorides, citrates and nitrates), sufficient early retention data were available to allow an estimate of the rapid dissolution rate s_r. The results of analysis here are summarised in Table 3: Values of s_r ranging from 0.2 to 7 d$^{-1}$ with a median of 1 d$^{-1}$, were obtained by fitting a rat respiratory tract model (ICRP 2002) to the experimental data. This is close to the default value of 0.4 d$^{-1}$ adopted for plutonium compounds. Consequently a default value of $s_r = 0.4 \text{ d}^{-1}$ is proposed for the rapid dissolution rate of americium compounds.

Table 23.4. Case-specific absorption parameter values estimated here for soluble compounds in studies reporting early retention data.

<table>
<thead>
<tr>
<th>Inhaled particulate materials</th>
<th>Animal species</th>
<th>Absorption parameter values</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>f_r</td>
<td>s_r (d$^{-1}$)</td>
</tr>
<tr>
<td>chloride</td>
<td>rat</td>
<td>0.2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2</td>
<td>7</td>
</tr>
<tr>
<td>citrate</td>
<td>rat</td>
<td>0.8</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.9</td>
<td>6</td>
</tr>
<tr>
<td>nitrate</td>
<td>rat</td>
<td>0.2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.7</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.7</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>dog</td>
<td>0.6</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.9</td>
<td>0.2</td>
</tr>
</tbody>
</table>
human | 0.1 | 0.2 | Robinson et al. (1983)
--- | --- | --- | ---
Median | 0.5 | 1 |
Geometric mean | 0.4 | 1 |
Min - max | 0.2 – 0.9 | 0.2 – 7 |

Extent of binding of americium to the respiratory tract

As noted above, Mewhinney et al. (1978, 1982) and Mewhinney and Griffith (1983) studied the tissue distribution of Am in Beagle dogs following inhalation of monodisperse (3.0 μm, 1.5 μm and 0.75 μm AMAD) and polydisperse (1.8 μm AMAD) 241AmO$_2$ aerosols over six years. They noted the long-term pulmonary retention of a small fraction, of the order of 1% (0.5% to 2%), of the ILD. The effective retention half-time (about 5000 d) for this fraction was longer than expected for insoluble particles subject to mechanical clearance (particle transport).

Taya et al. (1994) aimed at characterizing the binding nature of the small fraction of americium retained for a long time in the beagle lung after inhalation of americium nitrate by homogenization-fractionation of lung lobes and autoradiography. Dissolved americium was then observed to be associated with connective tissues. In studies with 241AmO$_2$, the autoradiography of monodisperse particles revealed the progressive appearance of single tracks with time in the lungs as the AmO$_2$ particles dissolved in situ. At different times after exposure, which were proportional to particle size, the particles became less and less frequent, and eventually could no longer be found when the activity retained in lung became close to stable. Only the single tracks, which were primarily associated with parenchymal interstitium, then remained. The magnitude of the bound fraction may thus be inferred from the lung retention described by Mewhinney and Griffith (1983) for monodisperse 241AmO$_2$ particles, assigning the long-term retained fraction of about 1.5% ILD to the bound compartment.

A similar long-term retention of about 1.5% ILD was previously observed in dogs, more than two years after Am inhalation, by Thomas et al. (1972). The follow-up by Jeanmaire and Ballada (1970) for more than 200 d of two accidental cases of human exposure to a soluble salt of Am suggests slightly higher bound fractions of 2–3% ILD. However, the analysis of data from Lyubchanskiy and Nifatov (1972) on the retention of soluble Am nitrate and citrate in rat lungs for nearly two years suggests a slightly lower value of about 0.6%. Based on these considerations, the bound fraction for americium is assessed to be $f_b = 0.01$ and $s_b = 10^{-4}$ d$^{-1}$.

There is no evidence of long-term retention of americium deposited in relatively soluble form in the ET, BB or bb regions. Such a small long-term bound state in the alveolar region results in an additional contribution to the committed equivalent dose coefficient for the lungs from inhaled 241Am of about 75%, about 15%, less than 1%, and about 25% for Absorption Types F, M, S, and for Am nitrate respectively.

Nevertheless, as described in the general actinide section, absorption parameter values for the bound state based on plutonium are applied in this document to the transplutonium elements for radiation protection purposes. Thus, a bound fraction $f_b = 0.002$ and a rate of uptake $s_b = 0$ d$^{-1}$, are applied throughout the respiratory tract except in the ET$_1$ region.
Table 23.5. Absorption parameter values for inhaled and ingested americium.

<table>
<thead>
<tr>
<th>Inhaled particulate materials</th>
<th>Absorption parameter values<sup>a</sup></th>
<th>Absorption from the alimentary tract, <sup>b</sup><sub>f_A</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific parameter values<sup>c</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Americium nitrate</td>
<td>0.6 0.4 0.005 3 x 10<sup>–4</sup></td>
<td></td>
</tr>
</tbody>
</table>

Default parameter values^{d,e}

<table>
<thead>
<tr>
<th>Absorption Type</th>
<th>Assigned forms</th>
<th><sup>f</sup><sub>f_A</sub></th>
<th><sup>s</sup><sub>r</sub></th>
<th><sup>s</sup><sub>s</sub></th>
<th><sup>r</sup><sub>d</sub></th>
<th>Actual value</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>Citrate</td>
<td>1</td>
<td>0.4</td>
<td>–</td>
<td>0.4</td>
<td>5 x 10<sup>–4</sup></td>
</tr>
<tr>
<td>M*</td>
<td>Oxide, chloride</td>
<td>0.2</td>
<td>0.4</td>
<td>0.005</td>
<td>0.4</td>
<td>1 x 10<sup>–4</sup></td>
</tr>
<tr>
<td>S</td>
<td>Americium associated with plutonium oxide</td>
<td>0.01</td>
<td>0.4</td>
<td>1 x 10<sup>–4</sup></td>
<td>0.4</td>
<td>5 x 10<sup>–6</sup></td>
</tr>
</tbody>
</table>

Ingested material^f

<table>
<thead>
<tr>
<th>All compounds</th>
<th>5 x 10<sup>–4</sup></th>
</tr>
</thead>
</table>

23.2.2. Ingestion

Compared to plutonium and neptunium, limited data are available on the absorption of americium. The only human data on the absorption of Am are those from Hunt et al. (1986, 1990) who carried out two studies on the absorption of plutonium and americium by volunteers eating shellfish winkles collected on the Cumbrian coast near to the nuclear-fuel reprocessing plant at Sellafield. The overall absorption value obtained for americium was 1 x 10^{–4} with a range of 4 x 10^{–5} to 3 x 10^{–4}. Animal data on the absorption of Am was reviewed in *Publication 48* (ICRP, 1986), Harrison (1991, 1995) and *Publication 100* (ICRP, 2006). Results for absorption after administration to rats ranged from about 1.2 to 6 x 10^{–4} for Am nitrate (Sullivan and Crosby,
1975; Ballou et al., 1978; Sullivan, 1980) 0.9 to 1 x 10^{-4} for Am oxide (Sullivan and Crosby, 1975; Sullivan, 1980) and 6 to 7 x 10^{-4} for Am citrate (Sullivan et al., 1985). Results for other species are in the same range. They ranged from 10^{-5} to 10^{-3} for Am citrate in swine (Eisele and Erickson, 1985; Eisele et al., 1987), 1.7 to 3 x 10^{-4} for Am nitrate in guinea pig (Sullivan et al., 1980), and from 0.6 x 10^{-4} (oxide) to 5 x 10^{-4} (nitrate) in hamsters (Stather et al., 1979; Harrison et al., 1981). In other studies performed on dairy animals, absorption of Am chloride in cows and Am nitrate in goats was estimated to be 2 x 10^{-4} and 2.6 x 10^{-4} respectively (Howard et al., 2009). After ingestion of dusts from the former nuclear weapons site of Maralinga, absorption values measured in rats and guinea pigs ranged from 3 x 10^{-5} to 5 x 10^{-5} (Harrison et al., 1994).

Several factors such as fasting and diet are known to modify the gastrointestinal absorption of americium. In rats, an iron deficient diet may increase the absorption of Am nitrate by a factor 2 to 3 (Sullivan and Ruemmler, 1988).

In Publication 30 (ICRP, 1979), an absorption value of 5 x 10^{-4} was recommended. In Publication 48 (1986), a general value of 1 x 10^{-3} for actinides was used. This value was also adopted in Publication 56 (ICRP, 1989). However, in this report available data provided a sufficient basis for the use of a general value of 5 x 10^{-4} for all actinides other than U.

An f_A value of 5 x 10^{-4} is adopted here for all chemical forms of Am.

23.2.3. Systemic distribution, retention and excretion of americium

23.2.3.1. Summary of the database

Human studies

The biokinetics of systemic americium has been investigated in workers exposed to 241Am or its parent 241Pu, which is tenaciously retained in systemic tissues and decays to 241Am with a half-time of 14.4 y. Reported data for workers include urinary and faecal levels of 241Am, external measurements of 241Am in bone and liver of living subjects, and 241Am in a liver, bone, and other tissues collected at autopsy.

Data for direct intake of relatively pure 241Am (i.e., not mixed with a significant amount of its parent 241Pu) are preferred for modelling americium kinetics but are available for only a few subjects, some of whom received chelation therapy (Wrenn et al., 1972; Whalen and Davies, 1972; Fry, 1976; Rosen et al., 1980; Heid and Robinson, 1985; Breitenstein and Palmer, 1989; Doerfel and Oliveira, 1989; Malátová et al., 2003, 2010). More extensive observations are available for workers whose systemic 241Am burden may have resulted largely from decay of systemic 241Pu (Kathren et al., 1988, 1997; Lynch et al., 1989; Popplewell and Ham, 1989; McNinroy et al., 1989; Kathren and McNinroy, 1992; Suslova et al., 2013). Data for the latter cases suggest that 241Am migrates from 241Pu over time, resulting in a skeleton to liver activity ratio (ratio of total activity in the skeleton to that in liver) that is typically much larger for 241Am than for its parent 241Pu. However, 241Am produced in bone and perhaps at some soft-tissue sites (e.g. in reticulendothelial cells) may remain with 241Pu for an extended period. Thus, 241Am produced in vivo by decay of 241Pu may reflect some combination of the systemic behaviour of americium and that of plutonium.

There are broad similarities in the systemic behaviour of plutonium and initially pure americium but also notable differences, particularly in their long-term distributions. For both elements there is early uptake of about 70-90% of the injected amount by the liver and skeleton,
with the liver initially containing the greater portion on average in mature humans and in most
but not all of the studied laboratory animals. Notable differences in the systemic behaviours of
these two elements include an initially higher rate of urinary excretion of americium and faster
removal of americium from the liver. There are also differences in the sites of deposition of
americium and plutonium on bone surfaces and perhaps associated differences in the net rate of
removal of these elements from bone.

(929) Sokolova et al. (2013, 2014) assessed the potential contributions of direct intake and
in vivo production of 241Am to its total body content in a group of workers at the Mayak
Production Association. The analysis was based on estimated quantities of 241Am and 241Pu at
various work locations over time. The investigators concluded that through the early 1970s the
body burdens of 241Am in these workers were likely to have arisen almost entirely from
internally deposited 241Pu. For later years there was estimated to be an increasing contribution
from direct intake of 241Am resulting from its continual production from decaying 241Pu in spent
nuclear fuel stored at the site. They estimated that 241Am produced in vivo accounted for
roughly 70% of the body burden in the workers by the year 2000.

(930) Americium-241 has been measured in the total body or selected tissues of many
Transuranium and Uranium Registry (USTUR) donors with occupational exposures to 241Pu or
mixtures of 241Pu and 241Am and in a few cases to relatively pure forms of 241Am. The
exposures typically occurred 2-4 decades before death. The ratio of the 241Am content of the
skeleton to that of the liver was estimated by the authors of the present report for 101 USTUR
cases (Kathren et al., 1988, 1996a, 1996b, 1997; McInroy et al., 1989; Filipy and Kathren, 1996
; Filipy, 2001, 2002, 2003) under the assumption that reported 241Am concentrations for bone
samples were representative of the entire skeleton. The estimated skeleton to liver ratio ranged
from 1.2 to 89 with a mean of 15 and median of 7.8. For seven whole body donors (McInroy et
01, 1989; Filipy, 2003) the 241Am contents of the skeleton, liver, and other soft tissues
represented on average 74.2%, 7.9%, and 17.9% , respectively, of systemic 241Am. Median
values were 77.7%, 6.5%, and 13.5%, respectively. Blanchardon et al. (2007) reviewed USTUR
data in an effort to derive a typical fractional content of 241Am in non-liver soft tissues from the
variable data for the studied tissues. They concluded that the most reliable data, as judged
mainly from the sampling process for massive tissues and the level of activity in the samples,
indicated that non-liver soft tissues typically contain roughly 15% of the systemic 241Am.

(931) A detailed autopsy study of the tissue distribution of 241Am was conducted for a
radiochemist (USTUR Case 102) thought to have been exposed through contamination of a
wound while working with an unsealed 241Am source during the period 1952-54, about 25 y
before his death (Breitenstein et al., 1985; Heid and Robinson, 1985; McInroy et al., 1985;
Durbin and Schmidt, 1985). The first indication that an intake had occurred was detection of
radioactivity in a urine sample collected in 1958 as part of a routine surveillance programme.
No chelation therapy was performed, although Ca-EDTA was used on one occasion to cause
sufficient excretion of activity to identify the radionuclide. The skeleton, liver, kidneys, and
other soft tissues contained 82.3%, 6.4%, 0.25%, and 11.0%, respectively, of the systemic
burden. About 80% of skeletal activity was contained in compact bone together with the portion
of trabecular bone containing fatty marrow, and the remaining 20% was in trabecular bone
containing red marrow. Activity was distributed among bone groups as follows: skull, 13.6%;
vertebrae, 10.6%; arms and hands, 13.2%; legs and feet, 46.0%; ribs, 5.7%; pelvis, 7.2%;
remaining bones, 3.7% (Lynch et al., 1989). The large portion of activity found in the lower
extremities may be unusual as the subject’s legs contained a considerably larger portion of
skeletal mineral than measured in age-matched controls, presumably as a result of the subject’s
long-term strenuous programme of running and bicycling (Durbin and Schmidt, 1985; Lynch et al., 1989). Durbin and Schmidt (1985) noted evidence of a gradual trend toward uniform distribution of 241Am in the skeleton and extrapolated the findings for this subject to the following distribution in an adult with a typical distribution of bone mineral: cranium, 17.9%; vertebrae, 12.2%; arms and hands, 15.2%; legs and feet, 38.2%; ribs, 6.3%; pelvis, 6.3%; remaining bones, 3.9%.

Malátová et al. (2003, 2010) measured 241Am in urine and faeces and externally in the skull in seven workers over a period of about 12 y, starting roughly 11-25 y after their imprecisely known times of exposure to 241Am. The source of contamination presumably was 241AmO$_2$ powder, used in the production of AmBe neutron sources, smoke alarms, and other 241Am sources. The estimated content of 241Am in the skull was extrapolated to the total skeleton based on the assumption that the skull contains 12.5% of skeletal 241Am. This assumption is based on autopsy measurements of 241Am in bones of four workers (Lynch et al., 1989), three with long-term exposures to plutonium isotopes and one with a brief exposure to 241Am (USTUR Case 102, discussed above). The investigators compared their findings with predictions of the model for systemic americium in adults adopted in Publications 67 (1993) and applied to workers in Publications 68 (1994) and 78 (1997). The data are consistent with the urinary to faecal excretion ratio predicted by that model but indicate a lower than predicted ratio of daily urinary 241Am to skeletal 241Am. For example, urinary to skeletal ratios based on the model are about twofold greater on average than estimates of Malátová et al. at roughly 20 y after exposure. Growing differences between average estimates and model predictions are seen after about 22-23 y post exposure, but the increasing discrepancies may arise in part from increased variability in the urinary excretion data and changes in the composition and size of the study group. Uncertainties in the derived urinary to skeletal ratios arise from a number of sources, the most important of which appear to be the fraction of skeletal 241Am in the skull, the externally determined content of 241Am in the skull, and variability in urinary 241Am. It seems doubtful, however, that the methods and assumptions of Malátová and coworkers would consistently underestimate the true urinary to skeletal 241Am ratio by as much as a factor of 2.

