Effective Dose – A Flawed Concept that Could and Should be Replaced

EFFECTIVE DOSE
(Sum of Organ/Tissue Doses
 x
Tissue Weighting Factors)

EXAMPLES
LUNGS/CHEST FILM
25 mrad x 0.12 = 3 mrad

BREAST/MAMMOGRAM
300 mrad x 0.15 = 45 mrad

TOTAL BODY/BACKGROUND
300 mrad x 1 = 300 mrad (Per year)

David J. Brenner
Columbia University
New York
djb3@columbia.edu
COMMENTARY

Effective dose: a flawed concept that could and should be replaced

D J BRENNER, PhD, DSc

Center for Radiological Research, Columbia University Medical Center, New York, NY 10032.

ABSTRACT. The effective dose is designed to provide a single number proportional to the radiobiological “detriment” from a particular, often inhomogeneous, radiation exposure, with detriment representing a balance between carcinogenesis, life shortening and hereditary effects. It is commonly used to allow a comparison of the risks associated with different spatial dose distributions produced by different imaging techniques. The effective dose represents questionable science: two of the most important reasons for this are that the tissue-specific weighting factors used to calculate effective dose are a subjective mix of different endpoints, and that the marked and differing age dependencies for different endpoints are not taken into account. Importantly, the effective dose is prone to misuse, with widespread confusion between effective dose, equivalent dose and absorbed dose. It is suggested here that effective dose could and should be replaced by a new quantity that does not have these problems. An appropriate new quantity could be “effective risk”, which, like effective dose, is a weighted sum of equivalent doses to different tissues; unlike effective dose, where the tissue-dependent weighting factors are a set of subjective committee-defined numbers, the weighting factors for effective risk would simply be evaluated tissue-specific lifetime cancer risks per unit equivalent dose. The resulting quantity would perform the same comparative role as effective dose; it would have the potential to be age- and, if desired, gender-specific, just as easy to estimate, less prone to misuse, more directly interpretable, and based on more defensible science.

Correspondence

(The Editors do not hold themselves responsible for opinions expressed in letters)

Effective dose: a flawed concept that could and should be replaced. Comments on a paper by D J Brenner (Br J Radiol 2008;81:521–3)

The Editor — Sir,

The author is uncompromising in his criticisms of the quantity “effective dose” and proposes its replacement with a quantity termed “effective risk”. The uninformed use and misapplication of effective dose is a recognised problem in radiation protection. The ICPR recommendations [1] provide an explanation of the intended application of effective dose. Further guidance will be provided in a forthcoming ICPR report that will also discuss approaches to assessments in situations, including medical applications, for which effective dose was not intended.

Yours etc.,

G Dietze

(Chairman1 and members of Committee 2 of the International Commission on Radiological Protection)

Günter Dietze
Paracelsusstr. 7
D-38116 Braunschweig
Germany

E-mail: guenther.dietze@t-online.de
What is effective dose for?

- Effective dose aims to provide a single number that is proportional to the radiobiological “detriment” from a particular, often inhomogeneous, type of radiation exposure.

- “Detriment” represents a balance between cancer incidence, cancer mortality, life shortening, and hereditary effects.

- It was designed to allow comparisons of the risks associated with different spatially-inhomogeneous exposures, now most frequently from different imaging techniques / scenarios.
What is effective dose for?

“Effective dose applies to a reference person and is not intended to provide a measure of risk”

Dietze, Harrison and Menzel (2009)

In fact, effective dose is always used as a measure of risk
Effective dose is *always* used as a measure of risk

‘Effective dose’ has been defined and introduced by ICRP for risk management purposes

ICRP 2009
A quite typical use of effective dose in radiology

Radiation exposure from pediatric head CT: a bi-institutional study

Mary A. King · Kalpana M. Kanal ·
Annemarie Relyea-Chew · Mark Bittles ·
Monica S. Vavilala · William Hollingworth

Received: 24 February 2009 / Revised: 6 May 2009 / Accepted: 1 June 2009 / Published online: 25 June 2009
© Springer-Verlag 2009

Abstract
Background Medical radiation from CT should be kept as low as reasonably achievable (ALARA), particularly in young patients.
Objective To examine radiation dose from head CT in children in a trauma center (TC) and a regional children’s hospital (RCH).
Materials and methods A random sample of 240 children (0–3, 4–9, 10–14 years of age) from the TC were compared with a similar cohort from the RCH. All children had undergone at least one head CT scan without contrast enhancement; data from PACS and Department of Radiology Information System were used to estimate normalized effective dose (ED). Lifetime attributable risk of cancer incidence was estimated using the Biologic Effects of Ionizing Radiation (BEIR) VII report.
Results The mean normalized ED was significantly higher in the youngest children at the TC (2.74 mSv in those aged 0–3 years vs. 2.23 mSv in those aged 10–14 years; \(P<0.001\)) and at the RCH (2.44 mSv in those aged 0–3 years vs. 1.71 mSv in those aged 10–14 years; \(P<0.001\)). Each decreasing year of age was independently associated with a 0.06 mSv higher mean normalized ED \(P<0.001\). After adjusting for the age difference between the institutions, the
A quite typical use of effective dose in radiology

Table 3 Comparison of mean normalized ED within each age cohort between institutions.

