The lens of the eye, exposures in the UK medical sector and mechanistic studies of radiation effects.

Simon Bouffler
PHE Centre for Radiation, Chemical and Environmental Hazards

ICRP Symposium 2013

- Threshold dose <2Gy, of the order of 0.5Gy
- MAY be more accurately described by a linear non-threshold model
- Uncertainty on mechanisms

Bouffler et al 2012 *J Radiol. Prot* **32**: 419-488

- Epidemiological studies still suggest 0.5Gy threshold
- Strengthening evidence that stochastic processes may contribute
- Endorses ICRP 20mSv/yr occupational limit recommendation
Small UK medical sector survey

- Three UK hospital radiology depts supporting full range of interventional procedures
- 4 week period, January 2013
- Used PHE headband lens dosimeters
- Supported by questionnaire covering job title, procedures carried out, PPE use
- Funded by Health and Safety Executive
Results - I

61 dosimeters returned:

- Median dose 0 mSv (< 0.15 mSv detection limit)
- Only 13 > PDS minimum detectable dose of 0.15 mSv
- No correlation between type/No of procedures/PPE and dose…
- Maximum dose 1.60 mSv in 4 week period (just over 20 mSvy⁻¹)
Results - II

58 completed questionnaires:

- Mixture of consultants and registrars
- ~ 1000 procedures of ~ 20 different types
- Median ~ 15 procedures, range ~1 – 70
- Excellent PPE use in general but only 9 participants used lead glasses
- Dosemeters worn as per instructions
- DAP information available for all hospitals
Conclusions

- Limited survey, but highest dose procedures in 3 busy radiology depts; > 1000 procedures over 4 week period
- Doses depend on a large number of factors and vary widely, however recorded doses similar or < other studies
- Total of 13/61 doses > 0; 2/61 doses >= 20 mSv y\(^{-1}\)
  - Without lead glasses
  - Assuming workload same, no holidays
- Excellent PPE use; but only 9/58 participants used lead glasses
- DAP surrogate for operator dose?
Mechanistic study

- C57BL/6 mice exposed *in vivo*
- Human and mouse lens epithelia and a LEC cell line
- 20-2000mGy
- Early (24h) and late (1, 3, 6, 10 month) changes
- Multiple end points looking for discontinuities/thresholds in dose-response
DNA Damage

\[ \gamma H2AX – 24 \text{ hours post-exposure} \]
Effects on proliferation

24hrs

<table>
<thead>
<tr>
<th>0mGy</th>
<th>50mGy</th>
<th>100mGy</th>
<th>250mGy</th>
<th>1000mGy</th>
<th>2000mGy</th>
</tr>
</thead>
</table>

1month

<table>
<thead>
<tr>
<th>0mGy</th>
<th>50mGy</th>
<th>100mGy</th>
<th>250mGy</th>
<th>1000mGy</th>
<th>2000mGy</th>
</tr>
</thead>
</table>

EdU positive nuclei (%)

- 0mGy: 0%
- 50mGy: 5%
- 100mGy: 10%
- 250mGy: 15%
- 1000mGy: 20%
- 2000mGy: 25%

Edu positive nuclei (%)

- 0mGy: 0%
- 50mGy: 0%
- 100mGy: 0%
- 250mGy: 3%
- 1000mGy: 5%
- 2000mGy: 7%
Additional endpoints/studies

- Morphological assessment of lens fibregenesis
- Cell cycle arrest
- Cellular senescence
- Also looking in blood, skin, whiskers of exposed mice to investigate tissue differences in radiosensitivity
Acknowledgements

- **PHE:** Liz Ainsbury, Jackie Gillan, Margaret Coster, Phil Gilvin, Sarah Peters, and Kathy Slack

- **Durham:** Ewa Markiewicz, Roy Quinlan

- **Funding:** Health and Safety Executive
  Department of Health
  Radiation Protection Research Programme