

外部被ばくに対する 放射線防護量のための 換算係数

外部被ばくに対する 放射線防護量のための 換算係数

2010年10月 ICRP 主委員会により承認 2010年11月 ICRU により採択

ICRP Publication 116

Conversion Coefficients for Radiological Protection Quantities for External Radiation Exposures

Editor

C.H. CLEMENT

Authors on behalf of ICRP

N. Petoussi-Henss, W.E. Bolch, K.F. Eckerman, A. Endo, N. Hertel, J. Hunt, M. Pelliccioni, H. Schlattl, M. Zankl

Copyright \bigcirc 2015 The Japan Radioisotope Association. All Rights reserved. Authorised translation by kind permission from the International Commission on Radiological Protection. Translated from the English language edition published by Elsevier Ltd.

Copyright \bigcirc 2012 The International Commission on Radiological Protection. Published by Elsevier Ltd. All Rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, electrostatic, magnetic tape, mechanical photocopying, recording or otherwise or republished in any form, without permission in writing from the copyright owner.

Japanese Translation Series of ICRP Publications Publication 116

This translation was undertaken by the following colleagues.

Translated by

Akira ENDO

Editorial Board

The Committee for Japanese Translation of ICRP Publications, Japan Radioisotope Association

working in close collaboration with Japanese ICRP & ICRU members.

_____ ◆ Committee members ◆ Ohtsura NIWA (Chair; ICRP, MC) Keiko IMAMURA (Vice-chair) Yasuhito SASAKI* Reiko KANDA Gen SUZUKI Michio YOSHIZAWA Kenzo FUJIMOTO ♦ Supervisors ♦ Nobuhito ISHIGURE* (ICRP. C2) Nobuhiko BAN (ICRP. C1) Akira ENDO (ICRP. C2) Yoshiharu YONEKURA (ICRP, C3) Michiaki KAI (ICRP. C4) Toshimitsu HOMMA (ICRP. C4) Kazuo SAKAI (ICRP. C5) Hideo TATSUZAKI (ICRU)

* Former ICRP member.

図 3.1 ICRP/ICRU 標準コンピュータファントムによる成人の男性(左)と女性(右) Publication 116 のデータセットは、このファントムの開発から始まり、線量換算係数の計算、 そして計算結果の評価に及ぶ、10年近い活動の成果である。(→ 関連の記述は 3.1 節)

図 4.4 と 4.20 ICRP/ICRU 標準コンピュータファントムで評価した Publication 116 の実効線量 左が光子の評価結果であり、右が中性子の評価結果である。(→ 関連の記述は 4.1 節と 4.3 節)

電子についての検討

光子についての検討

図 F.1 と F.2 眼の水晶体吸収線量を評価する際に採用された眼モデル

眼の水晶体は、近年の知見から、従来の評価より放射線感受性が高いとの可能性が示唆されている。眼の水晶体内で急な線量勾配を示す、電子や低エネルギー光子のような弱透過性放射線について検討を深めるため、モンテカルロ計算で詳細に様式化された眼モデルを採用した(下)。このモデルを用いて、電子については裸眼モデルの被ばく(上左)を仮定し、光子については数学モデルの頭部(上右)に組み込んで評価した。中性子についても、このモデルで評価を行った。(→関連の記述は付属書F)

邦訳版への序

本書は ICRP の主委員会が 2010 年 10 月に承認, ICRU が 2010 年 11 月に採択した, 2012 年 3 月刊行の,外部被ばくに対する放射線防護量のための換算係数の報告書

> Conversion Coefficients for Radiological Protection Quantities for External Radiation Exposures

(Publication 116. Annals of the ICRP, Vol. 40, No. 2-5(2010))

を, ICRP の了解のもとに翻訳したものである。

翻訳は、遠藤章氏((独)日本原子力研究開発機構,ICRP 第2専門委員会)によって 行われた。この訳稿をもとに、ICRP 勧告翻訳検討委員会において推敲を重ね、最終稿 を決定した。原著の記述に対する疑問は原著者に直接確認し、誤りと判明した場合は修 正し、読者の理解を深めるため、必要と思われた場合は一部に訳注を付した。

本書は「ICRP 74 外部放射線に対する放射線防護に用いるための換算係数」の ICRP 2007 年勧告にもとづく改訂版である。本書のデータは、放射線防護のために行う外部 被ばく線量評価のあらゆる場面で活用されるもので、その中には、放射線障害防止法の 告示別表で示される数値、放射線施設の遮蔽計算、線量の測定・評価の指針やマニュア ルにおける利用も含まれる。

ICRP 116 は,換算係数の評価に用いる標準ファントムの開発から着手された,ほぼ 10年にわたる労作である。また,近年の科学技術の進展に伴う新しい放射線防護のニ ーズを鑑み,より多くの種類の放射線と広いエネルギー範囲に対して換算係数が与えら れ,高エネルギー加速器の利用や航空機搭乗時の宇宙線被ばくにも対応可能となった, とのことである。

最後に,原著者のひとりでもある翻訳者の遠藤章氏をはじめ,関係各位のご尽力に深 く感謝したい。

平成27年3月

ICRP 勧告翻訳検討委員会

(公社)日本アイソトープ協会

ICRP 勧告翻訳検討委員会

- 委員長 丹羽 太貫 (ICRP 主委員会,福島県立医科大学)
- 副委員長 今村 恵子 (前 聖マリアンナ医科大学)
- 委員神田 玲子 ((独) 放射線医学総合研究所)
 - 佐々木康人 (湘南鎌倉総合病院附属臨床研究センター)
 - 鈴木 元 (国際医療福祉大学クリニック)
 - 藤元 憲三 (元(独) 放射線医学総合研究所)
 - 吉澤 道夫 ((独) 日本原子力研究開発機構)

(※ 委員および所属は校閲時)

監修者 ———

伴	信彦	(ICRP 第1專門委員会,東京医療保健大学)
石榑	信人	(前 ICRP 第2專門委員会,名古屋大学)
遠藤	章	(ICRP 第2專門委員会, (独) 日本原子力研究開発機構)
米倉	義晴	(ICRP 第3専門委員会,(独) 放射線医学総合研究所)
甲斐	倫明	(ICRP 第4專門委員会,大分県立看護科学大学)
本間	俊充	(ICRP 第4専門委員会,(独)日本原子力研究開発機構)
酒井	一夫	(ICRP 第5専門委員会,(独) 放射線医学総合研究所)
立崎	英夫	(ICRU 委員, (独) 放射線医学総合研究所)

抄 録

本報告書は、ICRP の 2007 年勧告(ICRP, 2007)に沿って、様々なタイプの外部被ばく に対する実効線量と臓器吸収線量を得るためのフルエンスから線量への換算係数を提供す る。これらの係数は、成人の標準男性と標準女性(ICRP, 2002)を表す ICRP/ICRU 公式の コンピュータファントム(ICRP, 2009)を用いて、これらを人体内での放射線の輸送をシ ミュレーションする EGSnrc, FLUKA、GEANT4、MCNPX、PHITS などのモンテカルロ コードと組み合わせて計算した。

考慮した入射放射線とエネルギーの範囲は、単一エネルギーの外部ビームで、光子は10 keV~10 GeV、電子と陽電子は50 keV~10 GeV、中性子は0.001 eV~10 GeV、陽子は1 MeV~10 GeV、パイ中間子(マイナス/プラス)は1 MeV~200 GeV、ミュー粒子(マイ ナス/プラス)は1 MeV~10 GeV、そしてヘリウムイオンは1 MeV/u~100 GeV/u であ る。

このシミュレーションでは,理想化された全身照射ジオメトリーを考慮した。これらのジ オメトリーには,前方-後方,後方-前方,左側方および右側方軸に沿った一方向の幅広い 平行ビームと,ファントムの長軸の周りを 360°回転する方向を含めた。ファントムの完全 な等方照射も考慮した。

シミュレーションは,課題グループのメンバーが本報告書のために特別に実施した。計算 品質の保証のため,特定の放射線と照射ジオメトリーのデータセットを,複数のグループが 別々に,同じ標準コンピュータファントムで異なるモンテカルロコードを用いて作成した。

これらのシミュレーションから、標準ファントム内の臓器ごとの吸収線量を決定した。フ ルエンスから実効線量への換算係数は、得られた臓器線量換算係数、放射線加重係数 w_R、 そして組織加重係数 w_T から、ICRP *Publication 103*(ICRP, 2007)に規定されている手順 に従って導出した。

光子,中性子および電子の実用量は,ICRP Publication 74 (ICRP, 1996)と ICRU Report 57 (ICRU, 1998)で考慮されたエネルギー範囲において実効線量の換算係数に対し引き続き良い近似を与えているが,本報告書で考慮したさらに高いエネルギーでは良い近似ではない。

本報告書の換算係数は,ICRP/ICRUの基準値である。これらの換算係数は,様々なオリ ジナルのデータセットを使い,平均化,平滑化およびフィッティング手法を適用して確立さ れた。これらの換算係数の一部は付属書に表形式で示し,すべての換算係数は,添付した CD-ROM に ASCII フォーマットと Microsoft Excel のフォーマットで収載されている。 光子,電子および中性子の入射による眼の水晶体の吸収線量を決定するために,様式化された眼のモデルを用いて,モンテカルロシミュレーションを行った。同様に,電子とアルファ粒子に対する局所的な皮膚の等価線量換算係数は,組織等価スラブに垂直入射する平行ビ ームの輸送をシミュレーションするモンテカルロ計算によって導き出した。

さらに、粒子フルエンスあたりの吸収線量として定義される光子と中性子の線量応答関数 を本報告書で示した。これらを利用すれば、ボクセルジオメトリーの限られた空間解像度だ けでなく、髄腔の微視的レベルにおける線量の増加または線量の減少についての評価も補え るであろう。

キーワード:外部放射線,換算係数,実効線量,骨格の線量評価

目 次

頁 (項)

抄 録 ···································	
招待論説 ·······xi	
序 文xv	
要 点xvii	
総 括xix	
用語解説 ······xxiii	
1. 緒 論	(1)
1.1 参考文献	
 外部被ばくに対する放射線防護に用いられる量	(14)
2.1 フルエンスとカーマ	(15)
2.2 放射線防護に用いられる線量	(20)
2.2.1 吸収線量6	(21)
2.2.2 平均吸収線量	(25)
2.2.3 等価線量と放射線加重係数 7	(27)
光子, 電子およびミュー粒子	(29)
中 性 子	(30)
陽子とパイ中間子 ······9	(31)
アルファ粒子	(33)
核分裂片と重イオン	(34)
2.2.4 実効線量と組織加重係数	(35)
実効線量の決定	(38)
標準ファントム	(40)
実効線量のための性の平均化	(42)
2.2.5 線量限度	(45)
2.3 実 用 量	(46)
2.3.1 線量当量	(49)

