Mechanisms and dose response relationship for radiation-induced cardiovascular damage

Fiona A. Stewart
The Netherlands Cancer Institute
• Epidemiological evidence and dose response relationships from irradiated cancer patients

• Experimental models and mechanisms of development of damage
Radiation as an independent risk factor for cardiovascular disease in long-term survivors of cancer

- Many risk factors for CVD, large studies (preferably randomized trials) and careful analysis needed to confirm radiation as a causal factor

- **Early breast cancer:**
 RR fatal CVD RT vs no RT; EBCT = 1.3

- **Hodgkin’s lymphoma:**
 RR fatal CVD 2-7; higher risks for children
 RR stroke 4.3

- **Childhood cancers:**
 RR 2-6 for cardiac mortality
Risks for cardiac death in women randomized to receive RT vs no RT for breast cancer

<table>
<thead>
<tr>
<th>Category</th>
<th>Mean cardiac dose (Gy)*</th>
<th>Events/Women Allocated Radio.</th>
<th>Events/Women Allocated Control</th>
<th>Radio. events Logrank O-E</th>
<th>Variance of O-E</th>
<th>Ratio of annual event rates Radio.: Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>145/5040 (2.9%)</td>
<td>117/4942 (2.4%)</td>
<td>4.8</td>
<td>60.2</td>
<td>1.08 (SE 0.13)</td>
</tr>
<tr>
<td>5 - 15</td>
<td>9</td>
<td>237/4374 (5.4%)</td>
<td>170/4476 (3.8%)</td>
<td>26.0</td>
<td>94.5</td>
<td>1.32 (SE 0.12)</td>
</tr>
<tr>
<td>15+</td>
<td>17</td>
<td>125/1140 (11.0%)</td>
<td>72/1125 (6.4%)</td>
<td>22.7</td>
<td>46.2</td>
<td>1.63 (SE 0.19)</td>
</tr>
<tr>
<td>Unknown</td>
<td>10</td>
<td>162/5019 (3.2%)</td>
<td>157/5045 (3.1%)</td>
<td>12.7</td>
<td>67.6</td>
<td>1.21 (SE 0.13)</td>
</tr>
</tbody>
</table>

(c) Dosimetric estimate of cardiac dose (Gy)*

Test for trend: $\chi^2 = 4.4; 2p = 0.04$
Risk ratio per 10 Gy cardiac dose* 1.31 SE 0.07; 2p < 0.0001

Total

<table>
<thead>
<tr>
<th></th>
<th>669/15573 (4.3%)</th>
<th>516/15588 (3.3%)</th>
<th>66.3 268.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>99% or</td>
<td>95% CI</td>
<td></td>
<td>Radio. better</td>
</tr>
<tr>
<td>Treatment effect 2p = 0.00005, adverse</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Increase in relative risk of death per 10 Gy mean heart dose = 31%

EBCTCG 2006: PROVISIONAL RESULTS
Risks for incidence of heart disease in women treated with RT in Denmark and Sweden

- 72,134 women diagnosed with breast cancer (1976-2006)
- 34,825 (48%) received radiotherapy
- Mean heart dose 6.3 Gy for left and 2.7 Gy for right-sided tumors
- Mean dose LADCA ≥15 Gy for left and 1-2 Gy for right-sided tumors

<table>
<thead>
<tr>
<th>Disease type</th>
<th>Incidence ratio (L/R)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myocardial infarct</td>
<td>1.22</td>
<td>0.007</td>
</tr>
<tr>
<td>Angina</td>
<td>1.25</td>
<td>0.01</td>
</tr>
<tr>
<td>Pericarditis</td>
<td>1.61</td>
<td>0.03</td>
</tr>
<tr>
<td>Valvular disease</td>
<td>1.70</td>
<td>0.009</td>
</tr>
<tr>
<td>All heart disease</td>
<td>1.08</td>
<td>0.01</td>
</tr>
</tbody>
</table>