Suslova et al. (2013) studied the distribution and excretion of 241Am and plutonium isotopes in workers at the Mayak Production Association. Presumably a substantial portion of 241Am in the studied workers was produced in vivo by decay of internally deposited 241Pu. Autopsy data were obtained for 290 workers who died on average 14.7 y ± 12 y (standard deviation) after the end of employment. Urine bioassay measurements were performed about 23-26 y after the end of employment for 47 workers who started work at Mayak from 1949-1964, a period of high inhalation exposures. Subjects of the autopsy study were divided into two groups on the basis of cause of death and histopathological findings in the liver. Group 1 consisted of 33 subjects who died from suicide, accident, or acute cardiovascular problems. Group 2 consisted of 257 subjects with various liver diseases or other chronic illnesses over an extended period before death. For Group 1 the skeleton, liver, kidneys, and other soft tissue contained on average 69.3%, 23.1%, 0.44%, and 7.2%, respectively, of systemic 241Am; and 46.4%, 46.0%, 0.17%, and 7.4%, respectively, of systemic plutonium. For Group 2 the skeleton, liver, kidneys, and other soft tissue contained on average 80.6%, 11.1%, 0.17%, and 8.1%, respectively, of systemic 241Am; and 65.3%, 25.8%, 0.16%, and 8.7%, respectively, of systemic plutonium. The ratio of daily urine excretion of 241Am to total systemic 241Am based on autopsy measurements averaged 1.57×10^{-5} for seven reasonably healthy workers and 2.92 x 10^3 for 15 unhealthy workers. The ratio of daily urine excretion of 241Am to total systemic 241Am based on whole body counting of 29 reasonably healthy workers was 1.8×10^{-5}. For
comparison, the model for systemic americium in adults adopted in Publication 67 predicts a
“urinary to systemic” ratio of 2.4×10^{-5} at 25 y and 2.2×10^{-5} at 35 y after acute intake of 241Am
to blood.

Animal studies

The behaviour of americium in blood has been studied in a variety of animals
including baboons (Rosen et al., 1972; Cohen and Wrenn, 1973; Guilmette et al., 1980),
monkeys (Durbin, 1973), beagles (Bruenger et al., 1969), sheep (McClellan et al., 1962), rats
(Turner and Taylor, 1968; Belyaev, 1969), cows (Sutton et al., 1978), and goats (Sutton et al.,
1983). Nearly all americium in blood is found in the plasma fraction. As is the case for
plutonium and neptunium, most circulating americium soon becomes bound to plasma proteins,
primarily transferrin and citrate. However, the affinity constants are much lower for americium
than for plutonium or neptunium, resulting in much faster removal of americium from blood
(Paquet and Stather, 1997). Roughly 5-10% of intravenously injected americium remains in
blood at 1 h, 0.1-1.5% at 24 h, and 0.03-0.5% at 48 h. Much of the activity that leaves blood in
the first hour after injection returns to blood over the next few hours.

Data for rats suggest that a third or more of americium leaving blood in the first few
minutes after injection entered soft tissues and extracellular fluids and that much of this
returned to blood over the next few hours (Belyaev, 1969; Durbin, 1973). In baboons, a
substantial portion of systemic americium remained in the non-liver soft tissues at 1 d
(Guilmette et al., 1980).

Following parenteral administration of 241Am citrate to baboons (Rosen et al., 1972;
Cohen and Wrenn, 1973), monkeys (Durbin, 1973), and beagles (Lloyd et al., 1970),
cumulative urinary excretion over the first 3 weeks amounted to ~10% of the administered
activity. In beagles the urinary excretion rates over the first three weeks were similar for
americium and curium isotopes (Lloyd et al., 1970; Lloyd et al., 1974). Similar urinary
excretion rates were observed for americium and curium in rats following parenteral
administration (Durbin, 1973).

In animals of all ages, most systemic Am (typically 80% or more) accumulates in the
skeleton and liver within a few days after parenteral injection (Lloyd et al., 1970; Rosen et al.,
1972; Durakovic et al., 1973; Moskalev, 1977; Stevens et al., 1977; Guilmette et al., 1980). In
monkeys (Durbin, 1973) and beagles (Lloyd et al., 1970) the liver and skeleton contained about
50% and 30%, respectively, of the systemic activity in the first few days or weeks after
injection. In baboons (Guilmette et al., 1980) the liver and skeleton contained about 30% and
40%, respectively, of systemic activity in the early weeks after injection.

The systemic biokinetics of americium varies somewhat among species, due largely
to differences in the handling of americium by the liver. The studied animal species fall into
two main groups with regard to the behaviour of americium in the liver (Taylor, 1984; Durbin
and Schmidt, 1985). A group including rats, mice, macaque monkeys, and baboons shows a
short residence time in the liver and a relatively high rate of removal of activity from the liver
in bile. A second group including dogs and hamsters shows much slower removal from the liver
with relatively low loss via biliary secretion. Biological half-times of americium in the liver
typically are on the order of 5-15 d in rats and mice, 30-150 d in baboons and monkeys, and a
few years in dogs and hamsters. Long-term studies on dogs (Lloyd et al., 1970, Mewhinney et
al., 1982) indicate that a large portion of the initial liver burden gradually transfers to the
skeleton.
Hamilton (1948) described the sites of bone deposition of americium and curium in rodents as indistinguishable from those of the trivalent elements cerium, promethium, and actinium but different from sites of deposition of the tetravalent elements plutonium, thorium, and zirconium. Later studies involving a variety of animal species indicate that americium deposits on all types of bone surfaces, including resorbing and forming surfaces (Herring, 1962; Lloyd et al., 1972; Durbin, 1973; Priest et al., 1983). Deposition on bone surfaces is more uniform than that of plutonium, although there are gradations in the intensity of the americium label. In dogs and monkeys, initial concentrations on surfaces tended to decrease in the order: resorbing surfaces > resting surfaces > growing surfaces (Herring, 1962; Lloyd et al., 1972; Durbin, 1973). Americium deposits to a greater extent than plutonium on cortical vascular channels (Hamilton, 1948; Herring et al., 1962).

Priest et al. (1983) studied the systemic behaviour of ^{241}Am in rats over the first month after administration, with emphasis on its behaviour in bone. After 1 d the total body contained about 90% of the injected activity. At that time the liver and skeleton contained roughly one-half and one-third, respectively, of the injected amount. The liver content declined with a half-time of about 12 d. Most of the loss from the liver presumably entered the gastrointestinal content in bile, but a gradual increase in the skeletal content over the observation period indicated that part of the activity removed from the liver re-entered the circulation. Activity entering the skeleton deposited on all types of bone surfaces including vascular canals within cortical bone but was preferentially deposited on resorbing surfaces. Bone accretion resulted in burial of surface deposits. Bone resorption caused removal of ^{241}Am from surfaces and its accumulation in phagocytic cells in bone marrow. Transfer of ^{241}Am from the bone marrow back to bone surfaces ("local recycling") appeared to occur. Some "systemic recycling" of resorbed activity (i.e., transfer from bone surface to blood and redeposition on bone surface) may also have occurred. Within the skeleton the largest increases in the ^{241}Am content over the observation period were found for bones with relatively low resorption rates.

Comparison of the long-term gross distributions of skeletal americium and plutonium in dogs indicated more similarities than differences (Lloyd et al., 1972). A notable difference was that the skeletal distribution of plutonium changed little with time after injection while the distribution of americium changed noticeably over time. In particular, three bones with high trabecular content (vertebrae, tail, and sternum) exhibited a decreasing fraction of total skeletal americium with increasing time.

23.2.3.2. Biokinetic model

The biokinetic model for systemic americium applied in this report is described in Section 18.2.3.

23.2.3.3. Treatment of progeny

The treatment of radioactive progeny of americium produced in systemic compartments or absorbed to blood after production in the respiratory or gastrointestinal tract is described in Section 18.2.4.
Table 23.6. Transfer coefficients in the biokinetic model for systemic americium.

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Transfer coefficient (d⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood</td>
<td>Liver 1</td>
<td>11.6</td>
</tr>
<tr>
<td>Blood</td>
<td>ST0</td>
<td>10.0</td>
</tr>
<tr>
<td>Blood</td>
<td>ST1</td>
<td>1.67</td>
</tr>
<tr>
<td>Blood</td>
<td>ST2</td>
<td>0.466</td>
</tr>
<tr>
<td>Blood</td>
<td>Cortical bone surface</td>
<td>3.49</td>
</tr>
<tr>
<td>Blood</td>
<td>Trabecular bone surface</td>
<td>3.49</td>
</tr>
<tr>
<td>Blood</td>
<td>Kidneys 1</td>
<td>0.466</td>
</tr>
<tr>
<td>Blood</td>
<td>Right colon content</td>
<td>0.303</td>
</tr>
<tr>
<td>Blood</td>
<td>Kidneys 2</td>
<td>0.116</td>
</tr>
<tr>
<td>Blood</td>
<td>Testes</td>
<td>0.0082</td>
</tr>
<tr>
<td>Blood</td>
<td>Ovaries</td>
<td>0.0026</td>
</tr>
<tr>
<td>Blood</td>
<td>Urinary bladder content</td>
<td>1.63</td>
</tr>
<tr>
<td>Liver 1</td>
<td>Blood</td>
<td>0.00185</td>
</tr>
<tr>
<td>Liver 0</td>
<td>SI content</td>
<td>0.000049</td>
</tr>
<tr>
<td>ST0</td>
<td>Blood</td>
<td>1.386</td>
</tr>
<tr>
<td>ST1</td>
<td>Blood</td>
<td>0.0139</td>
</tr>
<tr>
<td>ST2</td>
<td>Blood</td>
<td>0.000019</td>
</tr>
<tr>
<td>Cortical bone marrow</td>
<td>Blood</td>
<td>0.00253</td>
</tr>
<tr>
<td>Cortical bone marrow</td>
<td>Cortical bone surface</td>
<td>0.00507</td>
</tr>
<tr>
<td>Cortical bone surface</td>
<td>Cortical bone marrow</td>
<td>0.0000821</td>
</tr>
<tr>
<td>Cortical bone surface</td>
<td>Cortical bone volume</td>
<td>0.0000411</td>
</tr>
<tr>
<td>Cortical bone volume</td>
<td>Cortical bone marrow</td>
<td>0.0000821</td>
</tr>
<tr>
<td>Red marrow</td>
<td>Blood</td>
<td>0.0076</td>
</tr>
<tr>
<td>Trabecular bone surface</td>
<td>Red marrow</td>
<td>0.000493</td>
</tr>
<tr>
<td>Trabecular bone surface</td>
<td>Trabecular bone volume</td>
<td>0.000247</td>
</tr>
<tr>
<td>Trabecular bone volume</td>
<td>Red marrow</td>
<td>0.000493</td>
</tr>
<tr>
<td>Kidneys 1</td>
<td>Urinary bladder content</td>
<td>0.099</td>
</tr>
<tr>
<td>Kidneys 2</td>
<td>Blood</td>
<td>0.00139</td>
</tr>
<tr>
<td>Testes</td>
<td>Blood</td>
<td>0.00019</td>
</tr>
<tr>
<td>Ovaries</td>
<td>Blood</td>
<td>0.00019</td>
</tr>
</tbody>
</table>
23.3. Individual monitoring

241Am

Measurements of 241Am concentrations in urine and faeces are used to determine intakes of the radionuclide for routine monitoring. The main techniques used for in vitro bioassay are alpha spectrometry and ICP-MS; which is the more sensitive and preferable technique to be applied. In vivo lung measurement of 241Am may allow evaluating the intake of radionuclide if the measurement system is sensitive enough. Measurements of 241Am in skeleton and liver are feasible following significant intakes and may be used to determine systemic uptake. The main technique for in vivo measurement is gamma spectrometry.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Monitoring Technique</th>
<th>Method of Measurement</th>
<th>Typical Detection Limit</th>
<th>Achievable detection limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>241Am</td>
<td>Urine Bioassay</td>
<td>α spectrometry</td>
<td>0.3 mBq/L</td>
<td>0.05 mBq/L</td>
</tr>
<tr>
<td>241Am</td>
<td>Urine Bioassay</td>
<td>ICP-MS(^a)</td>
<td>100 x 10(^{-15}) g/L</td>
<td>1.0 x 10(^{-15}) g/L</td>
</tr>
<tr>
<td>241Am</td>
<td>Faecal Bioassay</td>
<td>γ-ray spectrometry</td>
<td>0.5 Bq/L</td>
<td></td>
</tr>
<tr>
<td>241Am</td>
<td>Lung Measurement(^b)</td>
<td>γ-ray spectrometry</td>
<td>8 Bq</td>
<td>2 Bq</td>
</tr>
<tr>
<td>241Am</td>
<td>Skeleton Measurement (Knee)(^c)</td>
<td>γ-ray spectrometry</td>
<td>10 Bq</td>
<td></td>
</tr>
<tr>
<td>241Am</td>
<td>Skeleton Measurement (Skull)(^d)</td>
<td>γ-ray spectrometry</td>
<td>18 Bq</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Inductively Coupled Plasma Mass Spectrometry (ICP-MS).
\(^b\) Measurement system comprised of two Broad Energy Germanium Detectors (BEGe), counting time of 36 minutes and chest wall thickness of 2.54 cm.
\(^c\) Measurement system comprised of two Broad Energy Germanium Detectors (BEGe), counting time of 36 minutes.
\(^d\) Skull measurement of 241Am is not generally used in routine monitoring of workers. The Monte Carlo programme Visual Monte Carlo was used to simulate the photon emission, to calculate the calibration factor for the geometry and radionuclide, and to calculate the detection limit in the skull.

243Am

Measurements of 243Am concentrations in urine and faeces are used to determine intakes of the radionuclide for routine monitoring. The main techniques used for in vitro bioassay are alpha spectrometry and ICP-MS; which is the more sensitive and preferable technique to be applied. In vivo lung measurement of 243Am may allow evaluating the intake of radionuclide if the measurement system is sensitive enough. Measurements of 243Am in skeleton and liver are feasible following significant intakes and may be used to determine systemic uptake. The main technique for in vivo measurement is gamma spectrometry.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Monitoring Technique</th>
<th>Method of Measurement</th>
<th>Typical Detection Limit</th>
<th>Achievable detection limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>243Am</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
23.4. Dosimetric data for americium

Dosimetric data will be provided in the final version of the document.

REFERENCES

ICRP 16(2/3).
ICRP, 1989. Age-dependent doses to members of the public from intake of radionuclides:
ICRP, 1992. Age-dependent doses to members of the public from intake of radionuclides: Part
Ann. ICRP 24 (1-3).
Ann. ICRP 24(4).
ICRP, 1995. Age-dependent doses to members of the public from intake of radionuclides: Part
Ann. ICRP 36(1/2).
elimination of americium-241 from the organism after inhalation of the isotope.
Radiobiology [English translation of Russian journal "Radiobiologiya"]; ERDA-tr-51, 15, 86–90.
James, A. C., Stather, J. W., Strong, J. C., et al., 1978. The translocation of americium-241
from hamster lung after its inhalation as the dioxide. National Radiological Protection
National Radiological Protection Board, Chilton, UK.
Jeanmaire, L., Ballada, J., 1970. Etude de deux cas de contamination par 241Am. In:
Proceedings of the International Radiation Protection Association Congress, Brighton,
Kathren, R. L., Filby, R. H., Dagle, G. R., 1996a. Plutonium and americium in the tissues of
two whole body donors, USTUR cases 0262 and 0769: Final radiochemical results.
Kathren, R. L., McInroy, J. F., 1992. Implications of postmortem human tissue analysis on
Pu-239 and Am-241 in skeleton and liver of U.S. Transuranium Registry autopsy
cases. Health Phys. 54, 181–188.
from routine autopsy donations to the USTUR. USTUR annual report for October 1,
Kathren, R. L., Russel, J. J., Filby, R. H., 1996b. 238Pu, 239Pu and 241Am in the tissues of
USTUR case 0259, a whole body donor with an acute accidental exposure to 238Pu:
final radiochemical results. USTUR annual report for October 1, 1995 through

DRAFT REPORT FOR CONSULTATION: DO NOT REFERENCE

294
24. CURIUM (Z=96)

24.1. Chemical Forms in the Workplace
Curium is an actinide element which mainly occurs in oxidation state III. Lanthanides such as Eu(III) or Gd(III), and Am(III) are good chemical analogues of Cm(III). Curium may be encountered in industry in a variety of chemical and physical forms, including oxides, (Cm$_2$O$_3$, CmO$_2$), chlorides, oxalates, citrates, nitrates, and may be found together with plutonium compounds including mixed oxide reactor fuel (MOX). Curium-244 is the major isotope of curium found in nuclear reactors and irradiated fuel.