<table>
<thead>
<tr>
<th>Age cohort</th>
<th>Mean normalized ED (mSv)</th>
<th>95% CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC (n=80)</td>
<td>RCH (n=80)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (0–3 years)</td>
<td>2.74</td>
<td>2.44</td>
<td>0.04–0.55</td>
</tr>
<tr>
<td>2 (4–9 years)</td>
<td>2.52</td>
<td>2.13</td>
<td>0.12–0.65</td>
</tr>
<tr>
<td>3 (10–14 years)</td>
<td>2.23</td>
<td>1.71</td>
<td>0.37–0.66</td>
</tr>
</tbody>
</table>
A quite typical use of effective dose in radiology

Table 5 Lifetime attributable risk estimates: cancer incidence and mortality per 1000,000 persons attributable to radiation exposure from one head CT scan (mean ED), presented by age, cohort and by institution (based on the BEIR VII report)

<table>
<thead>
<tr>
<th>Cohort</th>
<th>TC All solid cancer</th>
<th>TC Leukemia</th>
<th>RCH All solid cancer</th>
<th>RCH Leukemia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Girls</td>
<td>Boys</td>
<td>Girls</td>
<td>Boys</td>
</tr>
<tr>
<td>1 (0–3 years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cases in absence of exposure</td>
<td>36,900</td>
<td>45,500</td>
<td>590</td>
<td>830</td>
</tr>
<tr>
<td>All excess cases (fatal and nonfatal)</td>
<td>35.6</td>
<td>21.9</td>
<td>1.9</td>
<td>2.7</td>
</tr>
<tr>
<td>Deaths in absence of exposure</td>
<td>17,500</td>
<td>22,100</td>
<td>530</td>
<td>710</td>
</tr>
<tr>
<td>Excess deaths from exposure</td>
<td>16.7</td>
<td>11.2</td>
<td>1.4</td>
<td>1.9</td>
</tr>
<tr>
<td>2 (4–9 years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cases in absence of exposure</td>
<td>36,900</td>
<td>45,500</td>
<td>590</td>
<td>830</td>
</tr>
<tr>
<td>All excess cases (fatal and nonfatal)</td>
<td>32.8</td>
<td>20.2</td>
<td>1.8</td>
<td>2.5</td>
</tr>
<tr>
<td>Deaths in absence of exposure</td>
<td>17,500</td>
<td>22,100</td>
<td>530</td>
<td>710</td>
</tr>
<tr>
<td>Excess deaths from exposure</td>
<td>15.4</td>
<td>10.3</td>
<td>1.3</td>
<td>1.8</td>
</tr>
<tr>
<td>3 (10–14 years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cases in absence of exposure</td>
<td>36,900</td>
<td>45,500</td>
<td>590</td>
<td>830</td>
</tr>
<tr>
<td>All excess cases (fatal and nonfatal)</td>
<td>29.0</td>
<td>17.8</td>
<td>1.6</td>
<td>2.2</td>
</tr>
<tr>
<td>Deaths in absence of exposure</td>
<td>17,500</td>
<td>22,100</td>
<td>530</td>
<td>710</td>
</tr>
<tr>
<td>Excess deaths from exposure</td>
<td>13.6</td>
<td>9.1</td>
<td>1.1</td>
<td>1.6</td>
</tr>
</tbody>
</table>
A quite typical use of effective dose in radiology

1. Estimate effective dose.…

2. Based on effective dose, either

 A. Draw inferences about individual cancer risk, or

 B. Explicitly estimate individual cancer risk from age- and gender- dependent BEIR data

Clara Carpeggiani a, Marco Paterni a, Davide Caramella b, Eliseo Vano c, Richard C. Semelka d, Eugenio Picano a, *.

a CNR, Institute of Clinical Physiology, Italy
b Radiology Department, Pisa University, Pisa, Italy
c San Carlos Hospital, Radiology Department, Caracas, Venezuela
d University of North Carolina, Chapel Hill, NC, USA

There is even convenient software to do this....
Issues with effective dose?