McGale et al. Radiotherapy & Oncology 2011
Increased risk of cardiovascular disease in survivors of childhood cancers

• >14,000 5-year survivors, treated 1970-1986 (mean FU 20 years)
• Increased incidence (cf siblings) of myocardial infarct, congestive heart disease, pericardial disease and valvular abnormalities
• HR 2.0-6.0 for cardiac doses >15 Gy (~ equivalent to 7 Gy S/D)

Congestive heart failure: HR 5.9

Mulrooney et al., BMJ 2009
Increased risk of cardiovascular disease in survivors of childhood cancers

- 4,122 5-year survivors diagnosed before 1986 in France and UK mean FU 27 years
- ERR cardiac mortality linear function of mean heart dose
 ERR at 1 Gy, 60%

<table>
<thead>
<tr>
<th>Mean heart dose (Gy)</th>
<th>No of patients</th>
<th>RR CVD mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>1252</td>
<td>1</td>
</tr>
<tr>
<td><1.0</td>
<td>1243</td>
<td>3.0 (0.3-28)</td>
</tr>
<tr>
<td>1-5</td>
<td>508</td>
<td>2.5 (0.2-41.5)</td>
</tr>
<tr>
<td>5-15</td>
<td>421</td>
<td>12.5 (1.4-116.1)</td>
</tr>
<tr>
<td>>15</td>
<td>541</td>
<td>25.1 (3.0-209.5)</td>
</tr>
</tbody>
</table>

Tukenova et al., JCO 2010
Research questions

• Is the etiology of radiation-induced atherosclerosis the same as age-related atherosclerosis?
• What is the contribution of coronary artery disease (atherosclerosis) versus microvascular damage in radiation induced cardiac damage?
Initiation of age-related atherosclerosis

- Monocyte
- Rolling
- Sticking
- E-selectin
- VCAM-1
- ICAM-1
- MCP-1
- Oxidized LDL
- Foam cell
- Growth factors
- Metalloproteinases
- Cell proliferation
- Matrix degradation

Steps:
1. Monocyte rolling
2. Monocyte sticking
3. Monocyte transmigration
4. Oxidized LDL production
5. Cytokine release

Initiation:
- Monocyte rolling
- Adhesion molecules (E-selectin, VCAM-1, ICAM-1)
- MCP-1
- Oxidized LDL
- Foam cell formation

Vessel lumen
Endothelial cells
Intima
Irradiation of carotid arteries in ApoE-/- mice
(elevated cholesterol levels)

Macrophage rich initial lesion

Advanced lesion with fibrous cap and lipid core
Increased number of lesions in irradiated carotid arteries ApoE-/- mice

No “out of field effects”
Less pronounced effects for 8 Gy than 14 Gy
2 Gy did not increase number of lesions or alter phenotype

Stewart et al. AJP 2006; Hoving et al. IJROBP 2008
Thrombotic phenotype of lesions of irradiated carotid arteries ApoE-/- mice

Activated ECs

Mf + erys

Fibrin deposits

Ruptured media

Stewart et al., AJP 2006; Hoving et al., IJROBP 2008
Decreased collagen content in irradiated advanced lesions

Hoving et al. IJROBP 2008
Adhesion molecules expressed after irradiation

<table>
<thead>
<tr>
<th>P-selectin</th>
<th>Migration from Weibel-Palade bodies to lumen large pulmonary vessels</th>
<th>Hallahan 1997</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-selectin</td>
<td>↑ mouse large pulmonary vessels</td>
<td>Hallahan 1997</td>
</tr>
<tr>
<td></td>
<td>↑ mouse large pulmonary vessels</td>
<td>Heckmann 1998</td>
</tr>
<tr>
<td>VCAM-1</td>
<td>↑ mouse lung microvasculature</td>
<td>Tsujino 1999; Epperly 2002; Heckmann 1998</td>
</tr>
<tr>
<td>ICAM-1</td>
<td>↑ mouse lung microvasculature</td>
<td>Tsujino 1999; Epperly 2002; Hallahan 1997</td>
</tr>
<tr>
<td></td>
<td>↑ microvessels of skin organ cultures</td>
<td>Heckmann 1998</td>
</tr>
</tbody>
</table>