Table 24.1. Isotopes of curium addressed in this report.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Physical half-life</th>
<th>Decay mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cm-238</td>
<td>2.4 h</td>
<td>EC, A</td>
</tr>
<tr>
<td>Cm-239</td>
<td>2.9 h</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Cm-240</td>
<td>27 d</td>
<td>A, SF</td>
</tr>
<tr>
<td>Cm-241</td>
<td>32.8 d</td>
<td>EC, A</td>
</tr>
<tr>
<td>Cm-242a</td>
<td>162.8 d</td>
<td>A, SF</td>
</tr>
<tr>
<td>Cm-243a</td>
<td>29.1 y</td>
<td>A, EC</td>
</tr>
<tr>
<td>Cm-244a</td>
<td>18.10 y</td>
<td>A, SF</td>
</tr>
<tr>
<td>Cm-245</td>
<td>8.5E+3 y</td>
<td>A, SF</td>
</tr>
<tr>
<td>Cm-246</td>
<td>4.76E+3 y</td>
<td>A, SF</td>
</tr>
<tr>
<td>Cm-247</td>
<td>1.56E+7 y</td>
<td>A</td>
</tr>
<tr>
<td>Cm-248</td>
<td>3.48E+5 y</td>
<td>A, SF</td>
</tr>
<tr>
<td>Cm-249</td>
<td>64.15 m</td>
<td>B-</td>
</tr>
<tr>
<td>Cm-250</td>
<td>8.3E+3 y</td>
<td>A, B-, SF</td>
</tr>
<tr>
<td>Cm-251</td>
<td>16.8 m</td>
<td>B-</td>
</tr>
</tbody>
</table>

*Dose coefficients and bioassay data for this radionuclide are given in the printed copy of this report. Data for other radionuclides listed in this table are given in the accompanying electronic annexes.

24.2. Routes of Intake

24.2.1. Inhalation
Absorption Types and parameter values
Some limited information was found on the behaviour of inhaled curium in man. Information on absorption from the respiratory tract is available from experimental studies of curium, mostly as oxides of variable stoichiometry, and for a few as chloride, nitrate and citrate. The few reported incidents of occupational curium intakes in man have clearly shown high rates of curium urinary excretion soon after intake, and studies in animals have shown that clearance from lung to blood is very significant and relatively fast (Bair, 1976; Métivier, 1988). Curium retention in lung is lower than that of plutonium, and closer to that of americium (Stather and Priest, 1977).
Reference biokinetic models were used here (i.e. by the Task Group) for the analysis of the data and the determination of absorption parameter values: the revised Human Respiratory Tract Model (ICRP, 2014), the Human Alimentary Tract Model (ICRP, 2006), the human systemic model for Am and Cm (ICRP, 1993), the Cm model for the dog of Guilmette and Mewhinney (1989), the rat model for particle transport in the respiratory tract of the Guide for the Practical Application of the ICRP Human Respiratory Tract Model (ICRP, 2002) and the function describing the whole body retention of injected Cm in rats from Ménétrier et al. (2008). Unless specific data indicated otherwise, in analyses carried out here, s_r, f_b, and s_b were fixed at the values assessed for curium below: $s_r = 0.4 \text{ d}^{-1}$, $f_b = 0.02$, and $s_b = 0 \text{ d}^{-1}$. However, as described in the general actinide section, absorption parameter values based on plutonium ($s_r = 0.4 \text{ d}^{-1}$; $f_b = 0.002$; $s_b = 0 \text{ d}^{-1}$) are applied in this document to the transplutonium elements for radiation protection purposes. Absorption parameter values and Types, and associated f_A values for particulate forms of curium, are given in Table 24.7.

Curium oxide

McClellan et al. (1972) followed the biokinetics of 244Cm in dogs for 256 d after inhalation of 244CmO$_{1.73}$ or 244CmCl$_3$ in a CsCl vector (see below). Curium was rapidly absorbed into body fluids, at a similar rate for both chemical forms, and translocated to skeleton and liver. By 16 d, lung retention was about 16% of the Initial Lung Deposit (ILD). At 64 d post-inhalation, about 11% ILD of the oxide was retained in lungs. These results were in agreement with the urinary excretion data obtained after accidental human exposure (Bernard and Poston, 1976). Analysis here of the oxide data gave $f_b = 0.03$, $s_b = 0$, $f_r = 0.8$, $s_r = 0.4 \text{ d}^{-1}$ and $s_s = 0.02 \text{ d}^{-1}$. This is consistent with assignment to Type M but close to Type F behaviour.

Sanders (1974) described two cases of occupational exposure to 244Cm. The second case was an accidental inhalation of mixed oxides of 244Cm (75% of activity) and 241Am (25% of activity) by a worker. The worker was monitored by chest measurement, urine and fecal analyses for up to 410 d, and treated with DTPA. The isotopic ratio appeared to remain constant with time in faeces and presumably in lung. According to the author and based on a model of ICRP (1959), 37% of the intake was deposited in the lung. In the first 7 d post inhalation, 1.5% ILD was transported to the rest of body, 90% ILD was excreted in faeces and 8% ILD remained in lungs. The remaining lung activity was cleared with a 28-d half-time (T_b), 96% to the rest of body, 4% to faeces. Analysis here gave $f_r = 0.03$ and $s_s = 0.02 \text{ d}^{-1}$, consistent with assignment to Type M.

Kanapilly et al. (1975) evaluated the in vitro dissolution of Cm oxides. 244Cm oxides labeled with 243Cm were prepared by heat treatment at three different temperatures to yield different oxidation states of Cm (Table 24.2). Dissolution was followed for 11 d in a standard synthetic ultra-filtrate (SUF) and four other solvents. Almost identical dissolution behaviour of the three oxides in all solvents suggested that Cm(IV) was rapidly reduced to Cm(III) which is the only stable oxidation state of Cm in aqueous systems. In SUF, the Cm oxides were nearly insoluble. The addition of DTPA and, much more, the removal of phosphate made them rapidly soluble. Rapid dissolution of Cm oxides was also observed in a slightly acidic NaCl solution. Analysis here of the dissolution of the three oxides in the five solvents gave the parameter values shown in Table 24.2. The large range of solubility depending on the solvent makes it difficult to draw general conclusions. In another study of dissolution in SUF with DTPA, Cm oxides aged for 4 weeks were observed to dissolve much faster (75% in 18 hours) than oxides that were less than 2 d old, suggesting physicochemical changes during aging.
LaBauve (1976) performed further studies that indicated a moderate increase of solubility from \(\text{CmO}_2 \) to \(\text{CmO}_{1.7} \) then to \(\text{CmO}_{1.5} \). They also observed a slow dissolution of Cm oxides in dog serum or in NaCl + Tris at pH 7.3, at a rate similar to that observed in SUF. An injection study of Cm oxides in the muscle of hamsters was performed. A comparison with the outcome of the injection study and with the inhalation study of McClellan et al. (1972) suggested that \textit{in vivo} dissolution was faster than in SUF but slower than in SUF + DTPA.

Table 24.2. Absorption parameter values for Cm oxides derived from Kanapilly et al. (1975).

<table>
<thead>
<tr>
<th>treatment temperature (°C)</th>
<th>assumed oxide form</th>
<th>solvent</th>
<th>(f_r)</th>
<th>(s_r) (d(^{-1}))</th>
<th>(s_s) (d(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>\text{CmO}_2</td>
<td>SUF</td>
<td>0.03</td>
<td>1</td>
<td>0.002</td>
</tr>
<tr>
<td>700</td>
<td>\text{CmO}_{1.7}</td>
<td>SUF</td>
<td>0.04</td>
<td>0.8</td>
<td>nd</td>
</tr>
<tr>
<td>1300</td>
<td>\text{CmO}_{1.5}</td>
<td>SUF</td>
<td>0.06</td>
<td>1</td>
<td>0.002</td>
</tr>
<tr>
<td>400</td>
<td>\text{CmO}_2</td>
<td>SUF without phosphate</td>
<td>1</td>
<td>12</td>
<td>nd</td>
</tr>
<tr>
<td>700</td>
<td>\text{CmO}_{1.7}</td>
<td>SUF without phosphate</td>
<td>1</td>
<td>14</td>
<td>nd</td>
</tr>
<tr>
<td>1300</td>
<td>\text{CmO}_{1.5}</td>
<td>SUF without phosphate</td>
<td>1</td>
<td>12</td>
<td>nd</td>
</tr>
<tr>
<td>400</td>
<td>\text{CmO}_2</td>
<td>SUF and DTPA</td>
<td>0.4(^a)</td>
<td>4(^a)</td>
<td>nd(^a,b)</td>
</tr>
<tr>
<td>700</td>
<td>\text{CmO}_{1.7}</td>
<td>SUF and DTPA</td>
<td>0.1(^a)</td>
<td>nd(^a,b)</td>
<td>nd(^a,b)</td>
</tr>
<tr>
<td>1300</td>
<td>\text{CmO}_{1.5}</td>
<td>SUF and DTPA</td>
<td>0.9</td>
<td>14</td>
<td>nd</td>
</tr>
<tr>
<td>400</td>
<td>\text{CmO}_2</td>
<td>0.15 M NaCl, pH 4</td>
<td>0.9</td>
<td>nd(^b)</td>
<td>nd(^b)</td>
</tr>
<tr>
<td>700</td>
<td>\text{CmO}_{1.7}</td>
<td>0.15 M NaCl, pH 4</td>
<td>0.9</td>
<td>nd(^b)</td>
<td>nd(^b)</td>
</tr>
<tr>
<td>1300</td>
<td>\text{CmO}_{1.5}</td>
<td>0.15 M NaCl, pH 4</td>
<td>0.7</td>
<td>nd(^b)</td>
<td>nd(^b)</td>
</tr>
<tr>
<td>400</td>
<td>\text{CmO}_2</td>
<td>SUF without phosphate and cysteine</td>
<td>0.8</td>
<td>3</td>
<td>nd(^b)</td>
</tr>
<tr>
<td>700</td>
<td>\text{CmO}_{1.7}</td>
<td>SUF without phosphate and cysteine</td>
<td>0.9</td>
<td>5</td>
<td>nd(^b)</td>
</tr>
<tr>
<td>1300</td>
<td>\text{CmO}_{1.5}</td>
<td>SUF without phosphate and cysteine</td>
<td>0.9</td>
<td>7</td>
<td>nd(^b)</td>
</tr>
</tbody>
</table>

\(^a\) The dissolution rate increases over time and would be more consistent with the alternative dissolution model involving \(s_p, s_{px} \) and \(s_t \) (ICRP, 2015)

\(^b\) nd, not determined

Craig et al. (1975, 1976) studied the distribution of \(^{244}\)Cm in dogs for 270 d after a single inhalation exposure to a \(^{244}\text{CmO}_x\) oxide at two levels of initial body burden: medium (2.6 kBq with AMAD = 0.52 \(\mu \text{m} \)) and high (15.4 kBq with AMAD = 0.47 \(\mu \text{m} \)). Urine and faeces were analysed as well as tissue distribution after sacrifice. The results were compared with those obtained after inhalation of Am and Pu oxide. Both Am and Cm were significantly more rapidly translocated to liver, skeleton and muscle than Pu. Cm moved out of the lung twice as fast as Am initially, but its distribution in tissues changed little after 30 d. At 270 d post exposure, Cm and Am distribution was similar. Analysis here gave \(f_r = 0.7 \) and \(s_r = 0.007 \text{ d}^{-1} \) for the medium exposure level, \(f_r = 0.7 \) and \(s_r = 0.004 \text{ d}^{-1} \) for the high level of exposure, the other
parameters being fixed at the default values \(s_r = 0.4 \, \text{d}^{-1} \) and \(f_b = 0.02 \). Both experiments are consistent with assignment to Type M.

(953) Sanders and Mahaffey (1978) studied the health effects of \(^{244}\text{Cm}\) oxide inhalation in rats. \(^{244}\text{Cm}\) was prepared as \(^{244}\text{CmO}_x\) with \(x \) between 1.71 and 2. Five groups of animals were exposed to increasing levels of \(^{244}\text{Cm}\) (Table 24.3) and followed up to 900 d with histopathology and radiochemistry of the lung, thoracic lymph nodes, skeleton and liver of the necropsied rats. About 75% ILD was cleared from the lung with \(T_b \) 0.5 d, ~25% with \(T_b \) 12 d, and ~2% with \(T_b \) about 1 year. Analysis here of the data for the five groups of rats gave the values of absorption parameters shown in Table 24.3. All are consistent with assignment to Type M.

Table 24.3. Aerosol characteristics and absorption parameter values for inhaled \(^{244}\text{CmO}_x\), derived from Sanders and Mahaffey (1978).

<table>
<thead>
<tr>
<th>initial alveolar deposit (kBq)</th>
<th>AMAD (µm)</th>
<th>(f_b)</th>
<th>(f_r)</th>
<th>(s_r) (d(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.68</td>
<td>0.06</td>
<td>0.8</td>
<td>nd(^a)</td>
</tr>
<tr>
<td>0.16</td>
<td>1.3</td>
<td>0.05</td>
<td>0.4</td>
<td>0.04</td>
</tr>
<tr>
<td>1.8</td>
<td>0.93</td>
<td>0.01</td>
<td>0.6</td>
<td>0.01</td>
</tr>
<tr>
<td>17</td>
<td>0.66</td>
<td>0.01</td>
<td>0.7</td>
<td>0.008</td>
</tr>
<tr>
<td>67</td>
<td>0.66</td>
<td>nd(^a)</td>
<td>0.6</td>
<td>0.02</td>
</tr>
</tbody>
</table>

\(^a\) nd : not determined

(954) Stradling et al. (1979) investigated the transfer of \(^{244}\text{Cm}\) from the rat lungs to other tissues and its excretion after administration of the dioxide as suspensions of variable particle size, with or without previous aging in water. Suspensions of \(^{244}\text{CmO}_2\) were prepared by sedimentation of particles less than about 2 µm in water and fractionation into size ranges by ultrafiltration either within a day or after 12 weeks in water. The suspensions, or a \(^{244}\text{Cm}\) citrate control, were administered to rats by pulmonary instillation. \(^{244}\text{Cm}\) content was then measured in excreta, lung and other tissues from 1 d to 1 month post-exposure. The transfer rate of \(^{244}\text{Cm}\) from lungs to blood was fairly rapid and similar for all suspensions, less than ~10% ILD remaining after 60 d. Analysis here of the data for the different suspensions gave the values of absorption parameters shown in Table 24.4. All are consistent with assignment to Type M.

Table 24.4. Particle characteristics and absorption parameter values for instilled \(^{244}\text{CmO}_2\), derived from Stradling et al. (1979). By default, \(f_b = 0.02 \) and \(s_b = 0 \) are assumed.

<table>
<thead>
<tr>
<th>age of (^{244}\text{CmO}_2) suspension</th>
<th>particle size range (µm)</th>
<th>(f_r)</th>
<th>(s_s) (d(^{-1}))</th>
<th>(s_s) (d(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 day</td>
<td>about 0.001</td>
<td>0.5</td>
<td>2</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>< 0.025</td>
<td>0.6</td>
<td>1</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>0.22 – 1.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.01</td>
</tr>
<tr>
<td>12 weeks</td>
<td>< 0.025</td>
<td>0.5</td>
<td>1</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>0.22 – 1.2</td>
<td>0.5</td>
<td>1</td>
<td>0.02</td>
</tr>
</tbody>
</table>

(955) Guilmette et al. (1984) determined the biokinetics of \(^{244}\text{Cm}\) in rats up to 32 d after inhalation of monodisperse \(^{244}\text{Cm}_2\text{O}_3\) aerosols (0.7, 1.3 or 2.6 µm AMAD) heat-treated at 1150°C. The clearance of \(^{244}\text{Cm}\) from the lung was observed to be somewhat more rapid but
similar to PuO₂ and FAP, with \(T_b \) 8, 9 and 12 days for the 0.7 \(\mu \)m, 1.3 \(\mu \)m and 2.6 \(\mu \)m particles respectively, with only a small fraction of inhaled Cm translocated to skeleton and liver. At 32 days after exposure, 56-70% of body Cm was in lung, 5-10% in liver and 14-30% in skeleton. For 2.6 \(\mu \)m particles, 2% ILD was measured in tracheobronchial lymph nodes. The analysis here of the data for the 0.7, 1.3 and 2.6 \(\mu \)m groups gave \(f_r = 0.2 \), 0.1 and 0.1 respectively and \(s_s = 0.06, 0.06 \) and 0.04 d\(^{-1}\) respectively (assuming \(f_b = 0.02 \) and \(s_r = 0.4 \) d\(^{-1}\)), indicating Type M for all particle sizes.

