Countermeasures, radiological surveillance and evolution of regulations in Belarus, after the Chernobyl accident

Prof. Victor Averin

Dean of Biology Faculty
Gomel State University named after Francisk Skorina
Damaged reactor of Chernobyl NPP

26. 04. 1986
Contamination of Belarus by Cs-137
Radiation impact at the early stage after the accident
Protective measures at various post-Chernobyl stages

- Evacuation
- Resettlement
- Large-scale decontamination

Protective measures 1991-2000
- Legislation
- Mass resettlement
- Health and social protection
- Countermeasures in agriculture

Long-term rehabilitation 2000–present
- Re-specialization in agriculture
- Rehabilitation of residential areas
- Radiological protection culture
STAGES OF PUBLIC PERCEPTION AND UNDERSTANDING OF RADIATION PHENOMENON AND RADIOACTIVE CONTAMINATION

1. 1986-1989
 - Fear of deadly health effects and especially of the safety of children;
 - Can we live here and consume the food we produce?
 - Confusing variance of information

2. 1990-2000
 - Steady belief that living under such conditions is possible;
 - How to reduce the radiation levels in locally produced food? What recommendations should be used?
 - What food products should be produced to assure their good sale?

3. 2000-present
 - Confidence in food safety (compliance with the standards);
 - Improved credibility to the affected areas;
 - Radioecological education of all local residents through children and youth;
 - Direct access to measuring radionuclide concentrations in food
Primary actions at the early stage after the disaster:

1. External gamma radiation from radioactive cloud – sheltering
2. Inhalation uptake of iodine – thyroid blockade
3. Contact exposure – sanitary treatment
Evacuation of 24.7 thous. people from 30-km zone from 2nd May till August 1986, resettlement of 110 thous. people in the following years (1991-2005).

Rushed slaughter of cattle from evacuated areas. Processing of milk with 131I, 134Cs, 137Cs, 90Sr.

Abandoning of agricultural lands (265 thous. hectares).

Radiological management of foods and soil surveys (first map was ready by June 1986, large-scale map of contaminated soils was done by 1991).

2-stage cattle fattening and slaughter after ‘clean’ feeding (lands with 137Cs contamination >555 kBq/m2).

Deep plowing on peat soils. Liming (682 thous. ha), increased rates of fertilizers (1.2 mln tons K2O and 0.6 mln tons P2O5, plus 58 mln tons manure).

‘Radical’ improvement of hayfields and pastures.

Dire shortage of timely information, equipment, specialists and resources.

Temporary permissible levels for 131I concentrations in foods were adopted in 12 days after the accident on 6th May 1986.
Emergency actions in 1986 – 1989

In total, **333 thousand people** were evacuated or voluntarily moved away from highly contaminated areas.

Evacuation allowed to:

- reduce collective dose by 10000 man-sieverts, and
- following the threshold principle, avoid mass deterministic effects
Crude Incidence rates, Thyroid Cancer, 1978-2015
Observed Age-specific Thyroid cancer Incidence rates, 1978-2015
Standardized Incidence Ratios for thyroid Cancer by GPR 1-4, 1987-2015
Standardized Incidence Ratios for thyroid Cancer by Age at Disaster GPR 1-4, 1987-2015 гг.
The contamination of the territory of Belarus with iodine-131 (reconstruction) estimated 10 May, 1986
Dose-Response curve
Decontamination should be based on dose limits established for this purpose.

1986: ambient dose 5-20 mR/h → Evacuation

In the initial period of decontamination in the USSR external radiation dose limits changed over time and depended on the category of personnel involved in the post-accident response actions.

In 1986 a dose limit was established which insured no deterministic effects of exposure. The pre-determined emergency standard was that of 250 mSv. Later it was changed down to 50 mSv, and after that, the life-span dose limit was set at 35 mSv.
Decontamination in Belarus