- vi 目 次
- - 3.3 放射線輸送のシミュレーションに使用されるモンテカルロコードの概要 …22 (**79**)

 - 3.5 皮膚の線量評価 ······31 (107)
 - 3.5.1 確率的影響
 3.5.2 確定的影響
 3.5.2 (108)
- - 4.1.1 人体における光子によるエネルギー沈着の特徴 ……………………40 (**119**)

 - 4.1.4 光子に対する臓器線量換算係数の分析 ……………………………………………………………42 (129)
 - 4.1.5 光子に対する実効線量換算係数の分析 ……………………………………………………………44 (131)

	ミ 効 線 量 ······47	(140)
4.2 電子	と陽電子 ····································	(141)
4.2.1	人体における電子と陽電子によるエネルギー沈着の特徴48	(141)
4.2.2	電子と陽電子に対する計算条件	(145)
4.2.3	電子と陽電子に対するモンテカルロコードによる違い	(149)
4.2.4	電子と陽電子に対する臓器線量換算係数の分析	(150)
4.2.5	電子と陽電子に対する実効線量換算係数の分析	(157)
4.2.6	電子と陽電子に対する ICRP Publication 74 (ICRP, 1996)	
	との比較	(158)
4.3 中	性 子	(159)
4.3.1	人体における中性子によるエネルギー沈着の特徴	(159)
4.3.2	中性子に対する計算条件	(162)
4.3.3	中性子に対するモンテカルロコードによる違い	(168)
4.3.4	中性子に対する臓器線量換算係数の分析	(169)
4.3.5	中性子に対する実効線量換算係数の分析	(172)
4.3.6	中性子に対する ICRP Publication 74 (ICRP, 1996) との比較62	(174)
4.4 陽	子	(175)
4.4.1	人体における陽子によるエネルギー沈着の特徴63	(175)
4.4.2	陽子に対する計算条件	(176)
4.4.3	陽子に対するモンテカルロコードによる違い65	(181)
4.4.4	陽子に対する臓器線量換算係数の分析66	(183)
4.4.5	低エネルギー陽子に対する特別な考察66	(185)
4.4.6	陽子に対する実効線量換算係数の分析68	(189)
4.5 ミュ	ープラス粒子とミューマイナス粒子	(190)
4.5.1	人体におけるミュー粒子によるエネルギー沈着の特徴70	(190)
4.5.2	ミュー粒子に対する計算条件	(193)
4.5.3	ミュー粒子に対するモンテカルロコードによる違い	(196)
4.5.4	ミュー粒子に対する臓器線量換算係数の分析	(198)
4.5.5	ミュー粒子に対する実効線量換算係数の分析	(201)
4.5.6	ミュー粒子の電荷依存性	(202)
4.5.7	様式化されたファントムを用いてミュー粒子に対して行われた	
	従来の計算との比較	(203)
4.6 パイ	プラス中間子とパイマイナス中間子	(206)

viii 目 次

4.	6.2 パイ中間子に対する計算条件75 ((207)
4.	6.3 パイ中間子に対するモンテカルロコードによる違い75 ((209)
4.	6.4 パイ中間子に対する臓器線量換算係数の分析	(210)
4.	6.5 パイ中間子に対する実効線量換算係数の分析	(212)
4.	6.6 パイ中間子の電荷依存性	(214)
4.	6.7 パイ中間子に対する従来の研究との比較	(215)
4.7	ヘリウムイオン	(217)
4.	7.1 人体におけるヘリウムイオンのエネルギー沈着の特徴80((217)
4.	7.2 ヘリウムイオンに対する計算条件80((219)
4.	7.3 ヘリウムイオンに対するモンテカルロコードによる違い80((221)
4.	7.4 ヘリウムイオンに対する臓器線量換算係数の分析81((222)
4.	7.5 ヘリウムイオンに対する実効線量換算係数の分析82((225)
4.	7.6 ヘリウムイオンに対する従来の研究との比較83 ((226)
4.8	参考文献	
5. 実	用量と防護量に対する線量換算係数の関係87((228)
5.1	防護量の変更	(236)
5.2	光 子	(238)
5.3	電 子	(239)
5.4	中性子	(240)
5.5	眼の水晶体の線量と実用量との比較	(243)
5.6	結 論	(247)
5.7	参考文献 ····································	
付禹書	A 美効線量換算係数	(A1)
A.1	参考文献 ······99	
付属書	P 光子に対する時界吸収線量換質反粉	(D1)
门府日		(DI)
付属書	C 中性子に対する臓器吸収線量換算係数	(C1)
		·
付属書	D 骨格のフルエンスから線量への応答関数:光子175	(D1)
D.1	骨部位別の光子骨格線量評価のための応答関数	(D2)
D.2	骨部位別の光子骨格線量評価のスケーリングファクター	(D6)

目 次 ix

D.3	骨格平均光子吸収線量 ······179	(D9)
D.4	海綿質の線量を用いた骨格標的組織線量の近似	(D10)
D.5	参考文献	

付属書 E 骨格のフルエンスから線量への応答関数:中性子 ……………193 (E1)

- 付属書 F 眼の水晶体の吸収線量を評価するための特別な考察 …………209 (F1)

招待論説

標準人、標準ファントム、基準線量係数:すべてがひとつに!

1928年の第2回国際放射線医学会議(ICR)における設立以来,ICRPは,放射線の有害な 影響を制限するための概念,方法および指針を策定する任務を負っている。その対象は,当 初,放射線の医療利用であり,最初の勧告で医療スタッフの作業時間数に関する被ばくの制限 の概念を導入した。1950年代には作業者と公衆の構成員の放射線被ばくが ICRP の関心の対 象となり,被ばくの限度は,線量,すなわち,外部被ばくに対しては最大許容線量,内部放射 体に対しては最大許容身体負荷量で表された。現代の放射線防護における被ばくの制限と,被 ばくを制限することによるリスクの制限は,「実効線量」という量の使用に基づいており,こ の概念は,「実効線量当量」として 1978年に ICRP によって導入されたものである (ICRP, 1978)。

実効線量は、2007年勧告(ICRP, 2007)で使われた主要な放射線防護量である。正当化の 原則に従い、この量は、作業者と公衆の構成員の両方に対する被ばくの制限と、放射線防護の 最適化に使用する単一の数値を与えるために必要な、内部放射体と外部放射線場による線量の 合算を可能にする。合算の根拠は、被ばく集団内の健康損害である。実効線量と結びつけられ た健康損害には、名目値を割り当てることができる。例えば、ICRP Publication 60 (ICRP, 1991) と ICRP Publication 103 (ICRP, 2007) では 0.05/Sv である。組織固有の吸収線量に 重み付けを行うために使われる放射線加重係数と組織加重係数は、年齢と性別に関わりなく不 変であり、したがって加重和、すなわち実効線量は、特定の個人には当てはまらない。実効線 量は規制の枠組みにおける契約関係の基礎として役立ち、また代替となる作業行為との比較評 価においても利用できる。しかし、実効線量は、特定の作業者や公衆の構成員について被ばく による確率的健康リスク(遺伝性リスクと発がんリスク)を表すことはできないことに注意し なければならない。実効線量に基づいた線量限度、線量拘束値および参考レベルは、作業者と 規制下にある免許所有者の間の契約関係において、また、規制の枠組みの中で免許所有者と公 衆の間である役割を果たす。この役割の中で、ある被ばくに対する個人の実効線量の値を特定 するプロセスに基準線量係数が使用され、このプロセスに対してそれらの係数は不確かさを有 していない。

本刊行物は、ICRU Report 57(ICRU, 1998)としても出版されている ICRP Publication 74 (ICRP, 1996)の更新以上の内容になっている。本報告書では、より多くのタイプの放射線が 考慮されており、大幅に拡張されたエネルギー範囲にわたって、すべての放射線に対する係数 が表にまとめられている。本報告書は、光子(10 keV~10 GeV)、電子(陰電子と陽電子 50 keV~10 GeV)、中性子(0.001 eV~10 GeV)、陽子(1 MeV~10 GeV)、パイ中間子(マイナ スとプラス1 MeV~200 GeV)、ミュー粒子(マイナスとプラス1 MeV~10 GeV) およびヘリ ウムイオン(1 MeV/u~100 GeV/u)を取り扱っている。これらの係数の計算は、今日の高度 な計算環境や、一連のモンテカルロ放射線輸送コード、それを支えるデータと物理モデルが利 用できることにより可能となった。本報告書の付属書と添付の CD-ROM は、様々な理想化さ れた被ばくジオメトリーに対する入射エネルギーの関数として、成人の標準男性と標準女性に ついて導き出された組織ごとの吸収線量係数を詳細に提示している。標準人の実効線量係数 は、入射エネルギーの関数として、本報告書の中に表形式で示してある。

外部被ばくの現在の実用量は、どの程度まで防護量の有効な指標であり続けているだろう か? 実用量の基準換算係数は、ICRP Publication 74 (ICRP, 1996)において、光子、中性 子および電子についてしか発表されていない。ICRP Publication 74 と本報告書の間での光子 と電子の線量係数の差は、総じてわずかであり、20~30%を上回らない。この差は主としてコ ンピュータファントムに固有な側面によるものである。低エネルギー中性子と高エネルギー中 性子に見られる幾分大きな差は、エネルギーに依存した放射線加重係数の変更によるものであ り、コンピュータファントムの変更によるものではない。本報告書の著者は、「……光子、中 性子および電子の実用量は、幅広い粒子エネルギーと方向分布に対して、引き続き実効線量の 良い近似を与えており、ほとんどの放射線防護の実務に実際に適用できる……」と結論づけ た。ICRP Publication 74 (ICRP, 1996)と本報告書の線量係数との数値的な一貫性は、「実効 線量」という量が堅固な性質を有していることによる結果である。したがって、現在の実用量 の係数は、「従来」のエネルギーでは放射線防護の要求を今も十分に満たしている。新たに追 加されたタイプの放射線や、より高いエネルギーへの拡張への検討は、宇宙利用や高エネルギ ー加速器での放射線被ばくの観点から重要である。高エネルギーにおける実用量と放射線防護 量の関係には、更なる研究が必要である。