Rhoads et al. (1986) followed the biokinetics in rats of \(^{239}\)Pu and \(^{244}\)Cm for 120 d after inhalation individually or as a mixed oxide. Cm was cleared from lung more rapidly than Pu: ~50% with \(T_b = 3.9 \) d and ~40% with \(T_b = 31 \) d. However, Cm remained in the lungs longer when administered as a mixed oxide: ~69% with \(T_b = 5.3 \) d and ~32% with \(T_b = 76 \) d. The authors noted that the translocation of Cm to extrapulmonary tissues was greatly reduced by incorporation in the PuO₂ matrix. However, the cumulative urinary excretion was significantly higher at 7 and 120 d after inhalation of the mixed oxide than after inhalation of Cm oxide only. Overall, the data appeared to be inconsistent with the systemic model of Ménétrier et al. (2008). Therefore, a systemic model based on the injection data of Durbin et al. (1973) was applied here to the analysis of these data. This gave \(f_r = 0.6, s_r = 0.2 \) d\(^{-1}\) and \(s_s = 0.007 \) d\(^{-1}\) for Cm oxide; \(f_r = 0.2, s_r = 2 \) d\(^{-1}\) and \(s_s = 0.002 \) d\(^{-1}\) for Cm in the mixed oxide. This is consistent with assignment of both forms to Type M.

Guilmette and Kanapilly (1988) studied the tissue distribution of \(^{244}\)Cm₂O₃ (1.4 \(\mu \)m AMAD) and \(^{244}\)Cm(NO₃)₃ inhaled by dogs and observed broadly similar kinetics except for a more rapid translocation of Cm from the lung to liver and bone during the first 10-20 d after exposure to nitrate compared to oxide. The dogs were sacrificed from 4 hours to 2 years after exposure for measurement of lung, liver, skeleton, kidneys, spleen, tracheobronchial and mediastinal lymph nodes, and other tissues, along with measurement of excretion in urine and faeces. For the oxide, 78% ILD was cleared from the lung with \(T_b = 7.6 \) d, 19% with \(T_b = 99 \) d and 3% with \(T_b = 760 \) d. Most of the Cm cleared from the lung was deposited in the liver and skeleton: 1% ILD translocated to the tracheobronchial lymph nodes, and much less to the mediastinal lymph nodes. Guilmette and Mewhinney (1989) showed that models based on the dog studies of Guilmette and Kanapilly (1988) are in fairly good agreement with bioassay measurements in human accidental inhalation cases reported by Parker et al. (1960), Vaane and De Ros (1971), Sanders (1974) and Parkinson et al. (1976). Analysis here of the oxide data gave \(f_b = 0.02, s_b = 0 \) d\(^{-1}\), \(f_r = 0.6, s_r = 0.1 \) d\(^{-1}\) and \(s_s = 0.007 \) d\(^{-1}\), consistent with assignment to Type M.

Guilmette and Muggenburg (1992) investigated the efficiency of DTPA treatment after inhalation of \(^{244}\)Cm₂O₃ (0.9 \(\mu \)m AMAD) by dogs. Urinary and fecal excretions were followed up to 62 d. Before treatment, 1 hour after exposure, about 0.7% ILD had translocated from lung. By 64 d after exposure, Cm was distributed in untreated control animals between lung (40% ILD), liver (26% ILD), bone (15% ILD), tracheobronchial lymph nodes (0.3% ILD) and other soft tissues (4% ILD). Injection or infusion of DTPA reduced the Cm body burden. Cm₂O₃ appeared to dissolve faster than AmO₂ based on more rapid urinary excretion and decrease of whole-body burden in Cm exposed animals compared to Am exposed animals given the same therapy. The analysis here of Cm data for untreated animals gave \(f_r = 0.2 \) and \(s_s = 0.01 \) d\(^{-1}\), consistent with assignment to type M.

Helfinstine et al. (1992) investigated the \textit{in vitro} dissolution kinetics of Cm sesquioxide (\(^{244}\)Cm₂O₃). The amount of soluble material was determined over 7 d in a phagolysosomal simulant solvent (PSS) made of HCl aqueous solution with DTPA at a 10-1000
ratio to Cm and pH 4-6, or in cultured dog alveolar macrophages (AM). Little dissolved Cm was observed for the first 3 d. Subsequently, the dissolution rate increased significantly. After normalization to the viable cell number, approximately 45% Cm$_2$O$_3$ dissolved in AM over 7 d. In PSS, the dissolution rate increased with decreasing pH and increasing DTPA molarity, yielding up to 73% Cm$_2$O$_3$ dissolved over 7 d. The dissolution rate increasing with time cannot be well represented by the simple compartment model involving f_r, s_r and s_s and a better fit to the data was obtained here with the alternative model involving s_p, s_{pt} and s_t. The resulting absorption parameter values are summarised in Table 24.5.

<table>
<thead>
<tr>
<th>medium</th>
<th>f_r</th>
<th>s_r (d$^{-1}$)</th>
<th>s_p (d$^{-1}$)</th>
<th>s_{pt} (d$^{-1}$)</th>
<th>s_t (d$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM culture</td>
<td>1</td>
<td>0.06</td>
<td>0</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>phagolysosomal simulant solvent PSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DTPA:Cm ratio pH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>4</td>
<td>1</td>
<td>0.2</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1</td>
<td>0.09</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
<td>1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1</td>
<td>0.09</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>1</td>
<td>0.09</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1</td>
<td>0.05</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1</td>
<td>0.03</td>
<td>0.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>

(960) Lundgren et al. (1997) exposed rats by inhalation to 244Cm$_2$O$_3$ heat-treated at 1150°C (AMAD 0.87 to 1.2 µm) in order to obtain information on the α-particle dose-response. Lung, liver and skeleton burden were measured in serially sacrificed rats and in rats that died spontaneously up to 1120 d post-exposure. The lung retention of 244Cm differed between rats with ILD of less or more than 130 kBq kg$^{-1}$ body weight, with more rapid clearance from lungs of the rats that died early, with acute pulmonary injury probably also causing increased vascular permeability. The retention of 244Cm in the lung of rats with ILD < 130 kBq kg$^{-1}$ was fit by a three-component exponential function: 92.5% with T_b 11 d, 7.2% with T_b 100 d and 0.3% with T_b > 1000 d. For rats with greater ILD, lung retention was represented by 95.7% with T_b 3.1 d and 4.3% with T_b 120 d. The early clearance of 244Cm from the lungs of rats with ILD < 130 kBq kg$^{-1}$ and its translocation to liver were similar to that reported by Guilmette et al. (1984) but half as much of the ILD was translocated to the skeleton. Cm$_2$O$_3$ appeared to the authors to be less soluble than other Cm oxides used in other studies. Analysis here of data from rats having ILD < 130 kBq kg$^{-1}$ gave $f_b = 0.01, f_r = 0.4$, and $s_s = 0.007$ d$^{-1}$. This is consistent with assignment to Type M.

(961) Absorption parameter values for curium oxides based on in vivo data are available from several studies. Most results are consistent with assignment to Type M. Overall, Cm oxides appear to be more soluble than americium oxide and much more soluble than plutonium oxide. Some values are very different from the default values for Type M. The estimated values...
of \(f_r \) range from 0.02 to 0.8 (median 0.5), well above the default value for Type M (0.2). Estimated values of \(s_r \) range from 0.1 to 14 d\(^{-1}\) (median 1.5 d\(^{-1}\)), compatible with the specific value for curium (0.4 d\(^{-1}\)). Estimated values of \(s_s \) range from 0.002 to 0.06 d\(^{-1}\) (median 0.01 d\(^{-1}\)), above the default value for Type M (0.005 d\(^{-1}\)). Inhalation exposure to curium oxide is not unlikely. Specific parameter values of \(f_r = 0.5 \) \(s_r = 0.4 \) d\(^{-1}\) and \(s_s = 0.01 \) d\(^{-1}\) are used here for curium oxide. It is noted however that the oxidation state, the age of the compound, or the association with plutonium or americium oxide may influence the dissolution kinetics of curium oxide.

Curium nitrate

Nénot et al. (1972) investigated the transfer of actinides to rat bone after intramuscular injection or inhalation. The lung burden and the skeletal burden as well as the urinary excretion of \(^{242}\)Cm were followed for three months after inhalation of \(^{242}\)Cm nitrate. Cm was cleared from lung significantly faster than Pu and slightly faster than Am. Analysis here of the Cm inhalation data gave \(f_r = 0.7, s_r = 0.2 \) d\(^{-1}\) and \(s_s = 0.03 \) d\(^{-1}\). This indicates Type F or Type M behaviour.

Crawley and Goddard (1976) studied the tissue distribution and excretion of \(^{241}\)Am and \(^{242}\)Cm in citrate or nitrate solutions one week after administration to rats by instillation into the nasopharyngeal (NP), tracheobronchial (TB) and pulmonary regions of the respiratory system. At 7 d, 63% initial pulmonary deposit of \(^{242}\)Cm nitrate was in lungs while 20% had been absorbed. Following deposition in the NP or TB region, there was less retention in both lung and extrapulmonary tissues, because of faster mucociliary clearance. The analysis here of the data from Cm nitrate deposited in the pulmonary region gave \(f_r = 0.2 \). The limited data available prevented reliable estimates of \(s_r \) and \(s_s \).

Stather and Priest (1977) studied the distribution of actinides in rat tissues up to 5 months after pulmonary instillation of the nitrates. After administration of a mixture of \(^{241}\)Am and \(^{242}\)Cm nitrates, similar lung clearance of Am and Cm was observed, with ~70% ILD translocated to extra-pulmonary tissues by one week, 88% by one month and 98% by 5 months. The authors noted the possibility that mixed Am and Cm hydroxide polymers formed in the lungs may be cleared at a rate dependent on the properties of the mixed hydroxide rather than those of Am or Cm in isolation. Analysis here of Cm data gave \(f_r = 0.5 \) and \(s_s = 0.01 \) d\(^{-1}\), consistent with assignment to Type M.

As discussed above, Guilmette and Kanapilly (1988) studied the tissue distribution of \(^{244}\)Cm\(_2\)O\(_3\) and \(^{244}\)Cm(NO\(_3\))\(_3\) inhaled by dogs. For the nitrate, 42% ILD was cleared from the lung with \(T_b = 0.63 \) d, 48% with \(T_b = 24 \) d and 10% with \(T_b = 365 \) d. Most of the Cm cleared from the lung was deposited in the liver and skeleton. About 1% ILD translocated to the tracheobronchial lymph nodes, and about 0.1% ILD to the mediastinal lymph nodes. Analysis here of the nitrate data gave \(f_b = 0.02, f_r = 0.6, s_r = 0.5 \) d\(^{-1}\) and \(s_s = 0.005 \) d\(^{-1}\). This is consistent with assignment to Type M.

Absorption parameter values for curium nitrate based on *in vivo* data are available from a few studies. The results are consistent with assignment to Type M but some values are very different from the default values for Type M. The estimated values of \(f_r \) range from 0.2 to 0.7 (median 0.5), above the default value for Type M (0.2). The estimated values of \(s_r \) are 0.15 and 0.5 d\(^{-1}\) from only two studies, similar to the specific value for curium (0.4 d\(^{-1}\)). Estimated values of \(s_s \) range from 0.005 to 0.03 d\(^{-1}\) (median 0.01 d\(^{-1}\)) above the default value for Type M (0.005 d\(^{-1}\)) and similar to curium oxides. Inhalation exposure to curium nitrate is not unlikely.
The same specific parameter values of \(f_r = 0.5 \), \(s_r = 0.4 \text{ d}^{-1} \) and \(s_s = 0.01 \text{ d}^{-1} \) are used here for curium nitrate as for curium oxide.

Curium chloride

(967) As described above, McClellan et al. (1972) exposed 24 dogs to aerosols of \(^{244}\text{CmCl}_3 \) in a CsCl vector or \(^{244}\text{CmO}_{1.73} \) by inhalation. Cm was rapidly absorbed, at a similar rate from both chemical forms, into body fluids and translocated to skeleton and liver. By 16 d, lung retention was \(\sim 16\% \) ILD, and at 256 d, \(\sim 3\% \) ILD. Analysis here of the chloride data gave \(f_b = 0.03 \), \(f_r = 0.8 \), \(s_r = 0.4 \text{ d}^{-1} \) and \(s_s = 0.01 \text{ d}^{-1} \). This is consistent with assignment to Type M but close to Type F behaviour.

(968) The absorption parameter values for curium chloride were derived from a single *in vivo* study. Moreover, inhalation exposure to curium chloride is unlikely. However its absorption kinetics was found to be similar to that of curium oxide. Therefore the same specific parameter values of \(f_r = 0.5 \), \(s_r = 0.4 \text{ d}^{-1} \) and \(s_s = 0.01 \text{ d}^{-1} \) are used here for curium chloride as for curium oxide and nitrate.

Curium citrate

(969) Crawley and Goddard (1976) followed the tissue distribution and excretion of \(^{241}\text{Am} \) and \(^{244}\text{Cm} \) administered either as nitrates or citrates to rats by instillation into the NP, TB and pulmonary regions of the respiratory system at 7 d. At one week after instillation of \(^{242}\text{Cm} \) citrate into the pulmonary region, only 8% ILD of \(^{242}\text{Cm} \) was retained in lungs while more than 70% ILD had been absorbed to blood, much more than for nitrate (\(\sim 20\% \) ILD, see above). This is consistent with assignment to Type F. Following deposition in the NP or TB region, there was less retention in both lung and extrapulmonary tissues, as a consequence of faster mucociliary clearance. Analysis carried out here of data on citrate deposited in the pulmonary region gave \(f_r = 1 \). The limited data available prevented reliable estimates of \(s_r \) and \(s_s \), but the results indicate assignment to Type F.

(970) As described above, Stradling et al. (1979) investigated the clearance of \(\text{CmO}_2 \) from the lungs of rats and used Cm citrate as a control. Analysis here of the citrate data gave \(f_r = 0.9 \), \(s_r = 10 \text{ d}^{-1} \), \(s_s = 0.03 \text{ d}^{-1} \), consistent with assignment to Type F.

(971) Although absorption parameter values for curium citrate based on *in vivo* data were derived, inhalation exposure to it is unlikely. Therefore specific parameter values for curium citrate are not used here. Instead, it is assigned to Type F. However, the results contributed to the selection of the rapid dissolution rate for curium.

Unspecified compounds

(972) Sanders (1974) described two cases of occupational exposure to \(^{244}\text{Cm} \). In the first case, a worker was exposed to an unknown Cm compound from contaminated waste. *In vivo* measurement indicated a drop of chest activity of 64\% from 4.5 h to 4 d after the incident. DTPA treatment was administered; urine samples were collected for 247 d and fecal samples for 73 d. Overall the Cm compound appeared to be relatively soluble. Although the interpretation of the data was complicated by the DTPA treatment, analysis here suggested \(f_r = 1 \) and Type F behaviour.

(973) Bernard and Poston (1976) followed four workers who accidently inhaled \(^{244}\text{Cm} \), by urine, faeces and chest measurements for one or two weeks after intake. The excretion kinetics
was found to be broadly consistent with that of dogs exposed to Cm oxide and chloride (McClellan et al., 1972, see above). Analysis here of the measurement results from two of the workers with positive chest counting gave \(f_r = 0.8 \) and \(f_r = 0.3 \). The rather steady chest retention of the second worker suggested a value of \(s_r = 0.3 \text{ d}^{-1} \). These values are consistent with assignment to type M.

(974) Parkinson et al. (1976) reported two cases of \(^{244}\text{Cm}\) inhalation by workers involved in the same incident. The chemical form was likely to be a mixture of chloride, nitrate and oxide, possibly together with hydrolysis products of the chloride and nitrate. Body \(^{244}\text{Cm}\) was measured by chest counting and in faecal and urinary samples collected up to one year after the incident. The inhaled Cm aerosols were observed to be largely soluble. The chest activity was cleared relatively rapidly, as 70% with \(T_b = 2.3 \text{ d} \) and 30% with \(T_b = 50 \text{ d} \) in the first case; 80% with \(T_b = 1 \text{ d} \) and 20% with \(T_b = 50 \text{ d} \) in the second case. Analysis here gave \(f_r = 0.9 \) for both cases, and the early data from the first case suggested \(s_r = 0.2 \text{ d}^{-1} \). This indicates Type F behaviour.