INTERVENTION LEVELS

<table>
<thead>
<tr>
<th>Object of Decontamination</th>
<th>Gamma Radiation, μR/h, or Beta Radiation, particle/min·cm2</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Territories of pre-school facilities, schools and private houses</td>
<td>35-40 μR/h</td>
<td>Removal of 25-cm soil layer</td>
</tr>
<tr>
<td>Working office and operational places:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- permanent being</td>
<td>50 μR/h</td>
<td>Cleaning with detergents and water</td>
</tr>
<tr>
<td>- temporary being</td>
<td>100 μR/h</td>
<td></td>
</tr>
<tr>
<td>Open areas within settlements (stores, public places)</td>
<td>60 μR/h</td>
<td>Removal of 25-cm soil layer</td>
</tr>
<tr>
<td>Inner surfaces of houses; transportation means</td>
<td>20 particle/min·cm2</td>
<td>Cleaning with detergents and water</td>
</tr>
<tr>
<td>Roofs of buildings</td>
<td>40 particle/min·cm2</td>
<td>Cleaning with detergents and water</td>
</tr>
</tbody>
</table>
ベラルーシにおける除染

<table>
<thead>
<tr>
<th>除染対象</th>
<th>除線対象の基準</th>
<th>除染方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>幼稚園、学校、集合住宅周辺の土地</td>
<td>ガンマ線, μSv/h, μSv/particle/min·cm²</td>
<td>0.35-0.40 μSv/h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25cmの表土を除去</td>
</tr>
<tr>
<td>職場</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 常駐の場所</td>
<td>0.50 μSv/h</td>
<td></td>
</tr>
<tr>
<td>- 一時的滞在場所</td>
<td>1.0 μSv/h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>洗浄剤や水による洗浄</td>
<td></td>
</tr>
<tr>
<td>公共施設、店舗など</td>
<td></td>
<td>0.60 μSv/h</td>
</tr>
<tr>
<td></td>
<td>25cmの表土を除去</td>
<td></td>
</tr>
<tr>
<td>住居の外壁、乗り物</td>
<td></td>
<td>20 particle/min·cm²</td>
</tr>
<tr>
<td></td>
<td>洗浄剤や水による洗浄</td>
<td></td>
</tr>
<tr>
<td>住居の屋根</td>
<td></td>
<td>40 particle/min·cm²</td>
</tr>
<tr>
<td></td>
<td>洗浄剤や水による洗浄</td>
<td></td>
</tr>
</tbody>
</table>
Decontamination

500 settlements of Belarus were decontaminated during 1986-1989 period, 60% – in 2-3 stages.

- removal of contaminated soil and "clean" refilling;
- dismantling of objects not subjected to decontamination;
- asphalting of streets, roads and pavements;
- roof replacement;
- waste disposal.

7.3 million m3 of soil was cut off and replaced with 1.57 million m3 of clean soil.
1986年から1989年にかけて、ベラルーシでは500の居住地で除染が行われた。そのうち、60%の居住地では2、3回に分け行われた。

- 汚染土の除去、非汚染土との入れ替え
- 除染不可能な建造物の解体
- 道路、歩道のアスファルトによる舗装
- 屋根の葺き替え
- 除染後の残留物の埋立処理

730万㎥の土が埋立処理され、157万㎥の非汚染土が使用された。
Radiological zoning criteria adopted in Belarus in 1990s

<table>
<thead>
<tr>
<th>Zone</th>
<th>Annual effective dose to population should not exceed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone of residence with periodic radiation control</td>
<td>$D_{\text{eff}} < 1 \text{ mSv\cdot year}^{-1}$ $^{137}\text{Cs} < 185 \text{ kBq\cdot m}^{-2}$ $^{90}\text{Sr} < 18.5 \text{ kBq\cdot m}^{-2}$ $^{238,239,240}\text{Pu} < 0.74 \text{ kBq\cdot m}^{-2}$</td>
</tr>
<tr>
<td>Zone with the right for resettlement</td>
<td>$1 \text{ mSv\cdot year}^{-1} < D_{\text{eff}} < 5 \text{ mSv\cdot year}^{-1}$ $^{137}\text{Cs} < 555 \text{ kBq\cdot m}^{-2}$ $^{90}\text{Sr} < 74 \text{ kBq\cdot m}^{-2}$ $^{238,239,240}\text{Pu} < 1.85 \text{ kBq\cdot m}^{-2}$</td>
</tr>
<tr>
<td>Zone of primary resettlement</td>
<td>$D_{\text{eff}} > 5 \text{ mSv\cdot year}^{-1}$ $^{137}\text{Cs} > 1480 \text{ kBq\cdot m}^{-2}$ $^{90}\text{Sr} > 111 \text{ kBq\cdot m}^{-2}$ $^{238,239,240}\text{Pu} > 3.7 \text{ kBq\cdot m}^{-2}$</td>
</tr>
<tr>
<td>Zone of subsequent resettlement</td>
<td>$555 < ^{137}\text{Cs} < 1480 \text{ kBq\cdot m}^{-2}$ $74 < ^{90}\text{Sr} < 111 \text{ kBq\cdot m}^{-2}$ $1.85 < ^{238,239,240}\text{Pu} < 3.7 \text{ kBq\cdot m}^{-2}$</td>
</tr>
<tr>
<td>Zone of evacuation (exclusion zone)</td>
<td>Territories evacuated in 1986 and territories of additional resettlement (deposition densities $^{90}\text{Sr} > 111 \text{ kBq\cdot m}^{-2}$, $^{238,239,240}\text{Pu} > 3.7 \text{ kBq\cdot m}^{-2}$)</td>
</tr>
</tbody>
</table>
Radiation exposure at the late post-accident phase
Internal exposure pathways