30年以上にわたり, ICRP と ICRU はヒトの解剖学的構造のコンピュータモデル(ファントム)を正式には採択せずに使用してきた。その時々に利用されたファントムは,必要な解剖学的データの一部を提供した ICRP *Publication 23* (ICRP, 1975)の標準人の概念に,ある程度 基づいていた。ICRP は ICRP *Publication 2* (ICRP, 1959) において,そのような標準人 (Standard Man)の標準データを使用しはじめ, ICRP *Publication 23* (ICRP, 1975) において データの範囲を拡大し, ICRP Publication 89 (ICRP, 2002) において, 年齢と性別について さらに強化した。最終的に, 成人の標準男性と標準女性を表すコンピュータファントムが, ICRP/ICRU 共同の Publication 110 (ICRP, 2009) で正式に採用された。これらのファントム の採用は臓器・組織線量の計算においてまさに必要であり, ICRP の線量評価の枠組みの完成 度を非常に高めた。本報告書は, この採用されたファントムのはじめての適用例であり, それ によって得られる防護量の係数は, ICRP の 2007 年勧告 (ICRP, 2007) に基づいている。

本報告書において表形式で提示した係数の値は、明確に定義された枠組みである ICRP の線 量制限体系のために開発されたものである。これらの係数は、その意図された目的に資するた めに、標準コンピュータファントムを使って、注意深く評価され、精度が検証され、ICRP と ICRU による審査を経て文書化された手順に従い開発された。意図された使用範囲において、 国際機関により刊行された係数に不確かさはなく、したがって、ICRP と ICRU は、これらの 係数は、計量関連ガイドに関する共同委員会(JCGM、2008)の指針により、基準データであ ると考える。

> HANS-GEORG MENZEL (ICRU および ICRP) KEITH F. ECKERMAN (ICRP 第2専門委員会)

参考文献

- ICRP, 1959. Report of Committee II on Permissible Dose for Internal Radiation. ICRP Publication 2. Pergamon Press, Oxford.
- ICRP, 1975. Report on the Task Group on Reference Man. ICRP Publication 23. Pergamon Press, Oxford.
- ICRP, 1978. Statement from the 1978 Stockholm Meeting of the ICRP. Ann. ICRP 2(1).
- ICRP, 1991. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. *Ann. ICRP* **21**(1-3).
- ICRP, 1996. Conversion coefficients for use in radiological protection against external radiation. ICRP Publication 74. Ann. ICRP 26 (3/4).
- ICRP, 2002. Basic anatomical and physiological data for use in radiological protection: reference values. ICRP Publication 89. *Ann. ICRP* **32**(3/4).
- ICRP, 2007. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 37 (2-4).
- ICRP, 2009. Adult reference computational phantoms. ICRP Publication 110. Ann. ICRP 39(2).
- ICRU, 1998. Conversion Coefficients for use in Radiological Protection Against External Radiation. ICRU Report 57. International Commission on Radiation Units and Measurements, Bethesda, MD.
- JCGM, 2008. Joint Committee for Guides in Metrology, International vocabulary of metrology—Basic and general concepts and associated terms (VIM). Sèvres.

序 文

本報告書は、国際放射線防護委員会(ICRP)と国際放射線単位測定委員会(ICRU)の共同 刊行物である。

本報告書は、ICRP 第2専門委員会の線量計算課題グループ(DOCAL)のサブグループが 編集した。このサブグループのメンバーは以下の通りであった。

N. Petoussi-Henss (議長)	A. Endo	M. Pelliccioni
W.E. Bolch	N. Hertel	H. Schlattl
K.F. Eckerman	J. Hunt	M. Zankl

本刊行物に寄与したその他の方々は以下の通りであった。

M. Sutton Ferenci	HG. Menzel
M.C. Hough	T. Sato
P.B. Johnson	G. Simmer
D.W. Jokisch	K. Veinot
M. Kraxenberger	X.G. Xu
R.P. Manger	
	M. Sutton Ferenci M.C. Hough P.B. Johnson D.W. Jokisch M. Kraxenberger R.P. Manger

本報告書作成期間中の ICRP 第2専門委員会の課題グループ DOCAL のメンバーは以下の 通りであった。

2005-2009(メンバー)

W.E. Bolch	N. Petoussi-Henss	J. Hunt
(議長 2007-2008)	(副議長,外部線量評価)	HG. Menzel (2005–2007)
K.F. Eckerman	V. Berkovski	M. Pelliccioni
(議長 2005-2007)	E. Blanchardon	A. Phipps (2005–2007)
D. Nosske	A. Endo	M. Zankl
(副議長, 内部線量評価)	N. Hertel	
2005-2009(通信メンバー)		
L. Bertelli	R. Richardson	A. Ulanovsky
T. Fell	M.G. Stabin	X.G. Xu

xvi 序 文

2009-2011 (メンバー) W.E. Bolch (議長) V. Berkovski N. Hertel D. Nosske L. Bertelli J. Hunt (副議長, 内部線量評価) K.F. Eckerman N. Ishigure N. Petoussi-Henss A. Endo M. Pelliccioni (副議長,外部線量評価) T. Fell M. Zankl

2009-2011 (通信メンバー)

A. Birchall	C. Lee	M.G. Stabin
G. Gualdrini	R. Leggett	R. Tanner
D. Jokisch	H. Schlattl	X.G. Xu

本報告書作成期間中の ICRP 第2専門委員会のメンバーは以下の通りであった。

2005-2009

HG. Menzel	G. Dietze	F. Paquet
(委員長, 2007-2009)	K.F. Eckerman	H.G. Paretzke
C. Streffer	J.D. Harrison (書記)	(2005 - 2007)
(委員長, 2005-2007)	N. Ishigure	A.S. Pradhan
M. Balonov	P. Jacob	J.W. Stather
V. Berkovski	(2007-2009)	(2005 - 2007)
W.E. Bolch	J.L. Lipsztein	Y.Z. Zhou
A. Bouville		

2009-2013

HG. Menzel (委員長)	G. Dietze	J.L. Lipsztein
M. Balonov	K.F. Eckerman	J. Ma
D.T. Bartlett	A. Endo	F. Paquet
V. Berkovski	J.D. Harrison (書記)	N. Petoussi-Henss
W.E. Bolch	N. Ishigure	A.S. Pradhan
R. Cox	R. Leggett	

本報告書の ICRU の責任者は以下の通りであった。

H.G. Menzel

H.G. Paretzke

本報告書作成期間中の ICRU のメンバーは以下の通りであった。

HG. Menzel (委員長)	R.A. Gahbauer	H. Tatsuzaki
P. Dawson	D.T.L. Jones	A. Wambersie
P.M. DeLuca	B.D. Michael	G.F. Whitmore
K. Doi	H.G. Paretzke	
E. Fantuzzi	S.M. Seltzer	

要 点

- 本報告書は、様々なタイプの外部被ばくについて、実効線量と臓器吸収線量の基準換算係数 を提示している。これらの係数は、国際放射線防護委員会の2007年勧告(ICRP,2007)に 従って計算された。
- 計算に使用したファントムは、成人の標準男性と標準女性(ICRP, 2002, 2007)を表す ICRP (2009)公式のコンピュータモデルであった。これらの標準コンピュータモデルは、実際の ヒトのコンピュータ断層撮影データに基づいており、したがってヒトの解剖学的構造のデジ タル化された三次元表現である。
- 考慮した放射線は、単一エネルギーの外部ビームで、光子は10keV~10GeV、電子と陽電子は50keV~10GeV、中性子は0.001eV~10GeV、陽子は1MeV~10GeV、パイ中間子(マイナス/プラス)は1MeV~200GeV、ミュー粒子(マイナス/プラス)は1MeV~10GeV、そしてヘリウムイオンは1MeV/u~100GeV/uである。これらのエネルギーは運動エネルギーである。
- ●ICRP Publication 74(ICRP, 1996)と ICRU Report 57(ICRU, 1998)で以前に報告したやり方,すなわち,公表されている換算係数値を使って基準値を確立したやり方,とは異なり,ここで示す臓器線量換算係数は,課題グループのメンバーが本報告書のために特別に計算した。計算品質の保証のため,特定の放射線と照射ジオメトリーのデータセットを,複数のグループが別々に,同じ標準コンピュータファントムで異なるモンテカルロ放射線輸送コード EGSnrc, FLUKA, GEANT4, MCNPX, PHITS を用いて作成した。
- ●本報告書で表にまとめた換算係数は、ICRP/ICRUの基準値である。これらの換算係数は、 様々なオリジナルのデータセットを使い、平均化、平滑化およびフィッティング手法を適用 して確立された。
- 光子、中性子および電子の実用量は、ICRP Publication 74 (ICRP, 1996)と ICRU Report
 57 (ICRU, 1998)で考慮されたエネルギー範囲において、実効線量の換算係数に対し引き
 続き良い近似を与えているが、本報告書で考慮したさらに高いエネルギーでは良い近似ではない。

xviii 要 点

参考文献

- ICRP, 1996. Conversion coefficients for use in radiological protection against external radiation. ICRP Publication 74. Ann. ICRP 26 (3/4).
- ICRP, 2002. Basic anatomical and physiological data for use in radiological protection: reference values. ICRP Publication 89. *Ann. ICRP* **32**(3/4).
- ICRP, 2007. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 37 (2-4).
- ICRP, 2009. Adult reference computational phantoms. ICRP Publication 110. Ann. ICRP 39(2).
- ICRU, 1998. Conversion Coefficients for use in Radiological Protection Against External Radiation. ICRU Report 57. International Commission on Radiation Units and Measurements, Bethesda, MD.

総 括

(a) 本報告書の目的は, ICRP の 2007 年勧告(ICRP, 2007) に沿って,様々なタイプの 外部被ばくについて,実効線量と臓器吸収線量を得るためのフルエンスから線量への換算係数 を提示することである。この目的のために,成人の標準男性と標準女性(ICRP, 2002)を表 す ICRP/ICRU 公式のコンピュータファントム(ICRP, 2009)を,人体内での放射線の輸送を シミュレーションするモンテカルロコードと組み合わせて用いた。ICRP/ICRU 標準コンピュ ータファントムを以降,「標準ファントム」と呼ぶ。

(b) 考慮した外部から入射する放射線と運動エネルギーの範囲は、単一エネルギーの外部 ビームで、光子は 10 keV~10 GeV、電子と陽電子は 50 keV~10 GeV、中性子は 0.001 eV~10 GeV、陽子は 1 MeV~10 GeV、パイ中間子(マイナス/プラス)は 1 MeV~200 GeV、ミュー粒子(マイナス/プラス)は 1 MeV~10 GeV、そしてヘリウムイオンは 1 MeV/u~100 GeV/u である。

(c) 線量換算係数を計算するため、以下の実績のあるモンテカルロコードを使って、標 準ファントム内の臓器ごとに吸収線量を評価するシミュレーションを行った。EGSnrc (Kawrakow ら, 2009), MCNPX (Waters, 2002; Pelowitz, 2008), PHITS (Iwase ら, 2002; Niita ら, 2006, 2010), FLUKA (Fassò ら, 2005; Battistoni ら, 2006), および GEANT4 (GEANT4, 2006a, b)。次に, フルエンスから実効線量への換算係数は, 臓器線量換算係数, 放射線加重係数 $w_{\rm R}$, そして組織加重係数 $w_{\rm T}$ から, ICRP *Publication 103* (ICRP, 2007) に規 定されている手順に従って導出した。