Rapid dissolution rate for curium

(975) All chemical forms of curium appeared at least relatively soluble after inhalation. In 14 relevant studies of Cm compounds, sufficient early retention data were available to allow an estimate of the rapid dissolution rate \(s_r \). The results of analyses here (obtained by fitting models to the experimental data) are summarised in Table 24.6: values of \(s_r \) range from 0.1 to 10 \text{ d}^{-1} \) with a median of 0.4 \text{ d}^{-1}. Consequently a default value of \(s_r = 0.4 \text{ d}^{-1} \) is proposed for the rapid dissolution rate of curium compounds, in analysing experimental data.

Table 24.6. Case-specific absorption parameter values estimated here for soluble compounds in in vivo studies reporting early retention data.

<table>
<thead>
<tr>
<th>Inhaled particulate materials</th>
<th>Animal species</th>
<th>Absorption parameter values</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(f_r)</td>
<td>(s_r) (\text{d}^{-1})</td>
</tr>
<tr>
<td>citrate</td>
<td>rat</td>
<td>0.9</td>
<td>10</td>
</tr>
<tr>
<td>chloride</td>
<td>dog</td>
<td>0.8</td>
<td>0.4</td>
</tr>
<tr>
<td>nitrate</td>
<td>rat</td>
<td>0.7</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>dog</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>oxide, (\text{Cm}_2\text{O}_3)</td>
<td>dog</td>
<td>0.6</td>
<td>0.1</td>
</tr>
<tr>
<td>oxide, (\text{CmO}_1\text{.73})</td>
<td>dog</td>
<td>0.8</td>
<td>0.4</td>
</tr>
<tr>
<td>oxide, (\text{CmO}_2)</td>
<td>rat</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5</td>
<td>1</td>
</tr>
</tbody>
</table>
Extent of binding of curium to the respiratory tract

Studies of curium deposited in the respiratory tract in most chemical forms showed rapid or moderately rapid dissolution of most of the ILD. However, the studies of longer duration (>250 d) all show lung retention of a small amount: 0.3 – 4% ILD. McClellan et al. (1972) observed that about 3 – 3.5% ILD was still retained in dog lungs 256 d after inhalation. Sanders and Mahaffey (1978) observed that 0.2% to 1.8% ILD was retained in rat lungs after about 800 d. Similarly, Guilmette and Kanapilly (1988) observed that about 2% ILD was present in dog lung at 2 years after exposure. Lafuma et al. (1974) concluded from autoradiographic studies that Cm nitrate was widely dispersed in the rat lung at 20 d post-exposure, generating mostly single α tracks and very few particle-like clusters. Sanders and Mahaffey (1978) came to the same conclusion from autoradiographs of rat lung taken immediately after inhalation exposure, and up to 2 years later. Lundgren et al. (1997) observed in a rat life-span study that a small fraction of the ILD (about 0.3%) was retained for an indefinite time and considered that it was probably solubilised curium bound to connective tissue in the lungs, as observed in dogs exposed to Am nitrate (Taya et al. 1994).

Based on these considerations, the bound fraction for curium is assessed to be $f_b = 0.02$. Since there is no indication of a non-zero clearance rate of the bound fraction, this is considered to be $s_b = 0 \text{ d}^{-1}$. There is no evidence of long-term retention of curium deposited in relatively soluble form in the ET, BB or bb regions. Such a small long-term bound state in the alveolar region results in an additional contribution to the committed equivalent dose coefficient for the lungs from inhaled ^{244}Cm of about 270%, about 30%, about 1% for Absorption Types F, M, S respectively, and about 90% for Cm oxide, nitrate and chloride.

Nevertheless, as described in the general actinide section, absorption parameter values for the bound state based on plutonium are applied in this document to the transplutonium elements for radiation protection purposes. Thus, a bound fraction $f_b = 0.002$ and a rate of uptake $s_b = 0 \text{ d}^{-1}$, are applied throughout the respiratory tract except in the ET$_1$ region.

Table 24.7. Absorption parameter values for inhaled and ingested curium.

<table>
<thead>
<tr>
<th>Inhaled particulate materials</th>
<th>Absorption parameter</th>
<th>Absorption from the alimentary</th>
</tr>
</thead>
<tbody>
<tr>
<td>oxide rat</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>unspecified human</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>0.2</td>
</tr>
<tr>
<td>Median</td>
<td>0.6</td>
<td>0.40</td>
</tr>
<tr>
<td>Geometric mean</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>Min - max</td>
<td>0.3 – 0.9</td>
<td>0.1 - 10</td>
</tr>
</tbody>
</table>
Specific parameter values\(^c\)

<table>
<thead>
<tr>
<th></th>
<th>(f_i)</th>
<th>(s_r) (d(^{-1}))</th>
<th>(s_s) (d(^{-1}))</th>
<th>tract, (f_A) (^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curium oxide, nitrate and chloride</td>
<td>0.5</td>
<td>0.4</td>
<td>0.01</td>
<td>3 \times 10^{-4}</td>
</tr>
</tbody>
</table>

Default parameter values\(^{d,e}\)

<table>
<thead>
<tr>
<th>Absorption Type</th>
<th>Assigned forms</th>
<th>(f_A)</th>
<th>(f_r)</th>
<th>(s_r)</th>
<th>(f_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>Citrate</td>
<td>1</td>
<td>0.4</td>
<td>–</td>
<td>5 \times 10^{-4}</td>
</tr>
<tr>
<td>M(^e)</td>
<td></td>
<td>0.2</td>
<td>0.4</td>
<td>0.005</td>
<td>1 \times 10^{-4}</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>0.01</td>
<td>0.4</td>
<td>1 \times 10^{-4}</td>
<td>5 \times 10^{-6}</td>
</tr>
</tbody>
</table>

Ingested material\(^f\)

| All compounds | 5 \times 10^{-4} |

24.2.2. Ingestion

Popplewell et al (1991) measured the absorption of \(^{242}\)Cm as a citrate in five adult male volunteers by comparing urinary excretion after oral and intravenous administration. The solutions were ingested with a mid-day meal. A mean absorption value of 2 \times 10^{-4} was obtained for Cm(III) with a range of 10^{-4} to 3 \times 10^{-4}. Curium absorption has been measured in adult rats and guinea pigs. Values for rats were in the range 2-3 \times 10^{-4} for \(^{244}\)Cm nitrate (Sullivan, 1980; Sullivan et al., 1985) 3-7 \times 10^{-4} for \(^{244}\)Cm citrate (Semenov et al., 1973; Sullivan et al., 1985) and 3-12 \times 10^{-4} for \(^{244}\)Cm oxide (Sullivan, 1980). Absorption of curium nitrate was increased by a factor 3 to 6 by fasting and oxidizing agents such as ferric iron and quinhydrone (Sullivan et al., 1986). In guinea pigs given \(^{242}\)Cm citrate, absorption was about 10^{-4} (Naylor et al., 1991).
In Publication 30 (ICRP, 1979), an absorption value of 5×10^{-4} was recommended by analogy with Am. In Publication 48 (ICRP, 1986), a general value of 1×10^{-3} for actinides was used. However, in this report available data provided a sufficient basis for the use of a general value of 5×10^{-4} for all actinides other than U.

An f_A value of 5×10^{-4} is adopted here for all chemical forms of Cm.

24.2.3. Systemic distribution, retention and excretion of curium

24.2.3.1. Data

In five healthy human subjects administered 242Cm by intravenous injection, urinary excretion accounted for 4.5-6% of the injected amount during the first day and 7-10% during the first week after injection (Popplewell et al., 1991). Similar urinary excretion rates during these time periods were observed in baboons (Lo Sasso et al., 1981) and beagles (Lloyd et al., 1974) injected with curium isotopes.

The rate of urinary excretion of 244Cm was determined over periods of about five months in two workers who were exposed at different times to acidic solutions of 244Cm(NO$_3$)$_3$, one by puncture wound and the other by acid burn of the skin (Parkinson et al., 1980). The two subjects showed similar relative urinary excretion rates during this period. The rate of decline of urinary curium during the first week after exposure was similar to that determined in the human injection study by Popplewell et al. (1991).

Data from the animal studies indicate that the initial distribution and rate of excretion of curium conform to the general pattern determined for other actinide elements, excluding uranium. That is, a substantial portion of the injected or absorbed curium deposits in the liver and skeleton, and biological removal from the body is relatively slow. In beagles receiving 243,244Cm citrate by intravenous injection, about 35% of injected curium was found in the liver and about 53% in non-liver tissues, mainly skeleton, at 1 wk after injection (Lloyd et al., 1974). In beagles exposed to aerosols of 244CmCl$_3$ or 244CmO$_{1.73}$, the liver and skeleton contained approximately 30% and 45%, respectively, of the initial lung burden at 256 days after inhalation (McClellan et al., 1972). These data suggest relatively long retention of curium in the liver and skeleton. In another study of beagles exposed by inhalation to 244CmO$_x$, the liver contained about 44% and the skeleton about 33% of systemic 244Cm at 270 d after inhalation (Craig et al., 1976). In baboons receiving 243,244Cm citrate by intravenous injection, about 20% of injected curium deposited in the liver and 60% in the skeleton (Lo Sasso et al., 1981).

Data on laboratory animals indicate that curium is tenaciously retained in the skeleton. The rate of loss of curium from the liver is species dependent, with half-times of a few days in rats (Durbin, 1973) and a few weeks in baboons (Lo Sasso et al., 1981) but apparently much longer retention in the liver in dogs (McClellan et al., 1972; Guilmette and Mewhinny, 1989). Based on comparative human and animal data on other actinide or lanthanide elements, it seems reasonable to assume that the pattern of retention of curium in the human liver is broadly similar to that in dogs.

Results of experimental studies on rats and other animal species indicate that the biological behavior of curium is similar to that of Am. In an investigation of the transport of different actinides in the blood of rats, Turner and Taylor (1968) observed virtually identical rates of circulatory clearance of 244Cm and 241Am during the first day after intravenous injection of 244Cm nitrate, 241Am nitrate, or 241Am citrate. In rats receiving intramuscular injection of relatively soluble forms of 241Am and 242Cm, similar initial distributions and nearly identical
patterns of excretion of these radionuclides over a period of several months were observed (Scott et al., 1948, 1949; Durbin et al., 1969; Durbin, 1973). In rats injected with 241Am citrate or 242Cm citrate, the concentration of 242Cm at 6 d after administration was virtually the same as that of 241Am in all measured tissues (skeleton, liver, spleen, kidneys, lung, thyroid, adrenals, ovaries), but chelation therapy appeared to be slightly more effective for 242Cm than 241Am (Seidel and Volf, 1972). Stather and Priest (1977) observed similar tissue distributions of 241Am and 242Cm in adult rats at 1 wk, 1 mo, and 5 mo after pulmonary intubation of these radionuclides as nitrates, but 242Cm appeared to be lost from the body at a slightly higher rate than 241Am at 1-5 mo after administration. Crawley and Goddard (1976) found virtually identical systemic distribution and retention of americium and curium in rats during the first week after intubation of these elements into each of three regions of the lung. Nenot et al. (1972) observed similar behavior of 241Am and 242Cm in rats after administration by inhalation or intramuscular injection of these radionuclides as nitrates, with regard to cumulative urinary excretion, levels of uptake and retention by bone, and sites of binding in bone. In a study of comparative retention of bone-seeking radionuclides in rats, Taylor (1983) found that uptake and long-term retention of 244Cm in bone was similar to that of 241Am. Results of a series of studies at the University of Utah (Lloyd et al., 1970, 1974; Atherton et al., 1973; Bruenger et al., 1976) indicate that the biokinetics of 243,244Cm in beagles is similar but not identical to that of 241Am over the first 3 wk after intravenous injection, the most important differences being that the observed liver-to-skeleton concentration ratio and urinary-to-fecal excretion ratio were both higher for 241Am than 243,244Cm. By contrast, data of Craig et al. (1976) indicate that the time-dependent division of 244Cm between liver and skeleton in beagles is roughly the same as that of 241Am at 10-270 d after inhalation of 241AmO$_2$ or 244CmO$_x$ aerosols. In an investigation of the biological behavior of inhaled 244Cm compounds in beagles, Guilmette and Mewhinney (1989) found that a biokinetic model for Am developed earlier from data on inhaled 241AmO$_2$ in beagles (Mewhinney and Griffith, 1983) applied nearly equally well to 244Cm with regard to the behavior of absorbed activity. To summarise, results of a variety of experimental studies on laboratory animals indicate that the chemically similar elements americium and curium are also close physiological analogues. Although quantitative differences in the biokinetics of systemic americium and curium have been observed in some studies, such differences generally have not been statistically significant and in most cases are contradicted by results of separate investigations. In this report, the systemic biokinetic model adopted for americium is also applied to curium.

24.2.3.2. Biokinetic model

The biokinetic model for systemic curium applied in this report is described in Section 18.2.3.

24.2.3.3. Treatment of progeny

The treatment of radioactive progeny of curium produced in systemic compartments or absorbed to blood after production in the respiratory or gastrointestinal tract is described in Section 18.2.4.

24.3. Individual monitoring
Measurements of ^{242}Cm concentrations in urine and faeces are used to determine intakes of the radionuclide for routine monitoring. The main technique used for \textit{in vitro} bioassay is alpha spectrometry.

Table 24.8. Monitoring techniques for ^{242}Cm.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Monitoring Technique</th>
<th>Method of Measurement</th>
<th>Typical Detection Limit</th>
<th>Achievable detection limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{242}Cm</td>
<td>Urine Bioassay</td>
<td>α spectrometry</td>
<td>0.2 mBq/L</td>
<td>0.05 mBq/L</td>
</tr>
<tr>
<td>^{242}Cm</td>
<td>Faecal Bioassay</td>
<td>α spectrometry</td>
<td>0.2 mBq/24h</td>
<td>0.05 mBq/24h</td>
</tr>
</tbody>
</table>

Measurements of ^{243}Cm concentrations in urine and faeces are used to determine intakes of the radionuclide for routine monitoring. The main technique used for \textit{in vitro} bioassay is alpha spectrometry. \textit{In vivo} lung measurement of ^{243}Cm may allow evaluating the intake of radionuclide if the measurement system is sensitive enough. The main technique for \textit{in vivo} measurement is gamma spectrometry.

Table 24.9. Monitoring techniques for ^{243}Cm.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Monitoring Technique</th>
<th>Method of Measurement</th>
<th>Typical Detection Limit</th>
<th>Achievable detection limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{243}Cm</td>
<td>Urine Bioassay</td>
<td>α spectrometry</td>
<td>0.2 mBq/L</td>
<td>0.05 mBq/L</td>
</tr>
<tr>
<td>^{243}Cm</td>
<td>Faecal Bioassay</td>
<td>α spectrometry</td>
<td>0.2 mBq/24h</td>
<td>0.05 mBq/24h</td>
</tr>
<tr>
<td>^{243}Cm</td>
<td>Lung Measurementa</td>
<td>γ-ray spectrometry</td>
<td>27 Bq</td>
<td></td>
</tr>
</tbody>
</table>

a Measurement system comprised of two Broad Energy Germanium Detectors (BEGe), counting time of 36 minutes and chest wall thickness of 2.54 cm.
Measurements of 244Cm concentrations in urine and faeces are used to determine intakes of the radionuclide for routine monitoring. The main techniques used for \textit{in vitro} bioassay are alpha spectrometry and ICP-MS; which is the more sensitive and preferable technique to be applied.

Table 24.10. Monitoring techniques for 244Cm.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Monitoring Technique</th>
<th>Method of Measurement</th>
<th>Typical Detection Limit</th>
<th>Achievable detection limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>244Cm</td>
<td>Urine Bioassay</td>
<td>α spectrometry</td>
<td>0.3 mBq/L</td>
<td>0.05 mBq/L</td>
</tr>
<tr>
<td>244Cm</td>
<td>Urine Bioassay</td>
<td>ICP-MSa</td>
<td>0.1×10^{-15} g/L</td>
<td>1×10^{-15} g/L</td>
</tr>
<tr>
<td>244Cm</td>
<td>Faecal Bioassay</td>
<td>α spectrometry</td>
<td>2 mBq/24h</td>
<td>0.5 mBq/24h</td>
</tr>
</tbody>
</table>

a Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

Measurement of 248Cm concentrations in urine is used to determine intakes of the radionuclide for routine monitoring. The main technique used for urinalysis is alpha spectrometry.

