Estimation on Lifetime Attributable Risks for Thyroid Cancer Incidence of Korean Population due to a Hypothetical Nuclear Accident in China

Hyejin Kima*, Seunghee Leea,b, Keonmin Kima, Sukhoon Kima, Juyub Kima
aFNC Technology Co., Ltd., 32F, 13, Heungdeok 1-ro, Giheung-gu, Yongin-si, Gyeonggi-do, Korea(Rep. of)
bDept. of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea(Rep. of)
* Corresponding author : khj0402@fnctech.com

Introduction

- In case of a nuclear accident, internal exposure of thyroid is considered as one of important issues.
- Supposing that a hypothetical accident occurred at Hongyanhe nuclear power plant (NPP) closest to Korean peninsula among operational NPPs in China, thyroid cancer incidence risk for the Korean population was assessed using BEIR VII (2006) and U.S. EPA (2011) cancer risk models.
 - Evaluation of an accumulated thyroid exposure dose after an accident above took place [1]
 - Calculation of the excessive relative risk (ERR) for thyroid by age and gender
 - Estimate on lifetime attributable risk (LAR) per 100,000 persons

Calculation of Excessive Relative Risk (ERR)

- In a previous study, an accumulated thyroid exposure dose was evaluated as 2.44E-03 mSv.
 - Supposing that Station Blackout (SBO) took place at Hongyanhe NPP
 - Applying seven days after accident above took place as evaluation period
 - Using NANAS (Northeast Asia Nuclear Accident Simulator) code with GDAS 1 degree meteorological data on fourth week of March 2015 that there was direct inflow of air current into South Korea

We calculated the ERR for thyroid by age and gender using BEIR VII and U.S. EPA 2011 thyroid cancer risk model in accordance with exposure dose (D) derived from the previous study.

\[ERR_{male} = 0.53D \times \exp[-0.083(e - 30)] \]
\[ERR_{female} = 1.05D \times \exp[-0.083(e - 30)] \]

Conclusion

- The estimated lifetime baseline risk (LBR) per 100,000 persons, female, and whole Korean population is 951, 3291, and 2117, respectively.
- The LARs estimated by BEIR VII and U.S. EPA models are as follows; 1.8E-03 and 2.0E-03 for male, and 1.2E-02 and 7.1E-03 for female.
- Ratios of LARs calculated by two models as above to LBR are as follows; 1.9E-04 \% and 2.2E-04 \% for male, and 3.8E-04 \% and 2.1E-04 \% for female.
- For the Korean population, the LAR assessed by BEIR VII and U.S. EPA 2011 is 7.1E-03 and 4.5E-03, respectively.
- From these results, it could be expected that 2.44E-06 Gy of thyroid exposure dose due to a hypothetical SBO at Hongyanhe NPP resulted in approximately 2.0E-04\%–3.5E-04\% increase of thyroid cancer incidence for the Korean population.

Reference

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant (No. 2017M2A8A4015292) funded by the Korean government (MSIP: Ministry of Science, ICT and Future Planning).