(d) このシミュレーションでは,理想化された全身照射ジオメトリーを考慮した。これら のジオメトリーには,前方 - 後方,後方 - 前方,左側方および右側方軸に沿った一方向の幅広 い平行ビームと,ファントムの長軸の周りを 360° 回転する方向を含めた。ファントムの完全 な等方照射も考慮した。

(e) 臓器の吸収線量換算係数は,課題グループのメンバーが本報告書のために特別に計算 した。計算品質の保証のため,特定の放射線と照射ジオメトリーについて選ばれたデータセッ トを,課題グループ DOCAL の異なる複数のメンバーが,同じ標準コンピュータファントム で異なるモンテカルロコードを用いて作成した。そして基準値は,個々のデータから,必要に 応じて,平均化,平滑化およびフィッティングの手順を経て決定された。その結果得られたデ ータセットは,放射線防護の管理で使用することを意図した ICRP/ICRU の基準値であり,し xx 総 括

たがって,これらの値は取決めによって固定され,不確かさを伴うものではない。これらは以 降「基準値」と呼ぶ。

(**f**) 光子,電子および中性子の入射による眼の水晶体の吸収線量を決定するために,様式 化された眼のモデルを用いて,モンテカルロシミュレーションを行った。これにより,眼の構 造のボクセル解像度が限られていた ICRP/ICRU ボクセルファントム(ICRP, 2009)よりも, より詳細に眼を表現することが可能になった。

(g) 課題グループの作業の一部に,光子と中性子に対する骨格の線量評価と線量応答関数 (DRF)の決定があった。DRFを用いると,ファントムのボクセルジオメトリーの空間的解 像度が限られることから,骨梁海綿質の正確な微細構造を考慮できない点,また,光子入射に より骨梁で生じる光電子による線量増加と,中性子入射により髄腔で生じる反跳陽子による線 量減少についての評価を補えるであろう。しかし,本報告書で採用した骨格組織の吸収線量の 評価には,簡略化した骨格線量評価法を適用した。すなわち,活性骨髄と骨内膜の吸収線量 を,個々の骨部位の海綿質,骨髄髄質の吸収線量と保守的に見なし,活性骨髄と骨内膜の骨格 平均吸収線量を海綿質,骨髄髄質の吸収線量の質量加重平均と見なした。一貫性を確保するた め,この方法をすべての粒子に対して適用した。なお,荷電粒子入射については,線量増加ま たは線量減少に関して重要なメカニズムは存在しない。したがって,光子と中性子以外の外部 入射粒子に対する骨格応答関数は,本報告書には提供されていない。

(h) 標準男性と標準女性コンピュータファントム(成人)に対する換算係数を,ICRP Publication 74 (ICRP, 1996)とICRU Report 57 (ICRU, 1998)として出版されたICRP/ICRU 共同課題グループの報告書に示されている換算係数と比較した。これらの換算係数セット間の 差に寄与する要因を,シミュレーションで使用したファントムの違い,またICRP Publication 60 (ICRP, 1991)とICRP Publication 103 (ICRP, 2007)の勧告で見られる放射線加重係数 と組織加重係数の変更という観点から検討した。課題グループが扱った論点の1つは,現在定 められている実用量が,どの程度まで防護量を適切に表し,外部放射線に対する放射線防護の ほとんどの測定に対して満足な基礎を提供しているかであった。

(i) この目的のために,実効線量と ICRP Publication 74 (ICRP, 1996) に示されている 実用量の比を,光子 (10 keV~10 MeV),電子 (2~10 MeV) および中性子 (0.001 eV~200 MeV) についてプロットした。その結果,本報告書では,周辺線量当量 $H^*(10)$ は,光子に 対して荷電粒子平衡下で実効線量の合理的な評価を現在でも変わらず与えていると結論づけ た。電子に対して $H^*(10)$ は,10 MeV まで実効線量の合理的な推定値を与える。中性子に 対して $H^*(10)$ は,約 40 MeV まで実効線量を過大に評価するか,または合理的な近似値を 与える。

(**j**) 1章は緒論である。2章では、外部被ばく線量評価のために放射線防護で使用されて いる量の概要について、現在の定義に従って述べる。 (k) 3章はシミュレーションの主要な側面を述べる。これには、計算に使用した ICRP ボ クセルコンピュータファントムの概要や考慮した照射ジオメトリーの図が含まれる。様々なモ ンテカルロコードの特徴も簡単に述べる。本報告書で使用した骨格線量評価法と皮膚線量評価 法について強調する。

(1) 4章は、使用した計算パラメータと、得られた臓器線量換算係数と実効線量換算係数の簡単な分析を示す。男性と女性の係数セットに見られる違いに言及するとともに、ICRP *Publication 74* (ICRP, 1996)のデータとの比較を示し、議論する。

(m) 5章では、実効線量を $H^*(10)$ および $H_p(10)$ と比較する。さらに、眼の水晶体の線量と、個人線量当量 $H_p(3)$ および方向性線量当量H'(3)との対比も示す。実用量に対して推奨データがすべて揃っていないため、ICRP *Publication 74*(ICRP, 1996)の発表以降の文献で報告されているデータを使って追加の比較を行った。

(**n**) 付属書 A は, すべての粒子と照射ジオメトリーに対して, 実効線量の基準換算係数 を示す。

(o) 付属書 B と C は, ICRP Publication 103 (ICRP, 2007) で組織加重係数が割り当て られている臓器(赤色骨髄,結腸,肺,胃,乳房,生殖腺,膀胱壁,肝臓,食道,甲状腺,骨 内膜,脳,唾液腺,皮膚)および残りの組織について,光子と中性子,それぞれに対するフル エンスから吸収線量への基準換算係数を提示している。臓器吸収線量換算係数は,成人男性モ デルと成人女性モデルに対し,別々に示す。

(**p**) 上記のすべての粒子と臓器,そして残りの組織を構成する14の組織(副腎,胸郭外領域,胆嚢,心臓,腎臓,リンパ節,筋肉,口腔粘膜,膵臓,前立腺,小腸,脾臓,胸腺および子宮)を対象とした完全な表は、本報告書に付属のCD-ROMで提供されている。

(**q**) 付属書 D と E は、それぞれ光子と中性子の DRF を提示する。これらの関数を用い れば、標準ボクセルファントムの海綿質内と髄腔内のエネルギー依存の光子フルエンスまたは 中性子フルエンスの値とたたみ込むことにより、骨部位別の、そして髄腔のミクロレベルで二 次荷電粒子平衡が完全に達成されていないエネルギー範囲の、活性骨髄と骨内膜線量のより精 巧な推定が可能となる。付属書 D には、骨格の線量評価(付属書 D の D.2 節参照)の3ファ クター法を適用する際に必要となる、赤色骨髄と骨内膜の μ_{en}/ρ 比と線量増加ファクターの値 も示す。

(**r**) 付属書 F は,いくつかの照射ジオメトリーで様式化された頭部と眼のモデルを使っ て計算した,光子,電子および中性子に対する眼の水晶体の吸収線量を評価するためのシミュ レーションについて記述している。

(s) 付属書Gは,確率的影響と組織反応に関連した皮膚の線量評価に対する特別な考察 を議論し,電子とアルファ粒子に対する局所的な皮膚等価線量換算係数を示す。

(t) 付属書Hには,航空機乗務員の線量評価において典型的に見られる条件を近似する

xxii 総 括

追加のジオメトリー(上半球半等方照射: superior hemisphere semi-isotropic irradiation)に おける、フルエンスから実効線量への換算係数を示す。

(u) 付属書 I は,異なるモンテカルロコードで決定されたオリジナルの計算データセット から、線量換算係数の基準データを決定するのに使用した方法を簡潔に述べる。

(v) 最後に付属書」は、本報告書付属の CD-ROM についてのユーザーガイドである。

参考文献

- Battistoni, G., Muraro, S., Sala, P.R., et al., 2006. The FLUKA code: description and benchmarking. In: Albrow, M., Raja, R. (Eds.), Hadronic Shower Simulation Workshop, 6-8 September 2006, Fermi National Accelerator Laboratory (Fermilab), Batavia, IL, AIP Conference Proceeding 896, pp. 31-49.
- Fassò, A., Ferrari, A., Ranft, J., et al., 2005. FLUKA: a Multi-particle Transport Code. CERN-2005-10 (2005), INFN/TC_05/11, SLAC-R-773. CERN, Geneva.
- GEANT4, 2006a. GEANT4: Physics Reference Manual. 次のサイトで入手可能: http://geant4.web. cern.ch/geant4/UserDocumentation/UsersGuides/PhysicsReferenceManual/fo/PhysicsReference Manual.pdf (最終アクセスは, 2014年12月).
- GEANT4, 2006b. GEANT4 User's Guide for Application Developers. 次のサイトで入手可能: http://geant4.web.cern.ch/geant4/support/userdocuments.shtml (最終アクセスは, 2014年12月).
- ICRP, 1991. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Ann. ICRP 21 (1-3).
- ICRP, 1996. Conversion coefficients for use in radiological protection against external radiation. ICRP Publication 74. Ann. ICRP 26 (3/4).
- ICRP, 2002. Basic anatomical and physiological data for use in radiological protection: reference values. ICRP Publication 89. *Ann. ICRP* **32**(3/4).
- ICRP, 2007. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 37 (2-4).
- ICRP, 2009. Adult reference computational phantoms. ICRP Publication 110. Ann. ICRP 39(2).
- ICRU, 1998. Conversion Coefficients for use in Radiological Protection Against External Radiation. ICRU Report 57. International Commission on Radiation Units and Measurements, Bethesda, MD.
- Iwase, H., Niita, K., Nakamura, T., 2002. Development of a general-purpose particle and heavy ion transport Monte Carlo code. J. Nucl. Sci. Technol. 39, 1142-1151.
- Kawrakow, I., Mainegra-Hing, E., Rogers, D.W.O., et al., 2009. The EGSnrc Code System: Monte Carlo Simulation of Electron and Photon Transport. PIRS Report 701. National Research Council of Canada, Ottawa.
- Niita, K., Matsuda, N., Iwamoto, Y., et al., 2010. PHITS—Particle and Heavy Ion Transport Code System, Version 2.23. JAEA-Data/Code 2010-022. Japan Atomic Energy Agency, Tokai-mura.
- Niita, K., Sato, T., Iwase, H., et al., 2006. PHITS—a particle and heavy ion transport code system. *Radiat*. *Meas.* **41**, 1080–1090.
- Pelowitz, D.B. (Ed.), 2008. MCNPX User's Manual, Version 2.6.0. LA-CP-07-1473. Los Alamos National Laboratory, Los Alamos, NM.
- Waters, L.S. (Ed.), 2002. MCNPX User's Manual, Version 2.3.0. LA-UR-02-2607. Los Alamos National Laboratory, Los Alamos, NM.