Table 24.11. Monitoring techniques for 248Cm.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Monitoring Technique</th>
<th>Method of Measurement</th>
<th>Typical Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>248Cm</td>
<td>Urine Bioassay</td>
<td>α spectrometry</td>
<td>0.2 mBq/L</td>
</tr>
<tr>
<td>248Cm</td>
<td>Faecal Bioassay</td>
<td>α spectrometry</td>
<td>0.2 mBq/24h</td>
</tr>
</tbody>
</table>
24.4. Dosimetric data for curium

Dosimetric data will be provided in the final version of the document.

REFERENCES

McClellan, R. O., Boyd, H. A., Gallegos, A. F., Thomas, R. G., 1972. Retention and distribution of 244Cm following inhalation of 244CmCl$_3$ and 244CmO$_{1.73}$ by beagle dogs. Health Phys. 22, 877–885.

Rhoads, K., Killand, B. W., Mahaffey, J. A., Sanders, C. L., 1986. Lung clearance and translocation of 239Pu and 244Cm in rats following inhalation individually or as a mixed oxide. Health Phys. 51, 633–640.

25. BERKELIUM (Z=97)

25.1. Chemical Forms in the Workplace

Berkelium is an actinide which occurs mainly in oxidation state III and IV. Lanthanides such as Gd(III) or Eu(III) and Am(III) are good chemical analogues of Bk (III). Berkelium has no significant industrial use and may be encountered in a number of chemical forms, including oxides (Bk$_2$O$_3$, BkO$_2$), chlorides and nitrates.

Berkelium-249 is synthesised by irradiation of curium in dedicated high-flux neutron reactors, and 247Bk results from the irradiation of 244Cm with high-energy alpha particles.

Table 25.1. Isotopes of berkelium addressed in this report.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Physical half-life</th>
<th>Decay mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bk-245</td>
<td>4.94 d</td>
<td>EC, A</td>
</tr>
<tr>
<td>Bk-246</td>
<td>1.80 d</td>
<td>EC</td>
</tr>
<tr>
<td>Bk-247</td>
<td>1.38E+3 y</td>
<td>A</td>
</tr>
<tr>
<td>Bk-248m</td>
<td>23.7 h</td>
<td>B-, EC</td>
</tr>
<tr>
<td>Bk-249a</td>
<td>330 d</td>
<td>B-, A</td>
</tr>
<tr>
<td>Bk-250</td>
<td>3.212 h</td>
<td>B-</td>
</tr>
<tr>
<td>Bk-251</td>
<td>55.6 m</td>
<td>B-</td>
</tr>
</tbody>
</table>

*Dose coefficients and bioassay data for this radionuclide are given in the printed copy of this report. Data for other radionuclides listed in this table are given in the accompanying electronic annexes.

25.2. Routes of Intake

25.2.1. Inhalation

Absorption Types and parameter values

Limited information is available on the biokinetics of inhaled berkelium in an occupational contamination case. Reference biokinetic models were used here (i.e. by the Task Group) for the analysis of the data and the determination of absorption parameter values: the revised Human Respiratory Tract Model (ICRP, 2015), the Human Alimentary Tract Model (ICRP, 2006), the human systemic model for berkelium described in Publication 30 (ICRP, 1988). The bound state parameters were fixed at default values, $f_b = 0.002$, $s_b = 0$ d$^{-1}$ as explained below.

As described in the general actinide section, absorption parameter values based on plutonium ($s_r = 0.4$ d$^{-1}$; $f_b = 0.002$; $s_b = 0$ d$^{-1}$) are applied in this document to the transplutonium elements for radiation protection purposes. Absorption parameter values and Types, and associated f_A values for particulate forms of berkelium, are given in Table 25.2.

Berkelium oxide

Rundo and Sedlet (1973) reported a case of accidental inhalation exposure to a mixture of 249Cf and 249Bk, which became airborne when ignited on a tantalum disc, and so
probably consisted of oxides. (See also the californium section in this report.) Berkelium-249 is principally a beta emitter and was not directly measured in the body. Its biokinetics was studied by excretion analysis over the first year after intake. Except for an initially rapid clearance in faeces, the urinary and faecal excretion rate of both radionuclides increased with time for 2-3 months after intake and then declined. The non-monotonic pattern of urinary excretion presumably reflects an increasing rate of dissolution of the inhaled aerosol in the lungs that can be described by the dissolution model shown in Fig. 6(b) of OIR Part 1 (ICRP, 2014). Analysis here gave $s_p = 0$, $s_{pt} = 0.001 \text{ d}^{-1}$ and $s_t = 0.06 \text{ d}^{-1}$. Considering, for simplicity, only absorption in the absence of particle transport, these parameter values would indicate a long-term half-time of about 700 d. In the absence of particle transport, 98% ILD and 85% ILD of berkelium oxide would be retained in lungs at 30 d and 180 d respectively after intake. This suggests assignment to absorption Type S but very close to the criterion for Type M.

(1003) Absorption parameter values for berkelium oxide based on in vivo data are available from only one study. Berkelium oxide appears to be less soluble than californium oxide. Inhalation exposure to it is unlikely. Therefore specific parameter values for berkelium oxide are not used here. Instead, it is assigned to Type S.

Rapid dissolution rate for berkelium

(1004) The study of inhaled berkelium oxide indicates that its early absorption is slow. However, information is too limited to assess element specific parameter values. As described in the general actinide section, the value based on plutonium ($s_t = 0.4 \text{ d}^{-1}$) is applied in this document to the transplutonium elements for radiation protection purposes. Because it is lower than the general default value of 3 d$^{-1}$ for Type M and S materials, it is also applied to Type M and S forms of berkelium.

Extent of binding of berkelium to the respiratory tract

(1005) There is no specific information on berkelium binding to the respiratory tract. As described in the general actinide section, absorption parameter values for the bound state based on plutonium are applied in this document to the transplutonium elements. Thus, a bound fraction $f_b = 0.002$ and a rate of uptake $s_b = 0 \text{ d}^{-1}$, are applied throughout the respiratory tract except in the ET$_1$ region.

Table 25.2. Absorption parameter values for inhaled and ingested berkelium.

<table>
<thead>
<tr>
<th>Inhaled particulate materials</th>
<th>Absorption parameter valuesa</th>
<th>Absorption from the alimentary tract, f_A^b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorption Type</td>
<td>f_t</td>
<td>s_t (d$^{-1}$)</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>0.4</td>
</tr>
<tr>
<td>Mc</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>S berkelium oxide</td>
<td>0.01</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Ingested materiald

| All compounds | 5×10^{-4} |
a It is assumed that for berkelium a bound fraction $f_b = 0.002$ with $s_b = 0 \text{ d}^{-1}$ is applied throughout the respiratory tract except in the ET$_1$ region. The values of s_i for Type F, M and S forms of berkelium (0.4 d$^{-1}$, respectively) are element-specific.

b For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the alimentary tract, the default f_A values for inhaled materials are applied: i.e., the product of f_i for the absorption Type (or specific value where given) and the f_A value for ingested soluble forms of berkelium (5×10^{-4}).

c Default Type M is recommended for use in the absence of specific information on which the exposure material can be assigned to an Absorption Type, e.g. if the form is unknown, or if the form is known but there is no information available on the absorption of that form from the respiratory tract.

d Activity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject to reabsorption to blood. The default absorption fraction f_A for the secreted activity is the reference $f_A (=5 \times 10^{-4})$ for ingestion of the radionuclide.

25.2.2. Ingestion

(1006) An early study by Hungate (1972) indicated that fractional absorption of intragastrically administered 248Bk chloride in the rat is about 1×10^{-4}.

(1007) In Publication 30 Part 4 (ICRP, 1988) and Publication 48 (1986) an absorption value of 1×10^{-3} for berkelium was used. However, in this report available data provided a sufficient basis for the use of a general value of 5×10^{-4} for all actinides other than U.

(1008) An f_A value of 5×10^{-4} is adopted here for all chemical forms of berkelium.

25.2.3. Systemic distribution, retention and excretion of berkelium

25.2.3.1. Data

(1009) The biokinetics of Bk has been studied in rats (Hungate et al., 1972; Zalikin et al., 1984; Zalikin and Nismov, 1988), beagles (Taylor et al., 1972), and to a limited extent in accidentally exposed human subjects (Rundo and Sedlet, 1973). The data for human subjects reveal little about the systemic behavior of Bk. Comparative data for Bk and Es in laboratory animals indicate that these elements have broadly similar biokinetics, but Bk has a lower rate of urinary excretion, lower deposition in the skeleton, greater deposition in the liver, and perhaps greater deposition in the kidneys than Es.

(1010) Following intravenous administration of 249Bk and 253Es to rats, about 8% of injected 249Bk was excreted in urine during the first day, compared with about 35% of injected 253Es (Hungate et al., 1972). The urinary excretion rate of Bk declined more slowly than that of Es. After the first day or two, the rate of faecal excretion of 249Bk exceeded its urinary excretion rate. Total excretion of 249Bk over the first 3 wk amounted to roughly 20% of the injected amount. The liver content of 249Bk decreased from about 23% at 4 h to 3% at 21 d. During the same period the skeletal content, estimated as 20 times the content of one femur, increased from about 30% to 38% of the injected amount. Equilibrium levels in bone appeared to be achieved more slowly for Bk than for Es, possibly due to differences in initial binding of the two elements to blood components.

(1011) Taylor et al. (1972) found that the microscopic distributions of 249Bk and 249Cf in the soft tissues of beagles at 1-3 wk following intravenous administration of a citrate solution were similar to the distribution of 241Am. Relatively high concentrations of these radionuclides were found in the hepatic cells of liver, glomeruli of kidneys, interfollicular region of the thyroid, the cartilaginous tissues of the lung, and the media of the smaller arterioles of most organs. With the exception of the liver, most of the sites of deposition in soft tissues were extracellular and associated with connective tissue.
Smith (1972) concluded from studies of decorporation of internally deposited transuranics in rats that berkelium, einsteinium, and californium are similar in their in vivo solubility characteristics, translocation rates in the body, and response to chelation therapy following deposition in liver, kidneys, bone, and muscle. Following intraperitoneal administration of ^{249}Bk nitrate to rats, activity cleared slowly from blood and deposited primarily in the skeleton (up to ~40%) and liver (~18%) (Zalikin et al., 1984). Activity concentrations initially decreased in the order adrenal glands > liver > spleen > kidneys > osseous tissues. Over the first 30 d, about 18% of the administered amount was excreted in urine and 10% was excreted in faeces. Following per os or intravenous administration of ^{249}Bk to rats, the preponderance of the amount entering blood deposited in the skeleton and liver (Zalikin and Nisimov, 1988).

25.2.3.2. Biokinetic model

The biokinetic model for systemic berkelium applied in this report is described in Section 18.2.3.

25.2.3.3. Treatment of progeny

The treatment of radioactive progeny of berkelium produced in systemic compartments or absorbed to blood after production in the respiratory or gastrointestinal tract is described in Section 18.2.4.

25.3. Individual monitoring

^{249}Bk

Measurements of ^{249}Bk concentrations in urine and faeces are used to determine intakes of the nuclide. The main technique used for urinalysis is alpha spectrometry.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Monitoring Technique</th>
<th>Method of Measurement</th>
<th>Typical Detection Limit</th>
<th>Achievable detection limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{249}Bk</td>
<td>Urine Bioassay</td>
<td>α spectrometry</td>
<td>1nBq L$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>^{249}Bk</td>
<td>Fecal Bioassay</td>
<td>α spectrometry</td>
<td>1 mBq 24h$^{-1}$</td>
<td></td>
</tr>
</tbody>
</table>

25.4. Dosimetric data for berkelium

Dosimetric data will be provided in the final version of the document.

REFERENCES

Hungate, F. P., Ballou, J. E., Mahlum, D. D., et al., 1972. Preliminary data on 253Es and...

26. CALIFORNIUM (Z=98)

26.1. Chemical Forms in the Workplace

Californium is an actinide element, which occurs mainly in oxidation state III. Lanthanides such as Gd(III) or Eu(III) and Am(III) are good chemical analogues of Cf (III). Californium may be encountered in a number of chemical forms, including oxides, chlorides citrates and nitrates.

Californium-249 is formed from the beta decay of \(^{249}\text{Bk}\) and most other californium isotopes are made by subjecting berkelium to intense neutron radiation in a nuclear reactor. Californium-252 has a number of specialised applications as a strong neutron emitter.

Table 26.1. Isotopes of californium addressed in this report.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Physical half-life</th>
<th>Decay mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cf-244</td>
<td>19.4 m</td>
<td>A</td>
</tr>
<tr>
<td>Cf-246</td>
<td>35.7 h</td>
<td>A, SF</td>
</tr>
<tr>
<td>Cf-247</td>
<td>3.11 h</td>
<td>EC, A</td>
</tr>
<tr>
<td>Cf-248</td>
<td>334 d</td>
<td>A, SF</td>
</tr>
<tr>
<td>Cf-249(^a)</td>
<td>351 y</td>
<td>A, SF</td>
</tr>
<tr>
<td>Cf-250</td>
<td>13.08 d</td>
<td>A, SF</td>
</tr>
<tr>
<td>Cf-251</td>
<td>900 y</td>
<td>A</td>
</tr>
<tr>
<td>Cf-252(^a)</td>
<td>2.645 y</td>
<td>A, SF</td>
</tr>
<tr>
<td>Cf-253</td>
<td>17.81 d</td>
<td>B-, A</td>
</tr>
<tr>
<td>Cf-254</td>
<td>60.5 d</td>
<td>A, SF</td>
</tr>
<tr>
<td>Cf-255</td>
<td>85 m</td>
<td>B-</td>
</tr>
</tbody>
</table>

\(^a\)Dose coefficients and bioassay data for this radionuclide are given in the printed copy of this report. Data for other radionuclides listed in this table are given in the accompanying electronic annexes.

26.2. Routes of Intake

26.2.1. Inhalation

Absorption Types and parameter values

Limited information on absorption of californium from the respiratory tract is available from a rat inhalation study of the chloride and two occupational exposure cases involving oxide forms.

Reference biokinetic models were used here (i.e. by the Task Group) for the analysis of the data and the determination of absorption parameter values: the revised Human Respiratory Tract Model (ICRP, 2015), the Human Alimentary Tract Model (ICRP, 2006), the human systemic model for Cf described in this document, the rat model for particle transport in
the respiratory tract of the Guide for the Practical Application of the ICRP Human Respiratory Tract Model (ICRP, 2002). A simple systemic model for Cf in the rat was developed here from the injection data reported by Graham et al. (1978), Durbin (1973) and Mewhinney et al. (1971). Unless stated otherwise, the following parameters were fixed at default values, \(f_b = 0.002, s_b = 0 \) (see above), and \(s_t = 1 \text{ d}^{-1} \) (based on californium chloride as explained below).

As described in the general actinide section, absorption parameter values based on plutonium (\(s_t = 0.4 \text{ d}^{-1}; f_b = 0.002; s_b = 0 \)) are applied in this document to the transplutonium elements.

Absorption parameter values and Types, and associated \(f_A \) values for particulate forms of californium, are given in Table 26.2.

Californium chloride

Graham et al. (1978) studied the tissue distribution of \(^{252}\text{Cf}\) for 32 d after intratracheal instillation of the chloride into rats. Lung retention was described by 47.8% of the initial lung deposit (ILD) being cleared with a half-time (\(T_b \)) of 10 h, 38.4% ILD with \(T_b = 2.6 \text{ d} \) and 13.8% ILD with \(T_b = 18.4 \text{ d} \). Early measurement data were available to determine a value of \(s_r \). Analysis here gave \(f_r = 0.6, s_t = 1 \text{ d}^{-1} \) and \(s_s = 0.05 \text{ d}^{-1} \), consistent with assignment to Type F.

The absorption parameter values for californium chloride were derived from a single in vivo study. Moreover, inhalation exposure to it is unlikely. Although specific parameter values for californium chloride based on in vivo data are available, they are not adopted here. Instead, californium chloride is assigned to Type F. However, the data are used as the basis of the default rapid dissolution rate for californium.