- It is only useful when it is used to provide a measure of risk to individuals.
- When it is useful to provide a measure of risk to individuals, it represents bad science:
 - It is based on highly subjective judgments.
 - It does not reflect the major age / gender dependencies in radiation sensitivity.
 - It is confusing to most users.
 - It is unnecessarily hard to interpret.
The Definition of Effective Dose

Effective Dose \(E = \sum_{T} w_T H_T \)

- \(H_T \) are the tissue-specific equivalent doses in tissues \(T \)
- \(w_T \) are committee-defined dimensionless tissue-specific weighting factors

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast</td>
<td>0.12</td>
<td>0.05</td>
</tr>
<tr>
<td>Bone marrow</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Colon(^a)</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Lung</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Remainder</td>
<td>0.12(^b)</td>
<td>0.05(^c)</td>
</tr>
<tr>
<td>Stomach</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Gonads(^d)</td>
<td>0.08</td>
<td>0.20</td>
</tr>
<tr>
<td>Bladder</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>Liver</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>Oesophagus</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>Thyroid</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>Bone surfaces</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Brain</td>
<td>0.01</td>
<td>—</td>
</tr>
<tr>
<td>Salivary glands</td>
<td>0.01</td>
<td>—</td>
</tr>
<tr>
<td>Skin</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Objectivity

- Effective dose is designed as a measure of "radiation detriment", which is a subjective mix of cancer incidence, cancer mortality, life shortening and hereditary effects.

- The nature of this mix is a committee-determined decision, and changes as ICRP committees change
Evolution of some organ / tissue weighting factors

ICRP 26
1975
1985
1995
2005
0.00
0.05
0.10
0.15
0.20
0.25
Gonads
Breast

ICRP 60
1975
1985
1995
2005
0.00
0.05
0.10
0.15
0.20
0.25
Gonads
Breast

ICRP 103
1975
1985
1995
2005
0.00
0.05
0.10
0.15
0.20
0.25
Gonads
Breast
The tissue weighting factor for the breast increased dramatically between 1991 and 2007.

- **1991:** 0.05, **2007:** 0.12
- Arguably the most important change in the entire 2007 ICRP report

This change in w_T was NOT because we learned more about radiation-induced breast cancer between 1991 and 2007.

Rather it was because the 2007 ICRP committee chose to put more emphasis on cancer incidence, as opposed to cancer mortality.

In our opinion, it is not a valid criticism that weighting factors change every decade or so; on the contrary the ICRP would be open to criticism if relevant scientific advances were not taken into account.

Dietze, Harrison and Menzel, 2009
Age dependencies

• The tissue weighting factors are a single number per organ, i.e., no dependency on age.

<table>
<thead>
<tr>
<th></th>
<th>Children (per 0.1 Sv/10^5)</th>
<th>Adults (per 0.1 Sv/10^5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung</td>
<td>373</td>
<td>166</td>
</tr>
<tr>
<td>Breast</td>
<td>865</td>
<td>160</td>
</tr>
</tbody>
</table>

Estimated cancer incidence estimates, derived from BEIR-VII

Reminder!

Effective dose is always used to provide a measure of risk...

• So for example, two different dose distributions which result in the same radiation risk for adults, would not result in equal risks for children.
Effective Dose is Confusing

• The confusion between organ dose and effective dose is widespread in the field of radiology.
 – in a significant proportion of relevant papers, they are interchangeably referred to as “the dose”

• This confusion is probably inevitable for a quantity which...
 a) has dose in its name,
 b) has units of dose,
 c) but is actually a measure of radiological detriment
A proposal to replace effective dose

Brenner, BJR 2008

- replace effective dose (i.e. summed organ doses, each weighted with committee-generated numbers)
- with “effective risk” (i.e. summed organ doses, each weighted with actual epidemiologically-based cancer risks)

Effective risk would perform all the comparative functions that we agree are needed, but

1) would eliminate the subjectivity associated with committee-generated weighting factors,

2) would provide a more intuitively interpretable quantity relating to risk, leading in turn to

3) less potential for misuse.
Effective Dose vs. Effective Risk

\[
\text{Effective Dose} \quad = \quad E \quad = \quad \sum_T w_T \quad H_T
\]

\(H_T\) are the tissue-specific equivalent doses in tissues \(T\)

\(w_T\) are committee-defined dimensionless tissue-specific weighting factors

\[
\text{Effective Risk} \quad = \quad R \quad = \quad \sum_T r_T \quad H_T
\]

\(r_T\) are lifetime radiation-attributable organ-specific cancer risk estimates (per unit equivalent dose to tissue \(T\))

The effective risk is thus a generic lifetime radiation-attributable cancer risk
Effective Dose vs. Effective Risk

\[\text{Effective Dose} \ = \ E = \sum_T w_T \ H_T \]

\[\text{Effective Risk} \ = \ R = \sum_T r_T \ H_T \]