用語解説

【見出し語は五十音順で配列。□> は参照先を示す。】
 「「「」」
 「「」」
 「「」」
 「「」」
 「「」」
 「「」」
 「「」」
 「「」」
 「「」」
 「「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」
 「」」
 「」
 「」」
 「」」
 「」」
 「」」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」</li

本報告においては、用語を以下のように定義する。

ICRU 4 元素組織 [ICRU 4-element tissue]

ICRU 4 元素組織は, 密度 1 g/cm³, 質量組成は酸素 76.2%, 炭素 11.1%, 水素 10.1%, 窒素 2.6% である。ICRU 球はこの想定された組成を有している。

黄色骨髄 [Yellow (bone) marrow]

□> 不活性骨髄

応答関数 [Response function]

⇒ 線量応答関数

海綿質 [Spongiosa]

体軸および体肢骨格にわたる皮質骨皮質内にある骨梁と髄組織(活性,不活性の両方)を 合わせた組織を指す用語。海綿質はICRP *Publication 110*(ICRP, 2009)標準ファントム で定義されている3つの骨領域の1つである。残り2つは,長骨幹の骨髄髄質と皮質骨で ある。骨梁骨,活性骨髄と不活性骨髄の相対的割合は骨格部位によって変わるので,海綿 質の元素組成と質量密度は一定でなく,骨格部位によって変わる[ICRP *Publication 110* (ICRP, 2009)付属書 B 参照]。

確定的影響 [Deterministic effect]

⇒ 組織反応

活性骨髄* [Active (bone) marrow]

活性骨髄は造血機能を有し、そこで造られている多くの赤血球により赤色になる。活性骨髄は、白血病の放射線誘発リスクにかかわる標的組織となる。

*(訳注) 造血の活発さに着目して命名された, ICRP 独自の用語。解剖学の用語では「赤色骨 髄」を指す。 xxiv 用語解説

荷電粒子平衡 [Charged-particle equilibrium]

着目するある体積での荷電粒子平衡は、荷電粒子のエネルギー、数および方向がこの体積 全体にわたって一定であることを意味する。これは、荷電粒子のエネルギーラジアンスの 分布がその体積内で変化しないということと等しい。具体的には、その体積に流入する荷 電粒子とその体積から流出する荷電粒子で、それぞれのエネルギー(静止エネルギーを除 く)の合計が等しいことになる。

カーマK [Kerma, K]

電離性非荷電粒子に対する量で、 dE_{tr} をdmで割った商によって定義される。ここで、 dE_{tr} は質量dmの物質に入射する非荷電粒子によりdm中で解放されたすべての荷電粒子 の初期運動エネルギーの総和の期待値である。したがって、次の式で表される。

$$K = \frac{\mathrm{d}E_{\mathrm{tr}}}{\mathrm{d}m}$$

カーマの単位は1キログラムあたりのジュール (J/kg) で, その特別な名称はグレイ (Gv) である。

カーマ近似 [Kerma approximation]

カーマは,吸収線量の近似値として使われることがある。カーマの値は,荷電粒子平衡が 存在し,放射損失が無視できる程度であり,そして非荷電粒子の運動エネルギーが解放さ れた荷電粒子の結合エネルギーに比べて大きい場合に,吸収線量の値に近づく。

基準值 [Reference value]

線量評価または体内動態モデルに使用するために ICRP が勧告する,ある量の値。基準値 は、その値の根拠に多くの不確かさが含まれるという事実とは関係なく、固定され、かつ 不確かさを伴わずに指定される値である。

吸収線量*D* [Absorbed dose, *D*]

吸収線量は次の式で表される。

$$D = \frac{\mathrm{d}\overline{\varepsilon}}{\mathrm{d}m}$$

ここで、dをは物質の質量 dm 中に電離放射線によって与えられた平均エネルギーである。 吸収線量の単位は1キログラムあたりのジュール (J/kg) で、その特別な名称はグレイ (Gy) である。

個人線量当量 $H_p(d)$ [Personal dose equivalent, $H_p(d)$]

人体上のある指定された点の適切な深さ*d*における軟組織中の線量当量。軟組織はICRU 4元素組織である。個人線量当量の単位は、1キログラムあたりのジュール(J/kg)で、 その特別な名称はシーベルト(Sv)である。特定の点は通常,個人線量計を装着する部 位として与えられている。実効線量の評価には 10 mm の深さが推奨され,また,皮膚と 眼の水晶体の等価線量の評価には,それぞれ,0.07 mm と 3 mm の深さが推奨されている。

骨 髄 [Bone marrow]

骨髄は柔らかく細胞密度の高い組織であり,長骨の円筒形の空洞や体軸および体肢骨格の 骨梁の中の空洞に存在する。骨髄全体は,ストローマと呼ばれるスポンジ状・細網状の結 合組織構造,骨髄(血球形成)組織,脂肪細胞,リンパ組織の小さな蓄積,多数の血管お よび類洞から構成される。骨髄には赤色(活性)骨髄と黄色(不活性)骨髄の2種類がある。

骨髄細胞密度 [Marrow cellularity]

造血機能を有するある骨における骨髄体積の割合。骨髄細胞密度の年齢に対する骨部位ごとの標準値は、ICRP Publication 70 (ICRP, 1995)の表 41 に与えられている。第一近似として,骨髄細胞密度は1から骨髄における脂肪の割合を引いた値と見なすことができる。
 骨内膜(または骨内膜層)「Endosteum (or endosteal layer)]

骨梁海綿質領域の骨梁表面とすべての長骨の骨幹部内の髄腔の皮質表面を覆う厚さ 50 μm の層。これは放射線誘発骨がんにかかわる標的組織と見なされている。この標的領域は, ICRP *Publication 26* と 30 (ICRP, 1977, 1979) で以前に導入されていた標的領域である 骨表面に代わるものである。この骨表面は、骨梁の表面と皮質骨のハヴァース管の表面を 覆う厚さ 10 μm の単一細胞層と定義されていた。

骨表面 [Bone surfaces]

⇒ 骨内膜

実効線量 E [Effective dose, E]

人体のすべての特定された臓器と組織における等価線量の組織加重合計であって,次の式 で表される。

$$E = \sum_{\mathrm{T}} w_{\mathrm{T}} \sum_{\mathrm{R}} w_{\mathrm{R}} D_{\mathrm{T},\mathrm{R}} = \sum_{\mathrm{T}} w_{\mathrm{T}} H_{\mathrm{T}}$$

ここで、 $H_{\rm T}$ は組織または臓器 T の等価線量、 $D_{\rm T,R}$ はタイプ R の放射線から受ける臓器 または組織 T における平均吸収線量、 $w_{\rm R}$ は放射線加重係数、そして $w_{\rm T}$ は組織加重係数 である。この合計は、確率的影響の誘発に対し感受性があると考えられる臓器・組織にわ たって行われる。実効線量の単位は1キログラムあたりのジュール(J/kg)で、その特 別な名称はシーベルト(Sv)である。 xxvi 用語解説

実用量 [Operational quantities]

外部被ばくおよび放射性核種の摂取を伴う状況のモニタリングと調査のための実用的な応 用に用いられる量。これらの量は、人体の線量の測定と評価のために定義されている。

周辺線量当量 $H^*(10)$ [Ambient dose equivalent, $H^*(10)$]

ある放射線場の中のある1点における線量当量であり、対応する拡張整列場により、 ICRU 球内の整列場に対向する半径上の深さ10mmにおいて生じる線量当量。周辺線量 当量の単位は1キログラムあたりのジュール (J/kg) で、その特別な名称はシーベルト (Sv) である。

職業被ばく [Occupational exposure]

作業者が仕事の結果として受ける放射線被ばく。ICRP は、「職業被ばく」を用いるのは、 操業管理者の責任下にあると合理的に見なすことができる状況の結果として仕事上で受け る放射線被ばく、だけに限定する。

赤色骨髄 [Red (bone) marrow]

□□> 活性骨髄

線エネルギー付与/制限のない線エネルギー付与,L または LET

[Linear energy transfer/unrestricted linear energy transfer, *L* or LET] d*E*を d*l* で割った商。ここで d*E* は,物質中の距離 d*l* を移動中に電子との相互作用によ り荷電粒子が失う平均エネルギーである。すなわち,次の式で表される。

$$L = \frac{\mathrm{d}E}{\mathrm{d}l}$$

線エネルギー付与の単位は1メートルあたりのジュール(J/m)で,また keV/µm で表 されることが多い。

線質係数 *Q* [Quality factor, *Q*]

組織中のある点における線質係数は、次の式で表される。

$$Q = \frac{1}{D} \int_{L=0}^{\infty} Q(L) D_L dL$$

ここで, Dはその点における吸収線量, D_Lは着目する点における制限のない線エネルギ ー付与LにおけるDの分布, そしてQ(L)はLの関数として表される線質係数である。 積分はすべての荷電粒子について, それらの二次電子を除いたLにわたって行う。

線量応答関数(DRF) [Dose-response function (DRF)]

ある標的領域の吸収線量を当該領域の粒子フルエンスで表すために本報告書で使用してい る特有の関数。この関数は、標的領域の微細構造モデルと当該領域における二次電離放射 線の輸送モデルを使って導き出される。

線量換算係数 [Dose conversion coefficient]

内部放射線被ばくと外部放射線被ばくの両方について,線量を物理量と関連づける係数。 外部被ばくの場合は,物理量である「フルエンス」または「空気カーマ」が選ばれてい る。内部被ばく評価に関しては,この用語は「線量係数」とも呼ばれている。

線量限度 [Dose limit]

計画被ばく状況で超えてはならない個人の実効線量,または臓器等価線量あるいは組織等 価線量の勧告値。

線量当量 H [Dose equivalent, H]

組織中のある点における線量当量は、次の式で表される。

H=DQ

ここで, *D*は吸収線量, また*Q*はその点における線質係数である。線量当量の単位は1 キログラムあたりのジュール (J/kg) で, その特別な名称はシーベルト (Sv) である。

臓器吸収線量または**臓器線量** [Organ absorbed dose or organ dose]

「臓器または組織の平均吸収線量」を表す短いフレーズ。

臓器等価線量 [Organ equivalent dose]

「臓器または組織の等価線量」を表す短いフレーズ。

臓器または組織内の平均吸収線量 D_T [Mean absorbed dose in an organ or tissue, D_T] ある特定の臓器または組織 T の平均吸収線量は、次の式で表される。

$$D_{\mathrm{T}} = \frac{1}{m_{\mathrm{T}}} \int_{m_{\mathrm{T}}} D \,\mathrm{d}m$$

