Transfer of radionuclides to wildlife within the ICRP system of protection

Panel Discussion

Joint IES-ICRP Symposium
Aomori, Japan, October 4, 2016

David Copplestone
Secretary, ICRP Committee 5
Planned, emergency, and existing exposure situations

Environmental radionuclide concentrations

Reference Male & Female, Representative Person

Reference Animals and Plants

Dose limits, constraints and reference levels

Derived Consideration Reference Levels

Decisions regarding protection of public health and the environment for the same exposure situation
<table>
<thead>
<tr>
<th>WILDLIFE GROUP</th>
<th>RAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large terrestrial mammals</td>
<td>Deer</td>
</tr>
<tr>
<td>Small terrestrial mammals</td>
<td>Rat</td>
</tr>
<tr>
<td>Aquatic birds</td>
<td>Duck</td>
</tr>
<tr>
<td>Amphibians</td>
<td>Frog</td>
</tr>
<tr>
<td>Freshwater pelagic fish</td>
<td>Trout</td>
</tr>
<tr>
<td>Marine fish</td>
<td>Flatfish</td>
</tr>
<tr>
<td>Terrestrial insects</td>
<td>Bee</td>
</tr>
<tr>
<td>Marine crustaceans</td>
<td>Crab</td>
</tr>
<tr>
<td>Terrestrial annelids</td>
<td>Earthworm</td>
</tr>
<tr>
<td>Large terrestrial plants</td>
<td>Pine tree</td>
</tr>
<tr>
<td>Small terrestrial plants</td>
<td>Wild grass</td>
</tr>
<tr>
<td>Seaweeds</td>
<td>Brown seaweed</td>
</tr>
</tbody>
</table>
Table 1.1. Elements and their radioisotopes considered in this report.

<table>
<thead>
<tr>
<th>Element</th>
<th>Isotopes</th>
</tr>
</thead>
</table>
| Ag | Silver
Am | Americium
Ba | Barium
C | Carbon
Ca | Calcium
Cd | Cadmium
Ce | Cerium
Cf | Californium
Cl | Chlorine
Cm | Curium
Co | Cobalt
Cr | Chromium
Cs | Caesium
Eu | Europium
H | Tritium
I | Iodine
Ir | Iridium
K | Potassium
La | Lanthanum
Mn | Manganese
Nb | Niobium
Ni | Nickel
Np | Neptunium
P | Phosphorus
Pa | Protactinium
Pb | Lead
Po | Polonium
Pu | Plutonium
Ra | Radium
Ru | Ruthenium
S | Sulphur
Sb | Antimony
Se | Selenium
Sr | Strontium
Tc | Technetium
Te | Tellurium
Th | Thorium
U | Uranium
Zn | Zinc
Zr | Zirconium |
|---------|-----------------------------|
| | Ag-110m
Am-241
Ba-140
C-14
Ca-45
Cd-109
Ce-141, Ce-144
Cf-252
Cl-36
Cm-242, Cm-243, Cm-244
Co-57, Co-58, Co-60
Cr-51
Cs-134, Cs-135, Cs-136, Cs-137
Eu-152, Eu-154
H-3
I-125, I-129, I-131, I-132, I-133
Ir-192
K-40
La-140
Mn-54
Nb-94, Nb-95
Ni-59, Ni-65
Np-237
P-32, P-33
Pa-231
Pb-210
Po-210
Pu-238, Pu-239, Pu-240, Pu-241
Ra-226, Ra-228
Ru-103, Ru-106
S-35
Sb-124, Sb-125
Se-75, Se-79
Sr-89, Sr-90
Tc-99
Te-129m, Te-132
Th-227, Th-228, Th-230, Th-231, Th-232, Th-234
U-234, U-235, U-238
Zn-65
Zr-95 |
Options

- Concentration ratios (biota/media – air, water, soil, sediment etc.)
- Allometry/biological scaling
- Guidance
Wildlife Transfer Database

International Atomic Energy Agency & International Union of Radioecologists

If you are not registered, Register Now
If you have forgotten your login details please email us and we will send you a reminder (Password Reminder)

User Name
Password

This database collates data to provide parameter values for use in environmental radiological assessments to estimate the transfer of radioactivity to wildlife. The database has been updated today (12/12/13). Full details of the update will be made available soon. There may be some minor changes with the data over the next few weeks as further evaluation of the changed data takes place. If you have any queries please contact us at the wildlife.transfer@gmail.com address. We will note here when the database update is complete.

The database was started to aid both:
1) the International Atomic Energy Agency (IAEA) in the production of a handbook on wildlife transfer parameters (IAEA Technical Report Series now in press); and
2) the derivation of transfer parameter values for the International Commission on Radiological Protection (ICRP) list of Reference Animals and Plants (RAPs) (ICRP Publication 114).

The database has been designed and supported by the following organisations:
- Environment Agency, England and Wales
- Norwegian Radiation Protection Authority, Norway
- Centre for Ecology and Hydrology, NERC, UK
- University of Stirling, UK
- The STAR Radioecology Network of Excellence
ICRP 108

<table>
<thead>
<tr>
<th>WILDLIFE GROUP</th>
<th>RAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large terrestrial mammals</td>
<td>Deer</td>
</tr>
<tr>
<td>Small terrestrial mammals</td>
<td>Rat</td>
</tr>
<tr>
<td>Aquatic birds</td>
<td>Duck</td>
</tr>
<tr>
<td>Amphibians</td>
<td>Frog</td>
</tr>
<tr>
<td>Freshwater pelagic fish</td>
<td>Trout</td>
</tr>
<tr>
<td>Marine fish</td>
<td>Flatfish</td>
</tr>
<tr>
<td>Terrestrial insects</td>
<td>Bee</td>
</tr>
<tr>
<td>Marine crustaceans</td>
<td>Crab</td>
</tr>
<tr>
<td>Terrestrial annelids</td>
<td>Earthworm</td>
</tr>
<tr>
<td>Large terrestrial plants</td>
<td>Pine tree</td>
</tr>
<tr>
<td>Small terrestrial plants</td>
<td>Wild grass</td>
</tr>
<tr>
<td>Seaweeds</td>
<td>Brown seaweed</td>
</tr>
</tbody>
</table>

Family level so some have a few, some lots of species

Where no data, used wildlife group from database
Guidance

- Use an available CR value for an organism of similar taxonomy within a given ecosystem for the radionuclide under assessment (preferred option)

- Use an available CR value for a similar Reference Organism within a given ecosystem for the radionuclide under assessment (preferred option)

- Use an available CR value for the given Reference Organism for an element of similar biogeochemistry. Use an available CR value for biogeochemically similar elements for organisms of similar taxonomy

- Use an available CR value for biogeochemically similar elements available for a similar Reference Organism

- Use allometric relationships, or other modelling approaches, to derive appropriate CRs. Assume the highest available CR (least preferred option)

- Use the CR for the same organism in a different ecosystem (least preferred option).