- The two equations have exactly the same structure, so calculations will be no harder / easier.
- And any inherent assumptions (e.g. LNT) will be the same for both.
Features of Effective Risk

1. Objectivity

- No need to rely on the subjective views of a committee
- It can still change with time, but now based on the science, not the personalities
- It refers only to cancer
 - cancer risk data now represent the scientific basis for all contemporary dose limits
 - the use of a subjectively-defined genetic component is a hangover from the 1950s

“We see no reason to discount hereditary disease in the protection system… we believe that this would be a backward step that the public and radiation professionals would not understand”

Dietze, Harrison, Menzel 2009
Features of Effective Risk

2. Less potential for confusion

- Currently, there is widespread confusion in the radiological literature between organ dose and effective dose.
- The confusion would be entirely avoided if measures of radiobiological detriment were in units of (for example) “per 10,000 individuals” (as in effective risk), rather than in Sieverts (as in effective dose).
3. Potential to include age effects

- It is true that for occupational radiation protection (ages 18 to 70), it may be OK to ignore age dependencies
- But more than 2/3 of the usage of the effective dose concept is for radiology, where we cannot ignore age dependencies

<table>
<thead>
<tr>
<th>Tissue</th>
<th>r_T Children</th>
<th>r_T Adults</th>
<th>r_T All Ages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stomach</td>
<td>66</td>
<td>30</td>
<td>37</td>
</tr>
<tr>
<td>Lung</td>
<td>373</td>
<td>166</td>
<td>208</td>
</tr>
<tr>
<td>Colon</td>
<td>203</td>
<td>96</td>
<td>118</td>
</tr>
<tr>
<td>Liver</td>
<td>32</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>Bladder</td>
<td>153</td>
<td>75</td>
<td>91</td>
</tr>
<tr>
<td>Uterus</td>
<td>37</td>
<td>14</td>
<td>19</td>
</tr>
<tr>
<td>Ovary</td>
<td>76</td>
<td>28</td>
<td>37</td>
</tr>
<tr>
<td>Prostate</td>
<td>67</td>
<td>34</td>
<td>41</td>
</tr>
<tr>
<td>Breast</td>
<td>865</td>
<td>160</td>
<td>299</td>
</tr>
<tr>
<td>Thyroid</td>
<td>200</td>
<td>18</td>
<td>54</td>
</tr>
<tr>
<td>Leukemia</td>
<td>133</td>
<td>68</td>
<td>82</td>
</tr>
</tbody>
</table>
4. Interpretability

- The goal is to have a generic quantity reflecting radiobiological detriment or risk, so the ICRP adoption of a quantity (effective dose) that has units of Sieverts, is puzzling.
- A major advantage of “effective risk” is that it is directly interpretable as a risk.
- As we struggle with the rapidly increasing radiology contribution to the population exposure, it is surely advantageous to have a measure of the radiological detriment which actually means something to most users.

Which is more intuitively interpretable?

1. An effective dose of (say) 1 mSv
2. An effective risk of (say) 4 per 100,000
Summary
The case for replacing effective dose

• For radiation protection one could perhaps make an argument for the continued use of effective dose, flawed and confusing as it is
 – In practice, however, effective dose is now largely used for patient risk comparison and characterization, and there its use cannot be justified

• Effective risk, where organ doses are weighted with cancer risks estimates, would perform the same comparative role as effective dose, and would
 – be just as easy to estimate
 – be age-dependent, if required
 – be less prone to misuse
 – be more directly understandable,
 – and would be based on objective science
The radiology community are starting to use more scientific approaches.

Patient-specific Radiation Dose and Cancer Risk for Pediatric Chest CT

Purpose: To estimate patient-specific radiation dose and cancer risk for pediatric chest computed tomography (CT) and to evaluate factors affecting dose and risk, including patient size, patient age, and scanning parameters.

Materials and Methods: The institutional review board approved this study and

While widely used as a surrogate for population radiation risk, effective dose does not reflect individual patient risk; the tissue-weighting factors are mean values representing averages across both sex and age (20). Therefore, to more accurately estimate individual patient risks, we further implemented a metric of risk, termed risk index, defined as

\[
\text{Risk index} = \sum_{T} r_T(\text{sex, age})H_T, \quad (2)
\]

where \(H_T\) is the equivalent dose for organ or tissue \(T\) and \(r_T\) is the sex-, age-, and tissue-specific risk coefficient (cases per 100,000 exposed to 0.1 Gy) for lifetime attributable risk of cancer incidence. The metric of risk index presented here was adopted from the recently proposed concept of effective risk (24).