ここで, *m*_T はその臓器または組織の質量, *D* は質量要素 d*m* 中の吸収線量である。平均 吸収線量の単位は1キログラムあたりのジュール (J/kg) で, その特別な名称はグレイ (Gv) である。臓器の平均吸収線量は臓器線量とも呼ばれる。

組織加重係数 w_{T} [Tissue weighting factor, w_{T}]

確率的影響による放射線損害全体に対する臓器または組織の相対的寄与を表現するため に,臓器または組織Tの等価線量に加重する係数(ICRP, 1991)。それは次式のように定 義される。

 $\sum w_{\mathrm{T}} = 1$

組織反応 [Tissue reaction]

しきい線量と、線量の増加に伴う反応の重篤度の増加によって特徴付けられる、細胞集団

の傷害。「確定的影響」とも呼ばれている。組織反応は,場合によっては,生物反応修飾 物質*を含む照射後の手順により変化しうる。

*(訳注) 1980 年代に名づけられた「確定的影響」は、近年の研究より被ばく後の治療で発症 が抑えられることが明らかとなった。そのため、2007 年勧告から「組織反応」とい う用語が導入された(*Publication 103*, (A56) 項)。高線量を受けた後でも造血系幹 細胞の増殖因子(G-CSF)の投与や造血幹細胞の移植により組織反応は抑制できる 場合がある。生物反応修飾物質を含む手順とは、このような例を指す。

断面積 σ [Cross section, σ]

あるタイプおよびエネルギーの入射荷電粒子または非荷電粒子によって生じるある相互作 用に対して,標的要素の断面積は,次の式で表される。

$$\sigma = \frac{N}{\Phi}$$

ここで、Nは粒子フルエンス Φにさらされる標的要素あたりの当該相互作用の平均数で ある。断面積の単位は m² である。断面積に対してしばしば使用される特別な単位はバー ンであり、1 バーン (b) = 10⁻²⁸ m² である。相互作用過程を完全に記述するには、相互作 用から出てくるすべての粒子のエネルギーと方向に関して、断面積の分布の情報がとりわ け必要となる。そのような分布は「微分断面積」とも呼ばれ、σをエネルギーと立体角で 微分して得られる。

等価線量 H_T [Equivalent dose, H_T]

ある臓器または組織 T の等価線量は、次の式で表される。

$$H_{\rm T} = \sum_{\rm R} w_{\rm R} D_{\rm T,R}$$

ここで, *D*_{T,R} は特定の臓器または組織 T がタイプ R の放射線から受ける平均吸収線量, そして *w*_R は放射線加重係数である。等価線量の単位は1キログラムあたりのジュール (J/kg) で, その特別な名称はシーベルト (Sv) である。

標準人 [Reference Person]

成人の標準男性の線量と成人の標準女性の線量を平均化することによって, 臓器または組 織等価線量を計算するための理想化されたヒト。標準人の等価線量は, 実効線量の計算に 利用される。

標準男性と標準女性(標準個人)

[Reference Male and Reference Female (Reference Individual)] 放射線防護の目的のために, ICRP が定義する特性を有し, また ICRP *Publication 89* (ICRP, 2002)で定義された解剖学的・生理的特徴を備えた,理想化された男性または女性。

標準ファントム [Reference phantom]

ICRP *Publication 89*(ICRP, 2002)に定義された解剖学的・生理学的特性を持ち, ICRP *Publication 110*(ICRP, 2009)に定義された人体のコンピュータファントム(医学画像 データに基づく男性または女性のボクセルファントム)。

不活性骨髄^{*} [Inactive (bone) marrow]

活性骨髄とは対照的に,不活性骨髄は造血機能を有さない(すなわち,直接造血を担うものではない)。不活性骨髄は, 黄色骨髄系の大部分の空間を占有する脂肪細胞により黄色 を呈する。

フルエンス $\boldsymbol{\Phi}$ [Fluence, $\boldsymbol{\Phi}$]

dNを da で割った商。ここで、dN は断面積 da の小球上に入射する粒子の数である。したがって、次の式で表される。

$\Phi = \frac{\mathrm{d}N}{\mathrm{d}a}$

フルエンスの単位は m⁻² である。

方向性線量当量 $H'(d, \Omega)$ [Directional dose equivalent, $H'(d, \Omega)$]

ある放射線場の中のある1点における線量当量であり, ICRU 球内のある指定された方向 Ωの半径上の深さ*d*において,対応する拡張場によって生じる線量当量。方向性線量当 量の単位は1キログラムあたりのジュール (J/kg) で,その特別な名称はシーベルト (Sv) である。

防護量 [Protection quantities]

ICRP が放射線防護のために定義した,全身および身体各部の外部照射と放射性核種の摂 取による電離放射線被ばくから生じる人々の損害の定量化を可能にするために,人体に関 連づけられた線量。

放射線加重係数 $W_{\rm R}$ [Radiation weighting factor, $w_{\rm R}$]

光子と比べ,高 LET 放射線の生物効果比を反映させるために,臓器または組織の吸収線 量に乗じる無次元の係数。ある臓器または組織の平均吸収線量から等価線量を求めるため に用いられる。

ボクセルファントム [Voxel phantom]

医学断層画像に基づく人体形状コンピュータファントム。ここで、解剖学的構造は、小さ

^{*(}訳注) 造血の活発さに着目して命名された, ICRP 独自の用語。解剖学の用語では「黄色骨 髄」と「脂肪髄」を指す。

な三次元の体積素子(ボクセル)で記述される。これらのボクセルの集まりを,人体の臓 器と組織を特定するために用いる。

参考文献

- ICRP, 1977. Recommendations of the International Commission on Radiological Protection. ICRP Publication 26. Ann. ICRP 1(3).
- ICRP, 1979. Limits for intakes of radionuclides by workers. Part 1. ICRP Publication 30. Ann. ICRP 2 (3/4).
- ICRP, 1991. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Ann. ICRP 21 (1-3).
- ICRP, 1995. Basic anatomical and physiological data for use in radiological protection: the skeleton. ICRP Publication 70. Ann. ICRP 25(2).
- ICRP, 2002. Basic anatomical and physiological data for use in radiological protection: reference values. ICRP Publication 89. *Ann. ICRP* **32**(3/4).
- ICRP, 2009. Adult reference computational phantoms. ICRP Publication 110. Ann. ICRP 39(2).
用語解説の見出し語

〈原著配列順〉

Absorbed dose, D 吸収線量 D Active (bone) marrow 活性骨髓 Ambient dose equivalent, H*(10) 周辺線 量当量*H**(10) Bone marrow 骨 髄 Bone surfaces 骨表面 二> 骨内膜 Charged-particle equilibrium 荷電粒子平衡 Cross section, σ 断面積 σ Deterministic effect 確定的影響 □> 組織反応 Directional dose equivalent, $H'(d, \Omega)$ 方向 性線量当量 $H'(d, \Omega)$ Dose conversion coefficient 線量換算係数 Dose equivalent, H 線量当量 H Dose limit 線量限度 Dose-response function (DRF) 線量応答関 数 (DRF) Effective dose, E 実効線量 E Endosteum (or endosteal layer) 骨内膜 (または骨内膜層) Equivalent dose, H_T 等価線量 H_T Fluence, ϕ フルエンス ϕ ICRU 4-element tissue ICRU 4 元素組織 Inactive (bone) marrow 不活性骨髓 Kerma approximation カーマ近似 Kerma, $K \quad \mathcal{D} - \mathcal{P} K$ Linear energy transfer / unrestricted linear energy transfer, L or LET 線エネルギー 付与/制限のない線エネルギー付与、L ま たはLET Marrow cellularity 骨髓細胞密度

Mean absorbed dose in an organ or tissue, $D_{\rm T}$ 臓器または組織内の平均吸収線量 D_T Occupational exposure 職業被ばく Operational quantities 実用量 Organ absorbed dose or organ dose 臓器吸 収線量または臓器線量 Organ-equivalent dose 臓器等価線量 Personal dose equivalent, $H_p(d)$ 個人線量 当量 $H_{\rm p}(d)$ Protection quantities 防護量 Quality factor, Q 線質係数 Q Radiation weighting factor, w_R 放射線加重 係数 WR Red (bone) marrow 赤色骨髓 □> 活性骨髄 Reference Male and Reference Female (Reference Individual) 標準男性および 標準女性(標準個人) Reference Person 標準人 Reference phantom 標準ファントム Reference value 基準値 Response function 応答関数 □> 線量応答関数 Spongiosa 海綿質 Tissue reaction 組織反応 Tissue weighting factor, wT 組織加重係数 w_{T} Voxel phantom ボクセルファントム Yellow (bone) marrow 黄色骨髓 □> 不活性骨髄

1. 緒 論

(1) 作業者と一般公衆の実際的な放射線防護では,線量制限と最適化という基本原則を履行するため,電離放射線に対するヒトの被ばくを適切に定量化する線量計測量を使用する。規則や指針を履行し,規制の遵守を実証するために,ICRPとICRUは,標準のデータ,モデルおよびファントムに基づく防護量と実用線量計測量の体系を開発した。

(2) 2007 年に ICRP は、従来 ICRP Publication 60 (ICRP, 1991) で示してきた放射線防 護体系に対する基本的勧告を改訂した。ICRP Publication 103 (ICRP, 2007) で示された 2007 年勧告は、1990 年以降発表された放射線源による被ばくの管理に関する追加のガイダンスを 更新し、統合し、かつ発展させたものである。2007 年勧告は、放射線防護のための ICRP の 3 つの基本原則、すなわち正当化、最適化および線量限度の適用を維持しているが、被ばくをも たらしている放射線源と被ばくを受けている個人に、それらをどのように適用するかを明確化 したものとなっている。その他の改訂の中で、2007 年勧告は、「等価線量」と「実効線量」に おける放射線加重係数と組織加重係数の値を更新し、また放射線被ばくによる放射線生物学的 影響に関する最新の科学的情報に基づいて、放射線損害の基礎となる計算を更新している。

(3) 等価線量と実効線量の概念と使い方は従来通りであり変更はないが、それらの計算に 用いられる方法には多くの改訂が行われた。生物物理学的考察とともに、低線量における様々 な放射線の生物効果比に関する一連の入手可能なデータの検討により、中性子と陽子に用いる 放射線加重係数 $w_{\rm R}$ の値が変更され、中性子に対する加重係数の値は、現在では、入射または 放出中性子エネルギーの連続関数として与えられている。荷電パイ中間子に関する $w_{\rm R}$ の値も 含められた。光子、電子、ミュー粒子およびアルファ粒子に対する放射線加重係数は、ICRP *Publication 60* (ICRP, 1991) に示されている値から変わっていない。さらに、確率的健康影 響に対する様々な臓器と組織の放射線感受性の違いを考慮する組織加重係数 $w_{\rm T}$ についても改 訂が加えられた。被ばく集団におけるがん誘発に関する疫学調査と遺伝性影響に対するリスク 評価を基に、一連の新しい $w_{\rm T}$ 値が相対的な放射線損害のそれぞれの値に基づいて選ばれた。 これらの値は、性別・年齢を問わずあてはまるよう選ばれた、ヒトに対する平均値を示すもの であり、したがって特定の個人に関するものではない。