Radiation control
Reference levels
Risk communication

Agricultural production
Measures to reduce internal radiation doses

- **Radiation control and monitoring** of agricultural products and raw materials
- **Disuse** of agricultural areas
 - **Re-specialization** of production
- Use of **fertilizers**
 - Lowering **soil acidity**
- Use of special additives in **animal feeds**
 - **Risk communication**
Assess the radiation situation and determine the levels of ionizing radiation exposure

Exclude production and storage of foodstuffs and raw materials with radionuclide concentration levels above the specified limits

Evaluate the effectiveness of protective measures, provide their optimal and targeted implementation

Develop a sound strategy of recovery actions
放射線管理

目的:

放射線環境を知ること

食品中の放射性物質の含有量をコントロールすること

防護対策の有効性の評価

土地の回復の戦略を立てるること
Why Radiation Control?

PROTECTIVE MEASURES

Vegetables & Fruits

Meat & Milk

Seafood

Gifts of Forest

Radiation Control

Consumption

Disposal/Recovery

Public information

Public information
Measures in forest management

- Reforestation and afforestation
- Forest protection against wild fires
- Radiation control and monitoring
 - Risk communication including special education and training programs for foresters and informational interaction with the local residents

Forest activities in contaminated areas are subject to regulations and recommendations.

Forest zoning system is based on Cs-134 contamination density:

1 zone: 1–5 Ci/km²
2 zone: 5–15 Ci/km²
3 zone: 15–40 Ci/km²
4 zone: >40 Ci/km²
Within the scope of the principal Program directions the solution to the following tasks will be provided.

In the framework of design and implementation of special projects towards modernization and efficient utilization of production capacities, natural, primary and human resources (2):

- Development of the infrastructure required to provide safe living conditions in radioactively contaminated areas;
- Production of non-food products (woodwork produce, forest planting stock, grass and flower seeds, grain, breeding stock etc.);
- Establishment of farm businesses for advanced agricultural processing;
- Development of integrated set of actions for quality control system implementation on milk/meat production/processing enterprises which provide significant contribution to GDP;
- Design and implementation of integrated measures for human resource development in affected regions;
- Accurate planning, implementation and revision of economic development measures on affected territories.
Social effects in the course and upon completion of the Program implementation will be valued with regard to:

- Arrangements towards medical and demographic improvement in the affected areas and implementation of targeted medical assistance system;
- Creating conditions favourable for sustainable social and economic growth and safe habitation on the affected territories;
- Effectiveness of information support on recovery issues provided to the population and authorities at all levels.
Public health surveillance

- **Screening /regular health examinations**
- Specialized registers/databases
 - **Dose load reduction** by using state-of-the-art low-dose diagnostic equipment
 - **Radiation-epidemiological research**
食品中のセシウム137の基準値

<table>
<thead>
<tr>
<th>食品名</th>
<th>日本（新基準値）</th>
<th>ベラルーシ共和国（99年）</th>
</tr>
</thead>
<tbody>
<tr>
<td>飲料水</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>牛乳・乳製品</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>チーズ</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>牛肉、羊肉、豚肉、鶏肉</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>180</td>
</tr>
<tr>
<td>パン・パン製品</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>野菜</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>果物</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>乳児用食品</td>
<td>50</td>
<td>37</td>
</tr>
</tbody>
</table>

Bq/kg, Bq/l
THANK YOU FOR YOUR ATTENTION!

Prof. Victor Averin

Dean of Biology Faculty
Gomel State University named after Francisk Skorina

Member of ICRP Task Group 93
“Update of ICRP Publication 109 and 111”