Californium oxide

Rundo and Sedlet (1973) reported a case of accidental inhalation exposure to a mixture of \(^{249}\text{Cf}\) and \(^{249}\text{Bk}\), which became airborne when ignited on a tantalum disc, and so probably consisted of oxides. The biokinetics of inhaled \(^{249}\text{Cf}\) was studied by external measurements and excretion analysis over the first year after intake. Half-times of retention in the chest of 25 d (17% ILD) and 1210 d (83% ILD) were reported. Except for an initially rapid clearance in faeces, the urinary and faecal excretion rate of both radionuclides increased with time for 2-3 months after intake and then declined. The non-monotonic pattern of urinary excretion presumably reflects an increasing rate of dissolution of the inhaled aerosol in the lungs that can be described by the dissolution model shown in Fig. 6(b) of OIR Part 1 (ICRP, 2015). Analysis here gave \(s_p = 0.00041 \text{ d}^{-1}, s_{pt} = 0.0035 \text{ d}^{-1} \) and \(s_t = 0.031 \text{ d}^{-1} \). Considering, for simplicity, only absorption in the absence of particle transport, these parameter values would indicate a long-term half-time of about 180 d, much less than the 1210 d observed by the authors. This greater chest retention might be explained by the contribution of systemic organs to the in vivo measurements. In the absence of particle transport, 95% ILD and 56% ILD of californium would be retained in lungs at 30 d and 180 d respectively after intake, which is consistent with assignment to absorption Type M.

Poda and Hall (1975) described the follow-up of two workers over 36 and 75 d respectively after inhalation of \(^{252}\text{Cf}_2\text{O}_3\). Both subjects were treated with DTPA and a cathartic. Their body content was below the detection limit of in vivo measurement after 3 d. Fecal excretion was sampled over a month after the incident and decreased rapidly after 3 d. Rapid renal excretion of Cf was observed for the initial 24-hr period. After that, the urine data could be described by a sum of two exponentials with \(T_b = 0.8 \text{ d} \) and 10 d, or <1 d and 12 d,
respectively, for the two subjects. Analysis here gave $f = 0.5$ and 0.1; and $s_\text{r} = 0.006 \text{ d}^{-1}$ and 0.08 d^{-1}, respectively, for the two subjects, indicating Type M and Type F respectively. In this analysis s_r was not estimated but fixed at 1 d$^{-1}$ because the early data were complicated by the decorporation treatment.

(1027) Absorption parameter values for californium oxides based on \textit{in vivo} data are available from two studies. Overall, Cf oxides appear to be more soluble than plutonium oxide, with most results consistent with assignment to Type M. However, considerable variability is observed. In particular, an increasing dissolution rate was observed by Rundo and Sedlet (1973) but not by Poda and Hall (1975). Although specific parameter values for californium oxide based on \textit{in vivo} data are available, they are not adopted here. Instead, californium oxide is assigned to Type M.

\textbf{Rapid dissolution rate for californium}

(1028) The value of s_r estimated for californium chloride above, 1 d$^{-1}$, is applied here to all Type F forms of californium, in analysing experimental data. However, as described in the general actinide section, the value based on plutonium ($s_\text{r} = 0.4 \text{ d}^{-1}$) is applied in this document to the transplutonium elements for radiation protection purposes. Because it is lower than the general default value of 3 d$^{-1}$ for Type M and S materials, it is also applied to Type M and S forms of californium.

\textbf{Extent of binding of californium to the respiratory tract}

(1029) There is no specific information on californium binding to the respiratory tract. As described in the general actinide section, absorption parameter values for the bound state based on plutonium are applied in this document to the transplutonium elements. Thus, a bound fraction $f_\text{b} = 0.002$ and a rate of uptake $s_\text{b} = 0 \text{ d}^{-1}$, are applied throughout the respiratory tract except in the ET$_1$ region.
Table 26.2. Absorption parameter values for inhaled and ingested californium.

<table>
<thead>
<tr>
<th>Inhaled particulate materials</th>
<th>Absorption values</th>
<th>parameter</th>
<th>Absorption from the alimentary tract, (f_A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(f_i)</td>
<td>(s_r) (d(^{-1}))</td>
<td>(s_s) (d(^{-1}))</td>
</tr>
<tr>
<td>Default parameter values(^{b,c})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absorption Type</td>
<td>Assigned forms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Chloride</td>
<td>1</td>
<td>0.4</td>
</tr>
<tr>
<td>M(^d)</td>
<td>Oxide</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>0.01</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Ingested material\(^e\)

| All compounds | 5 x 10\(^{-4}\) |

\(^a\) It is assumed that for californium a bound fraction \(f_B = 0.002 \) with \(s_B = 0 \) d\(^{-1}\) is applied throughout the respiratory tract except in the ET\(_1\) region. The values of \(s_r \) for Type F, M and S forms of californium (0.4 d\(^{-1}\)) are elementspecific.

\(^b\) Materials (e.g. californium chloride) are generally listed here where there is sufficient information to assign to a default absorption Type, but not to give specific parameter values (see text).

\(^c\) For inhaled material deposited in the respiratory tract and subsequently cleared by particle transport to the alimentary tract, the default \(f_A \) values for inhaled materials are applied: i.e., the product of \(f_i \) for the absorption Type and the \(f_A \) value for ingested soluble forms of californium (5 x 10\(^{-4}\)).

\(^d\) Default Type M is recommended for use in the absence of specific information on which the exposure material can be assigned to an Absorption Type, e.g. if the form is unknown, or if the form is known but there is no information available on the absorption of that form from the respiratory tract.

\(^e\) Activity transferred from systemic compartments into segments of the alimentary tract is assumed to be subject to reabsorption to blood. The default absorption fraction \(f_A \) for the secreted activity is the reference \(f_A (=5 \times 10^{-4}) \) for ingestion of the radionuclide.

26.2.2. Ingestion

Animal data on the absorption of Cf were reviewed in Publication 30 (ICRP, 1979).

Results for absorption of californium nitrate Cf(NO\(_3\))\(_3\) after gavage administration to adult rats ranged from about 1.2 x 10\(^{-3}\) and 5.9 x 10\(^{-4}\) (Sullivan and Crosby, 1974; Sullivan 1980). In Publication 30 (ICRP, 1979), an absorption value of 5 x 10\(^{-4}\) was recommended. In Publication 48 (1986), a general value of 1 x 10\(^{-3}\) for actinides was used. However, in this report available data provided a sufficient basis for the use of a general value of 5 x 10\(^{-4}\) for all actinides other than U.

An \(f_A \) value of 5 x 10\(^{-4}\) is adopted here for all chemical forms of Cf.

26.2.3. Systemic distribution, retention and excretion of californium

26.2.3.1. Data

The biokinetics of inhaled californium has been studied by external measurement and bioassay in a few accidentally exposed workers. The results provide useful information on the
lung retention and total body retention of the inhaled material but are difficult to interpret in terms of the systemic biokinetics of californium. Results of two studies are summarised below.

A chemist accidentally inhaled a mixture of ^{249}Cf and its parent, ^{249}Bk (Rundo and Sedlet, 1973). The inhaled material was ignited before intake and was presumably highly insoluble. The biokinetics of inhaled ^{249}Cf was studied by external measurements and excretion analysis over the first year after intake. Except for an initially rapid clearance in faeces, the urinary and faecal excretion rate of both radionuclides increased with time for 2-3 months after intake and then declined (Fig. 26.1). The non-monotonic pattern of urinary excretion presumably reflects an increasing rate of dissolution of the inhaled aerosol in the lungs.

![Graph showing urinary excretion of ^{249}Cf over time after inhalation.](image)

Fig. 26.1. Observed pattern of urinary excretion of ^{249}Cf by a chemist following inhalation of a form with initially low solubility in the lungs (based on data of Rundo and Sedlet, 1973).

A chemist and an analyst inhaled ^{252}Cf while attempting to reprocess a medical source (Poda and Hall, 1975). Approximately 1 μg of $^{252}\text{Cf}_2\text{O}_3$ was released when the inner capsule was accidentally cut during removal of the outer capsule. Both subjects left the work area when an air monitor sounded. Both were treated with chelates. Rapid renal excretion of Cf was observed for the first 24-hour period in each subject but may have been strongly affected by DTPA treatment. DTPA treatments on days 4 and 18 did not appear to affect the excretion rate. Urinary excretion patterns for the two subjects are shown in Fig. 26.2, where excretion has been normalised to the percentage of the first day’s excretion for each subject.
Fig. 26.2. Observed patterns of urinary excretion of 252Cf following acute inhalation. DTPA administered on Days 1, 4, and 18 (arrows). Data normalised to individual’s Day 1 excretion (percent).

The biological behavior of californium has been studied in different animal species including mice, rats, Chinese and Syrian hamsters, and beagles (Parker et al., 1962; Mewhinney et al., 1971, 1972; Lloyd et al., 1972, 1976; Smith, 1972; Atherton and Lloyd, 1972; Bruenger et al., 1972; Stevens and Bruenger, 1972; Taylor et al., 1972; Durbin, 1973; Graham et al., 1978). Its behavior is qualitatively similar to that of other transuranium elements. That is, much of the absorbed or injected californium deposits in the skeleton and liver; the skeletal deposit is almost entirely on bone surfaces; and most of the activity reaching the systemic circulation is tenaciously retained in the body.

Among the frequently studied transuranics, americium appears to be its closest physiological analogue. The microscopic distribution of californium in soft tissues of beagles 1-3 wk after intravenous injection of a citrate solution was found to be similar to that of americium (Taylor et al., 1972). The gross distribution of californium in the skeleton, expressed as the percentage of skeletal californium in a given bone, is similar to that of americium (Lloyd et al., 1972). The microscopic distribution of californium in the skeleton is also similar to that of americium in rats, with heaviest deposits on the trabeculae of the primary spongiosa and on epiphyseal and metaphyseal trabeculae (Durbin, 1973).

Species differences in the biokinetics of californium have been observed. For example, Mewhinney et al. (1972) found significant differences in the behavior of 252Cf in rats and Chinese hamsters over 64 d following intraperitoneal injection of the citrate complex, including lower uptake of activity by the liver and kidneys and higher uptake by the skeleton in rats and much faster removal from the liver in rats (Table 26.3). The behavior of californium in beagles receiving 249Cf or 252Cf by intravenous injection (Lloyd et al., 1972) was broadly similar to that in the hamster with regard to uptake and retention in major repositories. The
faecal to urinary excretion ratio was much higher in rats than in dogs, probably due to a higher rate of biliary secretion of californium by rats.

Table 26.3. Early distribution of ^{252}Cf injected as citrate into hamsters, rats, and dogs (Mewhinney et al., 1972; Lloyd et al., 1972; Durbin, 1973).

<table>
<thead>
<tr>
<th>Tissue or excreta</th>
<th>Hamster</th>
<th>Rat</th>
<th>Dog</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kidney</td>
<td>2.9</td>
<td>1.2</td>
<td>0.9</td>
</tr>
<tr>
<td>Liver</td>
<td>25.6</td>
<td>3.5</td>
<td>19.2</td>
</tr>
<tr>
<td>Skeleton</td>
<td>25.3</td>
<td>65.7</td>
<td>44.1</td>
</tr>
<tr>
<td>Whole body</td>
<td>66.3</td>
<td>69.3</td>
<td>78.3</td>
</tr>
<tr>
<td>Urine</td>
<td>--</td>
<td>7.8</td>
<td>15.1</td>
</tr>
<tr>
<td>Faeces</td>
<td>--</td>
<td>11.0</td>
<td>6.9</td>
</tr>
</tbody>
</table>

Measurements on rats and mice indicate a biological half-time for the whole body on the order of 2 y (400-1000 d). This reflects primarily skeletal retention in these animals because the removal half-time from the liver is short and other soft tissues do not retain much californium. In dogs or hamsters, whole-body retention of californium reflects tenacious retention of in both the liver and skeleton. For the beagle, half-times of 8.5 y and 4.2 y have been estimated for the whole body and liver, respectively.

Observed species differences in the retention time of californium in the liver is consistent with a pattern seen for other transuranic elements. That is, certain mammalian species show rapid removal of transuranics from the liver, while others show extremely slow removal. For example, rats, tree shrews (small mammals, closely related to primates, native to the tropical forests of Southeast Asia), macaque monkeys, and baboons show rapid loss of plutonium from the liver, with half-times of 4-200 d, while another set of adult animals with an overlapping range of body weights, including hamsters, dogs, pigs, and humans, show tenacious retention of plutonium in the liver, with half-times measured in years or decades (Taylor, 1984).

In the skeleton, californium appears to be deposited most heavily about the trabeculae of the primary spongiosas and on epiphyseal and metaphyseal trabeculae. In soft tissues of dogs, relatively high concentrations are found in the hepatic cells of the liver, the glomeruli of the kidney, the interfollicular region of the thyroid, the cartilaginous tissues of the lung, and in the smaller arterioles of most organs. Scattered clusters of activity were found in the renal papillae and the submucosa of the bronchioles. Except for deposition in hepatic cells, most of the deposition sites in soft tissues were extracellular, associated with connective tissue.

26.2.3.2. Biokinetic model

The biokinetic model for systemic californium applied in this report is described in Section 18.2.3.

26.2.3.3. Treatment of progeny

The treatment of radioactive progeny of californium produced in systemic compartments or absorbed to blood after production in the respiratory or gastrointestinal tract is described in Section 18.2.4.
26.3. Individual monitoring

^{249}Cf

Measurement of ^{249}Cf concentrations in urine is used to determine intakes of the radionuclide for routine monitoring. The main technique used for in vitro bioassay is alpha spectrometry. In vivo lung measurement of ^{249}Cf may be used as additional technique for special investigation.

The main technique for in vivo measurement is gamma spectrometry.

Table 26.4. Monitoring techniques for ^{249}Cf.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Monitoring Technique</th>
<th>Method of Measurement</th>
<th>Typical Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{249}Cf</td>
<td>Urine Bioassay</td>
<td>α spectrometry</td>
<td>0.2 mBq/L</td>
</tr>
<tr>
<td>^{249}Cf</td>
<td>Faecal Bioassay</td>
<td>α spectrometry</td>
<td>0.2 mBq/24h</td>
</tr>
<tr>
<td>^{249}Cf</td>
<td>Lung measurementa</td>
<td>γ-ray spectrometry</td>
<td>800 Bq</td>
</tr>
</tbody>
</table>

a Measurement system comprised of two Broad Energy Germanium Detectors (BEGe), counting time of 36 minutes and chest wall thickness of 2.54 cm.

^{252}Cf

Measurements of ^{252}Cf concentrations in urine and faeces are used to determine intakes of the radionuclide for routine monitoring. The main technique used for in vitro bioassay is alpha spectrometry.

Table 26.5. Monitoring techniques for ^{252}Cf.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Monitoring Technique</th>
<th>Method of Measurement</th>
<th>Typical Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{252}Cf</td>
<td>Urine Bioassay</td>
<td>α spectrometry</td>
<td>0.2 mBq/L</td>
</tr>
<tr>
<td>^{252}Cf</td>
<td>Faecal Bioassay</td>
<td>α spectrometry</td>
<td>0.2 mBq/24h</td>
</tr>
</tbody>
</table>

26.4. Dosimetric data for californium

Dosimetric data will be provided in the final version of the document.

REFERENCES

27. EINSTEINIUM (Z=99)

27.1. Chemical Forms in the Workplace

(1046) Einsteinium is a rare element, which occurs mainly in oxidation state III. Lanthanides such as Gd(III) or Eu(III) and Am(III) are good chemical analogues of Es (III). Einsteinium has no significant industrial use and may be encountered in a number of chemical forms, including oxides (Es$_2$O$_3$, EsO$_2$), chlorides and nitrates. (1047) Einsteinium-253 is synthesised by irradiation of curium in dedicated high-flux neutron reactors, and some heavier einsteinium isotopes can result by bombarding 249Bk with high-energy alpha particles.

Table 27.1. Isotopes of einsteinium addressed in this report.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Physical half-life</th>
<th>Decay mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Es-249</td>
<td>102.2 m</td>
<td>EC, B+, A</td>
</tr>
<tr>
<td>Es-250</td>
<td>8.6 h</td>
<td>EC</td>
</tr>
<tr>
<td>Es-250m</td>
<td>2.22 h</td>
<td>EC, B+</td>
</tr>
<tr>
<td>Es-251</td>
<td>33 h</td>
<td>EC, A</td>
</tr>
<tr>
<td>Es-253</td>
<td>20.47 d</td>
<td>A, SF</td>
</tr>
<tr>
<td>Es-254a</td>
<td>275.7 d</td>
<td>A, B-, SF</td>
</tr>
<tr>
<td>Es-254m</td>
<td>39.3 h</td>
<td>B-, A, EC, SF</td>
</tr>
<tr>
<td>Es-255</td>
<td>39.8 d</td>
<td>B-, A, SF</td>
</tr>
<tr>
<td>Es-256</td>
<td>25.4 m</td>
<td>B-</td>
</tr>
</tbody>
</table>

aDose coefficients and bioassay data for this radionuclide are given in the printed copy of this report. Data for other radionuclides listed in this table are given in the accompanying electronic annexes.