(4) さらに重要な変更は、今回、外部線源と内部線源からの線量を、人体の ICRP/ICRU 標準コンピュータファントム(ICRP, 2007)を使用して計算する点である。過去において当 委員会は、特定のファントムを指定しておらず、両性具有の MIRD (Medical Internal Radiation Dose: 医学内部放射線量) タイプのファントム (Snyder ら, 1969), Kramer らの 性別モデル (1982), Cristy と Eckerman (1987) の年齢別ファントムなど, いろいろな数学 ファントムを使用してきた。実際のヒトの医学画像データから作られたボクセルモデルは, 数 学的な (または様式化された) ファントムよりももっと現実に近い人体の描写を与える。それ ゆえ ICRP と ICRU は,外部被ばくと内部被ばくの両方について人体中の線量分布の計算に使 える標準ファントムを定義するためにボクセルモデルを使うこととした。ICRP Publication 110 (ICRP, 2009) に述べられているモデル (すなわちコンピュータファントム) は,成人の 標準男性と標準女性を表し,ICRP Publication 89 (ICRP, 2002) にまとめられている解剖学 上の標準値に従った臓器質量を持つ。これらのファントムは,特に 2007 年勧告 (ICRP, 2007) の実効線量の概念に対応する放射線防護量の計算のために作られている。ICRP の課題 グループ DOCAL は,現在,男女それぞれの新生児,1歳,5歳,10歳,15歳の計10種類の 小児年齢の標準ファントムを開発している。

(5) したがって、ボクセル標準モデルは成人の標準男性と標準女性のコンピュータ上の表 現であり、放射線輸送とエネルギー沈着のシミュレーションをするコードとともに臓器または 組織 T における平均吸収線量 D_T の評価に使用でき、その評価に基づいて等価線量と実効線量 が計算できる。

(6) ある臓器または組織の等価線量は、その臓器や組織の吸収線量とそれに関与する放射 線の放射線加重係数との積をすべてのタイプの放射線について合計することによって計算され る。実効線量は、性平均等価線量と、実効線量の定義で考慮されている人体のすべての臓器と 組織の組織加重係数との積を合計することによって計算される。組織加重係数は、更新された リスクデータに基づいて、両性およびすべての年齢の集団に概数として適用するように考えら れている。それゆえ、実効線量の換算係数は、特定の個人についてではなく、標準人について 計算される。

(7) 放射線防護には重要な2組の量がある。防護量(例えば,等価線量や実効線量)と実 用量(例えば,防護量の測定可能な代用物として使用するために定義された周辺線量当量や個 人線量当量)である。線量限度の遵守は防護量で表され,外部放射線に対しては適切な実用量 の測定によって線量限度の遵守が立証される。

(8) 3つの主要な防護量は、引き続き、臓器または組織の平均吸収線量 D_T、臓器または 組織の等価線量 H_T、および実効線量 E である。防護量は、被ばくが起こる放射線場と計算に よって関連づけられる。防護量と放射線場の橋渡しをするために、ICRU は外部放射線による 被ばく量の測定のための実用量を開発した(ICRU, 1985)。

(9) 実用量は、周辺線量当量 H*(d)、方向性線量当量 H'(d, Ω)、および個人線量当量
 H_p(d) である。放射線防護の線量計測に用いられるこれらの実用量とその他の関連する量は、
 ICRU Report 51 (ICRU, 1993) と ICRU Report 66 (ICRU, 2001) に記述されている。

(10) 2007 年勧告(ICRP, 2007)は、人体の内部と外部両方の電離放射線源による被ばく に対する防護で使用されてきた基本データの多くについて検討を求めている。本報告書は、外 部被ばくに対しての結果だけを対象としたものである。

(11) 本報告書の目的は,外部放射線被ばくに対する防護量の換算係数を示し,それらと 現在使用されている実用量(ICRU, 1993)との関係を調査することにある。

(12) 最近の放射線疫学研究は、白内障誘発のしきい値が以前想定されていた値よりはる かに低いかもしれないことを示している。眼の水晶体のしきい値は、現在、吸収線量で0.5 Gy と考えられている(ICRP, 2012)。眼の水晶体の線量は、水晶体全体の平均線量を意味し ており、水晶体内の線量勾配が大きい条件下では、この平均線量は白内障発生の原因となる放 射線感受性が高い細胞層の線量を表していないかもしれない。本報告書はこの問題を扱い、 ICRP 標準ファントムの固定されたボクセル構造内で得られるものより、より微細な解像度の 様式化された眼のモデルを使って、モンテカルロ法によって得られた眼の水晶体の吸収線量換 算係数を提示する。

(13) 成人の標準コンピュータファントムと眼の水晶体の線量の評価のための様式化され た頭部ファントムについて,物理量(例えば粒子フルエンスや空気カーマ)に関連づけた換算 係数が,理想化された照射ジオメトリーの単一エネルギーの放射線に対して得られている。こ こで示したデータは,防護量と実用量の比較の基礎を提供し,2007年勧告(ICRP,2007)が, これらの量に及ぼす影響を検討することを意図している。共同課題グループによるデータの検 討は,放射線防護の線量評価に適用するための,信頼できかつ安定したデータセットをもたら すであろう。

1.1 参考文献

- Cristy, M., Eckerman, K.F., 1987. Specific Absorbed Fractions of Energy at Various Ages from Internal Photon Sources. Vol. 1–7. ORNL Report TM-8381/Vol. 1–7. Oak Ridge National Laboratory, Oak Ridge, TN.
- ICRP, 1991. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. *Ann. ICRP* **21**(1-3).
- ICRP, 2002. Basic anatomical and physiological data for use in radiological protection: reference values. ICRP Publication 89. *Ann. ICRP* **32**(3/4).
- ICRP, 2007. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 37 (2-4).
- ICRP, 2009. Adult reference computational phantoms. ICRP Publication 110. Ann. ICRP 39(2).
- ICRP, 2012. ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs: threshold doses for tissue reactions in a radiation protection context. ICRP Publication 118. *Ann. ICRP* **41**(1–3).
- ICRU, 1985. Determination of Dose Equivalents Resulting from External Radiation Sources. ICRU Report 39. International Commission on Radiation Units and Measurements, Bethesda, MD.

4 1. 緒 論

- ICRU, 1993. Quantities and Units in Radiation Protection Dosimetry. ICRU Report 51. International Commission on Radiation Units and Measurements, Bethesda, MD.
- ICRU, 2001. Determination of Operational Dose Equivalent Quantities for Neutrons. ICRU Report 66. International Commission on Radiation Units and Measurements, Bethesda, MD.
- Kramer, R., Zankl, M., Williams, G., et al., 1982. The Calculation of Dose from External Photon Exposures Using Reference Human Phantoms and Monte Carlo Methods. Part I: the Male (Adam) and Female (Eva) Adult Mathematical Phantoms. GSF Report S-885. GSF—National Research Centre for Environment and Health, Neuherberg.
- Snyder, W.S., Ford, M.R., Warner, G.G., et al., 1969. Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. Medical Internal Radiation Dose Committee Pamphlet No. 5. *J. Nucl. Med.* **10**(Suppl. 3).

2. 外部被ばくに対する放射線防護に用いられる量

(14) ヒトの電離放射線被ばくの記述と定量化には,特定の量と単位の定義が必要となる。 ICRU と ICRP が勧告する定義は,これらの機関の様々な報告書や刊行物に示されている (ICRU, 1985, 1993, 2001, 2011; ICRP, 2007)。本報告書は,外部被ばくに対する放射線防護 に関連する量の定義を示す。

2.1 フルエンスとカーマ

(15) ある特定のタイプの放射線場は,粒子の数*N*,それらのエネルギーと方向分布,お よび時間的分布によって完全に記述される。この記述には,スカラー量とベクトル量の定義が 必要である。放射線場の量の定義は,ICRU Report 60 (ICRU, 1998a)の改訂版である ICRU Report 85a (ICRU, 2011)に詳しく示されている。方向分布の情報を与えるベクトル量は, 主に放射線輸送の理論と計算の両方に適用され,一方,粒子フルエンスまたはカーマのような スカラー量は,多くの場合,線量計測に適用される。

(16) 放射線場の量は,放射線場のいかなる点においても定義できる。放射線場は様々な タイプの粒子から成ることがあり,粒子数に基づく場の量は,常にある特定のタイプの粒子に 関連付けられている。これは,多くの場合,その量に粒子の名称(例えば中性子フルエンス) を加えることによって表される。「フルエンス」という量は,照射媒質の小さな球に入射する かまたはその小さな球を通過する粒子の数を数える考え方に基づくものである。

(17) フルエンス ϕ は、dN を da で除した商であり、ここでの dN は断面積 da の球に入 射する粒子の数である。したがって、次の式で表される。

$$\varPhi = \frac{\mathrm{d}N}{\mathrm{d}a} \tag{2.1}$$

フルエンスの単位は m⁻² である。

(18) フルエンスは、この球に入る粒子の方向分布に依存しない。放射線輸送計算では、 フルエンスは多くの場合、粒子の軌跡の長さとして表される。そのときフルエンスΦは次式 によって与えられる。

$$\Phi = \frac{\mathrm{d}l}{\mathrm{d}V} \tag{2.2}$$

6 2. 外部被ばくに対する放射線防護に用いられる量

ここで、dl はこの体積 dV 中の粒子の軌跡の合計である。

(19) 非荷電粒子(光子や中性子などの間接電離粒子)から物質へのエネルギーの移動は, この物質中における二次荷電粒子の解放と減速によって行われる。この現象は「カーマ」とい う量の定義につながる。電離性非荷電粒子に対するカーマKはdE_{tr}をdmで割った商によっ て定義される。ここで,dE_{tr}は質量dmの物質に入射する非荷電粒子によりdm中で解放され たすべての荷電粒子の初期運動エネルギーの総和の期待値である。それは次の式で表される。

$$K = \frac{\mathrm{d}E_{\mathrm{tr}}}{\mathrm{d}m} \tag{2.3}$$

カーマの単位は J/kg で、その特別な名称はグレイ (Gy) である。

2.2 放射線防護に用いられる線量

(20) 50 年以上にわたり ICRP は、概念、量、および基本勧告に基づいて、放射線防護の システムを支えてきた。ICRP Publication 103 (ICRP, 2007) で勧告されている最も新しい一 連の防護量は、臓器や組織の平均吸収線量(「臓器吸収線量」または「臓器線量」とも呼ばれ る) $D_{\rm T}$ 、臓器や組織の等価線量(「臓器等価線量」とも呼ばれる) $H_{\rm T}$ 、および実効線量 E で ある。等価線量と実効線量は、測定できないが、被ばく条件が分かれば計算できる。等価線量 と実効線量は、職業的に被ばくする人および公衆の放射線防護のための限度を指定するために 用いられる (2.2 節 (35)-(44) 項参照)。