ICAM1 & VCAM1 decreased in carotid artery of ApoE-/- mice 1 wk after 14 Gy.
MCP1 unchanged after irradiation *(Hoving et al., unpublished)*
Low dose irradiation decreases leukocyte adhesion and inhibits atherosclerosis

- Low dose irradiation of EC decreased leukocyte adhesion \textit{in vitro} via reduced liberation of E-selectin (ICAM1 unchanged)

\textit{Hildebrandt et al., IJRB 2002}

- Low dose TBI inhibits atherosclerosis in aortic root

\textit{Mitchel et al., Rad Res 2011}
Summary of data on radiation-induced atherosclerosis

• Radiation is an independent risk factor for atherosclerosis
• Interaction between high levels of cholesterol and radiation
• Doses ≥8 Gy initiate atherosclerotic processes and predisposes to formation of thrombotic, inflammatory plaques (more likely to rupture and cause fatal event)
• Doses 2 Gy did not stimulate atherosclerosis or alter phenotype (within the 34 week follow-up)
• Doses ≤ 0.5 Gy inhibited atherosclerosis
• Possible involvement of E-selectin in initiation of radiation-induced atherosclerosis?
Irradiation set up and schedules
Wild type male C57Bl6 mice; ApoE-/- mice (elevated cholesterol levels)

Allowing for margins and individual anatomical variation:
10.6 x 15.0 mm field
(33% lung in field)
Acute pericarditis 20-40 weeks after irradiation

Seemann et al., R&O in press
Microvascular changes 40 weeks after RT

Decreased microvascular density

Vascular leakage
- 0 Gy: 20%
- 2 Gy: 50%
- 8 Gy: 100%
- 16 Gy: 91%

Diffuse amyloidosis

Decreased alkaline phosphatase

Fibrosis

Seemann et al., R & O in press
Cardiac function from gated SPECT imaging

Seemann et al. R & O in press

HSA- Tc-99m for blood volume heart chambers

Myoview- Tc-99m for microvascular filling

Lethality in 38% mice between 30-40 weeks after 16 Gy; strongly associated with vascular leakage and amyloidosis
Summary of experimental data on radiation heart damage

- Early, inflammatory changes with restrictive pericarditis
- Microvascular density decreased by 40 weeks after higher doses; functional perfusion of remaining vessels not significantly reduced
- Remaining vessels had reduced alkaline phosphatase and increased vWF, indicative of progressive microvascular damage
- Vascular leakage, diffuse amyloidosis and fibrotic changes from 40 weeks after irradiation is further evidence of the progressive damage
- Endocardial foam cell accumulation and coronary artery lesions from 20 weeks after high doses (ApoE-/- mice only)
- Reduced EDV and ESV from 20 weeks after irradiation, indicative of cardiac remodeling and reduced function
- No further deterioration until shortly before death, indicative of some compensatory mechanisms (upregulation of cardiac β-adrenergic receptors)
Model for development of radiation-induced cardiac damage

Macrovascular injury accelerates age-related atherosclerosis, leading to coronary artery disease (years/decades post-RT)

Microvascular injury reduces capillary density (within months of RT)

Higher doses
Reduced flow to a “territory” of myocardium

Low doses
Reduced collateral flow/vascular reserve (often subclinical)

Combine to cause myocardial ischemia

Darby et al., IJROBP 2010
Study Participants

Ingar Seemann, Saske Hoving, Nils Visser, Hans te Poele, Fijis van Leeuwen, Nicola Russell

Karen Gabriels, Marion Gijbels, Ben Janssen, Sylvia Heeneman, Mat Daemen