27.2. Routes of Intake

27.2.1. Inhalation

Absorption Types and parameter values

(1048) No information was found on the behaviour of inhaled einsteinium (Es) in man. Information on absorption from the respiratory tract is available from experimental studies of einsteinium chloride and nitrate. (1049) A reference biokinetic model was used here (i.e. by the Task Group) for the analysis of the data and the determination of absorption parameter values: the rat model for particle transport in the respiratory tract of the Guide for the Practical Application of the ICRP Human Respiratory Tract Model (ICRP, 2002). A simple systemic model for Es in rodents was developed here from the injection data reported by Hungate et al. (1972) and Parker at al. (1972). Unless stated otherwise, the following parameters were fixed at default values, $f_b = 0.002$, $s_b = 0$ (see below), and $s_r = 3$ day$^{-1}$ (based on einsteinium chloride as explained below). (1050) As described in the general actinide section, absorption parameter values based on plutonium ($s_r = 0.4$ day$^{-1}$; $f_b = 0.002$; $s_b = 0$) are applied in this document to the transplutonium elements.
Absorption parameter values and Types, and associated \(f_A \) values for particulate forms of Es, are given in Table 27.2.

Einsteinium chloride (EsCl\(_3\))

Ballou et al. (1975) measured the tissue distribution of \(^{253}\)Es in rats for 42 d after intratracheal instillation of the chloride. Clearance from the lung followed two biological half-times of 1.3 d and 16 d, involving about the same amount of material. Early measurement data were available to determine a value of \(s_r \), which was used as the basis of the rapid dissolution rate for einsteinium, and applied in the analysis of the other studies below, for which there were insufficient early data. Analysis here gave \(f_t = 0.7 \), \(s_r = 3 \text{ d}^{-1} \) and \(s_s = 0.03 \text{ d}^{-1} \). This is consistent with assignment to Type F.

Hungate et al. (1972) studied the tissue distribution of \(^{253}\)Es in rats for 20 d after intratracheal instillation of either EsCl\(_3\) or Es(OH)\(_3\). It was not possible to assess absorption parameter values from the Es(OH)\(_3\) data since they appeared to be inconsistent with the systemic kinetics observed after intravenous injection: the authors suspected lung damage from the alkaline solution. For Es administered as the chloride, after 20 d, 60% Initial Lung Deposit (ILD) was retained in the body; about 10% ILD remained in the lung. Analysis here gave \(f_t = 0.5 \) and \(s_s = 0.07 \text{ d}^{-1} \). This is consistent with assignment to Type F.

Einsteinium nitrate (Es(NO\(_3\))\(_3\))

Ballou et al. (1979) studied the tissue distribution of \(^{253}\)Es in rats for 100 d after inhalation as the nitrate \(^{253}\)Es(NO\(_3\))\(_3\). Lung retention could be described by two exponential functions with biological half-times of 1.1 d and 19.5 d, accounting for 65% ILD and 35% ILD, respectively. Analysis here gave \(f_t = 0.7 \) and \(s_s = 0.02 \text{ d}^{-1} \). This is consistent with assignment to Type M.

Absorption parameter values for einsteinium nitrate based on \textit{in vivo} data were derived, inhalation exposure to it is unlikely. Therefore specific parameter values for einsteinium chloride are not used here. Instead, it is assigned to Type F. However, the data are used as the basis of the rapid dissolution rate for einsteinium.

Rapid dissolution rate for einsteinium

The value of \(s_r \) estimated for chloride above, 3 d\(^{-1}\), is applied here to all Type F forms of einsteinium, in analysing experimental data. However, as described in the general actinide section, the value based on plutonium (\(s_r = 0.4 \text{ d}^{-1} \)) is applied in this document to the transplutonium elements for radiation protection purposes. Because it is lower than the general default value of 3 d\(^{-1}\) for Type M and S materials, it is also applied to Type M and S forms of einsteinium.

Extent of binding of einsteinium to the respiratory tract

There is no specific information on einsteinium binding to the respiratory tract. As described in the general actinide section, absorption parameter values for the bound state based on plutonium are applied in this document to the other transplutonium elements. Thus, a bound
fraction $f_b = 0.002$ and a rate of uptake $s_b = 0 \text{ d}^{-1}$, are applied throughout the respiratory tract except in the ET$_1$ region.

Table 27.2. Absorption parameter values for inhaled and ingested einsteinium.

<table>
<thead>
<tr>
<th>Inhaled particulate materials</th>
<th>Absorption valuesa</th>
<th>Parameter</th>
<th>Absorption from the alimentary tract, f_A^b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default parameter values</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absorption Type</td>
<td>Assigned forms</td>
<td>f_r</td>
<td>s_r (d$^{-1}$)</td>
</tr>
<tr>
<td>F</td>
<td>einsteinium chloride</td>
<td>1</td>
<td>0.4</td>
</tr>
<tr>
<td>Mc</td>
<td>einsteinium nitrate</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>0.01</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Ingested materiald

| All compounds | 5 x 10^{-4} |

27.2. Ingestion

An early study by Hungate (1972) indicated that einsteinium and americium are both absorbed from the gastrointestinal tract of the rat to a similar extent. Sullivan and Crosby (1975) reported an absorption of 1.4×10^{-4} for nitrates of einsteinium in the adult rat.

(1060) In Publication 30 Part 4 (ICRP, 1988) and Publication 48 (ICRP, 1986) an absorption value of 1×10^{-3} for einsteinium was therefore used. However, in this report available data provided a sufficient basis for the use of a general value of 5×10^{-4} for all actinides other than U.

(1061) An f_A value of 5×10^{-4} is adopted here for all chemical forms of einsteinium.

27.2.3. Systemic distribution, retention and excretion of einsteinium

27.2.3.1. Data

The biokinetics of Es has been studied in mice (Parker et al., 1972), rats (Hungate et al., 1972; Ballou et al., 1975, 1979), miniature swine (McClanahan and Ragan, 1984) and beagles (Lloyd et al., 1975). Comparative data for Am, Cf, and Es indicate that skeletal
deposition increases in the order Am < Cf < Es. The initial urinary excretion rate is much
greater, and the initial fecal excretion rate is much lower, for Es than for Cf or Am.

(1063) The systemic behavior of 253Es was studied up to about 8 wk following its
intravenous injection as citrate to six young adult beagle dogs (Lloyd et al., 1975). Excluding
two dogs with possibly anomalous initial urinary losses, mean losses in urine and faeces over
the first three weeks represented about 18% and 7%, respectively, of the administered amount.
The skeleton and liver were the main sites of deposition of injected activity, with the skeleton
containing about 30-50% and the liver about 10-13% of the administered activity between 7 and
55 d after administration. The investigators compared the behavior of Es in dogs with that of
Pu, Am, Cm, and Cf determined earlier at the same laboratory and concluded that Es most
closely resembled Cf in its tissue distribution, retention, and excretion.

(1064) The biokinetics and adverse effects of 253Es were studied in rats following various
routes of administration of different compounds (Hungate et al., 1972). Following intravenous
administration of the chloride, about 35% of the injected amount was excreted in urine during
the first day. During the next 20 d the urinary and fecal excretion rates were about the same.
Total excretion over 21 d amounted to almost 50% of the injected amount. Bone was the
primary site of deposition. There was no indication of a change in the bone content from 4 h to
83 d post injection. The liver content declined from about 18% at 4 h to 1.6% at 21 d. The
behavior of 253Es administered as the hydroxide was much different: about 80% of the
administered activity was lost from the body within 4 h, and less than 1% remained after 20 d.
The authors suggested that the much different results for the hydroxide could be related to
damaging effects of the alkaline solution in the lung. The systemic behavior of 253Es observed
in later studies at the same laboratory involving intratracheal administration of 253EsCl$_3$ or
inhalation of 253Es(NO$_3$)$_3$ (Ballou et al., 1975, 1979) seem reasonably consistent with the results
obtained by Hungate et al. for 253Es injected as the chloride.

(1065) Parker et al. (1972) studied the distribution, retention, and excretion of 253Es in mice
following intramuscular injection and compared the results with previous findings by the same
group for americium and californium in mice. Over the first 4 d approximately 30% and 1.4%
of the administered 253Es was excreted in urine and faeces, respectively. At 4 d, the liver
contained about 7% of the administered 253Es and the skeleton plus carcass contained about
45%. At that time the liver deposition of Es was about the same as the value determined earlier
for Cf and about 30% of the value for Am; skeletal retention was somewhat greater for Es than
for Cf or Am; urinary excretion of Es was about 5 times that of Cf or Am; and faecal excretion
of Es was an order of magnitude lower than that of Cf or Am.

(1066) At 1 d after intravenous administration of 253Es as the chloride to juvenile miniature
swine, the skeleton and liver contained roughly 60-70% and 15%, respectively, of the injected
amount (McClanahan and Ragan, 1984). The skeletal content appeared to decrease little if any
over the following 70 d, while the liver content decreased by roughly 50%. Over the first 7 d,
about 2.4% of the administered amount was removed in urine and 3.3% was removed in faeces.

27.2.3.2. Biokinetic model

(1067) The biokinetic model for systemic einsteinium applied in this report is described in
Section 18.2.3.
27.2.3.3. Treatment of progeny

(1068) The treatment of radioactive progeny of einsteinium produced in systemic compartments or absorbed to blood after production in the respiratory or gastrointestinal tract is described in Section 18.2.4.

27.3. Individual monitoring

254Es

(1069) Measurements of 254Es concentrations in urine and faeces are used to determine intakes of the radionuclide for routine monitoring. In vivo lung measurement of 254Es may allow evaluating the intake of radionuclide if the measurement system is sensitive enough. The main measurement technique is gamma spectrometry.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Monitoring Technique</th>
<th>Method of Measurement</th>
<th>Typical Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>254Es</td>
<td>Urine Bioassay</td>
<td>γ-ray spectrometry</td>
<td>4 Bq/L</td>
</tr>
<tr>
<td>254Es</td>
<td>Faecal Bioassay</td>
<td>γ-ray spectrometry</td>
<td>4 Bq/24h</td>
</tr>
<tr>
<td>254Es</td>
<td>Lung measurement*</td>
<td>γ-ray spectrometry</td>
<td>3 Bq</td>
</tr>
</tbody>
</table>

* Measurement system comprised of two Broad Energy Germanium Detectors (BEGe), counting time of 36 minutes and chest wall thickness of 2.54 cm.

27.4. Dosimetric data for einsteinium

Dosimetric data will be provided in the final version of the document.

References

ICRP, 1993. Age-dependent doses to members of the public from intake of radionuclides: Part

Popplewell, D. S., Ham, G. J., 1989. Distribution of plutonium and americium in tissues from

retention, excretion, and distribution of injected einsteinium citrate in beagles. Health

Health Phys. 47, 472–475.

Popplewell, D. S., Harrison, J. D., Ham, G. J., 1991. The gastrointestinal absorption of

Sullivan M. F., Crosby A. L., 1975. Absorption of uranium-233, neptunium-237, plutonium-
238, americium-241, curium-244 and einsteinium-253 from the gastrointestinal tract of
newborn and adult rats. BNWL-1950 PT 1, Pacific Northwest Laboratory Annual
28. FERMIUM (Z=100)

28.1. Chemical Forms in the Workplace

(1070) Fermium is an actinide which occurs mainly in oxidation state III. Am(III) and lanthanides such as Gd(III) or Eu(III) are good chemical analogues of Fm (III). Fermium has no significant industrial use and may be encountered in a number of chemical forms, including oxides (Fm$_2$O$_3$, FmO$_2$), chlorides and nitrates.

(1071) Fermium-257 is synthesised by irradiation of curium in dedicated high-flux neutron reactors.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Physical half-life</th>
<th>Decay mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fm-251</td>
<td>5.30 h</td>
<td>EC, B+, A</td>
</tr>
<tr>
<td>Fm-252</td>
<td>25.39 h</td>
<td>AS, F</td>
</tr>
<tr>
<td>Fm-253</td>
<td>3.00 d</td>
<td>EC, A</td>
</tr>
<tr>
<td>Fm-254</td>
<td>3.240 h</td>
<td>AS, F</td>
</tr>
<tr>
<td>Fm-255</td>
<td>20.07 h</td>
<td>A, SF</td>
</tr>
<tr>
<td>Fm-256</td>
<td>157.6 m</td>
<td>A, SF</td>
</tr>
<tr>
<td>Fm-257a</td>
<td>100.5 d</td>
<td>A, SF</td>
</tr>
</tbody>
</table>

*Table 28.1. Isotopes of fermium addressed in this report.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Physical half-life</th>
<th>Decay mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fm-251</td>
<td>5.30 h</td>
<td>EC, B+, A</td>
</tr>
<tr>
<td>Fm-252</td>
<td>25.39 h</td>
<td>AS, F</td>
</tr>
<tr>
<td>Fm-253</td>
<td>3.00 d</td>
<td>EC, A</td>
</tr>
<tr>
<td>Fm-254</td>
<td>3.240 h</td>
<td>AS, F</td>
</tr>
<tr>
<td>Fm-255</td>
<td>20.07 h</td>
<td>A, SF</td>
</tr>
<tr>
<td>Fm-256</td>
<td>157.6 m</td>
<td>A, SF</td>
</tr>
<tr>
<td>Fm-257a</td>
<td>100.5 d</td>
<td>A, SF</td>
</tr>
</tbody>
</table>

*Table 28.2. Absorption parameter values for inhaled and ingested fermium.

<table>
<thead>
<tr>
<th>Inhaled particulate materials</th>
<th>Absorption parameter valuesa</th>
<th>Absorption from the alimentary tract, f_A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorption Type</td>
<td>f_i s$_i$ (d$^{-1}$) s$_s$ (d$^{-1}$)</td>
<td></td>
</tr>
<tr>
<td>Assigned forms</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
28.2.2. Ingestion

(1074) There are no data available on the uptake of fermium from the gastrointestinal tract. By analogy with americium, an absorption value of 1×10^{-3} for fermium was therefore used in Publication 30 Part 4 (ICRP, 1988) and Publication 48 (ICRP, 1986). However, in this report, available data provided a sufficient basis for the use of a general value of 5×10^{-4} for all actinides other than U.

(1075) An f_A value of 5×10^{-4} is adopted here for all chemical forms of fermium.

28.2.3. Systemic distribution, retention and excretion of fermium

28.2.3.1. Data

(1076) No biokinetic data were found for Fm.

28.2.3.2. Biokinetic model

(1077) The biokinetic model for systemic einsteinium is applied in this report to fermium (see Section 18.2.3).

28.2.3.3. Treatment of progeny

(1078) The treatment of radioactive progeny of fermium produced in systemic compartments or absorbed to blood after production in the respiratory or gastrointestinal tract is described in Section 18.2.4.

28.3. Individual monitoring

257Fm
Measurements of 257Fm concentrations in urine and faeces are used to determine intakes of the radionuclide for routine monitoring. *In vivo* lung measurement of 257Fm may allow evaluating the intake of radionuclide if the measurement system is sensitive enough. The main measurement technique is gamma spectrometry.

Table 28.3. Monitoring techniques for 257Fm.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Monitoring Technique</th>
<th>Method of Measurement</th>
<th>Typical Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>257Fm</td>
<td>Urine Bioassay</td>
<td>γ-ray spectrometry</td>
<td>40 Bq/L</td>
</tr>
<tr>
<td>257Fm</td>
<td>Faecal Bioassay</td>
<td>γ-ray spectrometry</td>
<td>40 Bq/24h</td>
</tr>
<tr>
<td>257Fm</td>
<td>Lung measurementa</td>
<td>γ-ray spectrometry</td>
<td>30 Bq</td>
</tr>
</tbody>
</table>

a Measurement system comprised of two Broad Energy Germanium Detectors (BEGe), counting time of 36 minutes and chest wall thickness of 2.54 cm.

28.4. Dosimetric data for fermium

Dosimetric data will be provided in the final version of the document.

REFERENCES