2.2.1 吸収線量

(21) 放射線防護,放射線生物学および臨床放射線医学において,吸収線量 D は基本となる物理的線量である。吸収線量は、すべてのタイプの電離放射線にも、またいかなる照射ジオメトリーに対しても用いられる。

(22) 吸収線量 D は、 $d\bar{e}$ を dm で除した商として定義される。ここで、 $d\bar{e}$ は電離放射線 により質量 dm の物質に与えられた平均エネルギーである。すなわち、次の式で表される。

$$D = \frac{\mathrm{d}\bar{\varepsilon}}{\mathrm{d}m} \tag{2.4}$$

吸収線量の単位は J/kg であり、その特別な名称はグレイ(Gy)である。

(23) カーマの値は、質量要素 dm の物質中における相互作用だけに依存し、一方、非荷 電粒子に対する吸収線量の値は、この質量要素の周囲において解放され、この要素に入った二 次荷電粒子にも依存する。吸収線量は、付与エネルギーの確率論的量である ε の平均値から導 かれ、組織中での相互作用事象の不規則な変動を反映しない。吸収線量は物質中のいかなる点 でも定義されるが、一方、その値は dm にわたる平均値、したがって、物質の多数の原子また は分子にわたる平均値として得られる。通常,吸収線量は測定可能な量であり,測定によるその決定を可能にするための一次標準が存在する。

(24) 放射線防護量の定義において, 微視的レベルでの物理過程の確率的分布を指定する 試みは行われていない。そのような分布関数を明示的に考察する代わりに, 実際的かつ経験的 なアプローチが, 線質の違いを考慮するために採用された。放射線加重係数は, 低 LET 放射 線と比べて高い生物効果を示す高 LET 放射線の生物効果を反映させるために, 臓器または組 織の吸収線量に乗じる無次元の係数である。これらの値は, 放射線生物学的な実験と疫学研究 の結果に基づく判断を通して, 微視的領域に沈着するエネルギーの分布の違いを考慮するため に選ばれている。加重係数の値は, 入射放射線のタイプ, あるいは内部線源の場合は線源から 放出される粒子のタイプに関連づけられている。

2.2.2 平均吸収線量

(25)「吸収線量」という量は、物質中のあらゆる点において特定の値を与えるように定義 されている。しかし実際の適用においては、吸収線量は多くの場合、もっと大きな組織体積に わたって平均化される。低線量に対しては、特定の臓器または組織の吸収線量の平均値を、放 射線防護の目的のために十分な正確さで、その臓器または組織のすべての部分における確率的 影響からの放射線損害と関連づけることができる。

(26) ある臓器または組織 T の領域における平均吸収線量は次式で定義される。

$$D_{\mathrm{T}} = \frac{1}{m_{\mathrm{T}}} \int_{m_{\mathrm{T}}} D \,\mathrm{d}m \tag{2.5}$$

ここで、 $m_{\rm T}$ は臓器または組織の質量、Dはその質量要素 dm における吸収線量である。平均吸収線量 $D_{\rm T}$ は、臓器または組織に与えられる平均エネルギー $\epsilon_{\rm T}$ と臓器または組織の質量 $m_{\rm T}$ の比に等しく、したがって次の式で表される。

$$D_{\rm T} = \frac{\bar{\varepsilon}_{\rm T}}{m_{\rm T}} \tag{2.6}$$

平均吸収線量の単位は J/kg であり、その特別な名称はグレイ(Gy)である。臓器の平均吸収 線量は臓器線量とも呼ばれる。

2.2.3 等価線量と放射線加重係数

(27) 防護量の定義は、タイプRの放射線による、特定の臓器・組織Tの体積中の平均吸 収線量 *D*_{T,R}に基づいている。放射線Rは、人体に入射する放射線のタイプとエネルギー、ま たは体内に存在する放射性核種が放出する放射線のタイプとエネルギーによって決まる。そし て、臓器・組織の防護量である「等価線量」*H*_Tは、次式によって定義される。

$$H_{\rm T} = \sum_{\rm R} w_{\rm R} D_{\rm T, R} \tag{2.7}$$

ここで、*w*_Rは放射線 R(外部被ばくの場合は人体へ入射する放射線)の放射線加重係数であ る。この合計は、関与するすべてのタイプの放射線についてなされる。等価線量の単位は J/kg,その特別な名称はシーベルト(Sv)である。

(28) ICRP Publication 103 (ICRP, 2007) で与えられ,表 2.1 に示した中性子と陽子の $w_{\rm R}$ 値は, ICRP Publication 60 (ICRP, 1991) に示された値とは異なっており,また 2007 年 勧告では荷電パイ中間子に対する値が含められた。

放射線のタイプ*放射線加重係数 wR光子1電子,ミュー粒子2陽子,荷電パイ中間子2アルファ粒子,核分裂片,重イオン20中性子回盤としての連続曲線[図 2.1 と式(2.8)参照]

表 2.1 放射線加重係数 W_R

出典: ICRP (2007)。国際放射線防護委員会の 2007 年勧告。ICRP Publication 103. Ann. ICRP 37 (2-4)。

* すべての数値は、人体へ入射する放射線、または内部線源に関しては、線源から放 出される放射線に関連づけられる。

光子,電子およびミュー粒子

(29) 電子, ミュー粒子および光子によって発生する二次粒子は, 大体において LET 値が 10 keV/µm 未満の放射線である。これらの放射線には, 常に1 という放射線加重係数が与え られていた。この単純化で十分なのは, 等価線量と実効線量の適用が意図されたもの(例えば 線量の制限と評価, 低線量域における線量管理) に対してのみである。個々の遡及的リスク評 価を実施しなければならない場合には, もし適切なデータが入手できれば, 放射線場と適切な 生物効果比の値に関するより詳細な情報を考慮する必要がある。DNA に取り込まれたトリチ ウムまたはオージェ電子放出体で生じ得るような細胞内線量の不均一性についても, 具体的な 解析を要することがある。等価線量と実効線量は, このような評価に用いるには適切な量では ない [ICRP Publication 103 (ICRP, 2007) 参照]。

中性子

(30) 人体に入射する中性子の生物効果は、中性子のエネルギーに強く依存する。したがって、中性子の放射線加重係数は、エネルギーの関数として定義される(図 2.1; ICRP, 2007)。ICRP *Publication 60*(ICRP, 1991)のデータと比べて最も大きな変化は、低エネルギー域と 100 MeV より大きい中性子の運動エネルギーにおける *w*_Rの減少である(さらに詳しい説明は ICRP *Publication 103*の付属書 B 参照)。中性子の放射線加重係数の計算のために、

中性子エネルギー En(単位:MeV)の以下の連続関数が定義されている。

$$w_{\rm R} = \begin{cases} 2.5 + 18.2 \,\mathrm{e}^{-[\ln(E_{\rm n})]^2/6} & E_{\rm n} < 1 \,\mathrm{MeV} \\ 5.0 + 17.0 \,\mathrm{e}^{-[\ln(2E_{\rm n})]^2/6} & 1 \,\mathrm{MeV} \le E_{\rm n} \le 50 \,\mathrm{MeV} \\ 2.5 + 3.25 \,\mathrm{e}^{-[\ln(0.04E_{\rm n})]^2/6} & E_{\rm n} > 50 \,\mathrm{MeV} \end{cases}$$
(2.8)

図 2.1 中性子に対する放射線加重係数 w_R と中性子運動 エネルギーの関係

陽子とパイ中間子

(31) 放射線防護の目的のために,主に 10 MeV を超える高エネルギー陽子に関する放射 線生物学的データに基づいて,すべてのエネルギーの陽子に対して単一の w_R 値 2 が採用され ている。この値は,ICRP *Publication 60* (ICRP, 1991) で勧告された 5 という値に代わるも のである。

(32) パイ中間子は、大気圏内の高高度において一次宇宙線と原子核との相互作用の結果 生じる放射線場で遭遇する、プラスまたはマイナスに荷電しているか、あるいは中性の粒子で ある。これらの粒子は、航空機内や宇宙における被ばくに寄与し、また、高エネルギー粒子加 速器の遮蔽体の背後にある複雑な放射線場を構成する要素である。すべてのエネルギーの荷電 パイ中間子に対して、単一の w_R 値2が勧告されている。

アルファ粒子

(33) 1990 年勧告(ICRP, 1991)では, 20 という単一の放射線加重係数が勧告され, この 値は 2007 年の勧告(ICRP, 2007)で変更されなかった。ヒトは,内部放射体(例えば吸入し たラドン子孫核種,または経口摂取したプルトニウム,ポロニウム,ラジウム,トリウムおよ びウランといったアルファ線放出核種)からのアルファ粒子に被ばくすることがある。外部被

10 2. 外部被ばくに対する放射線防護に用いられる量

ばくでは、アルファ粒子は組織中での飛程が短いため重要性は低い。

核分裂片と重イオン

(34) 核分裂片からの線量は、放射線防護,主に内部放射体の線量評価において重要である。放射線加重係数に関する状況はアルファ粒子の場合と類似しており、1990年の勧告(ICRP, 1991)以来,ICRPは放射線加重係数20を勧告してきた。外部被ばくに対して、宇宙での適用については、重荷電粒子が人体の全線量に著しく寄与するので、重イオンの放射線生物効果を評価する別のアプローチを用いなければならない。

2.2.4 実効線量と組織加重係数

(**35**) ICRP *Publication 60* (ICRP, 1991) で導入された実効線量 *E* は,組織等価線量の加 重和として定義される。

$$E = \sum_{\mathrm{T}} w_{\mathrm{T}} \sum_{\mathrm{R}} w_{\mathrm{R}} D_{\mathrm{T,R}} = \sum_{\mathrm{T}} w_{\mathrm{T}} H_{\mathrm{T}}$$
(2.9)

ここで、 $w_{\rm T}$ は組織 T の組織加重係数で、 $\Sigma w_{\rm T} = 1$ である。合計は、確率的影響の誘発に対し て感受性があると考えられる人体のすべての臓器・組織にわたって行う。これらの $w_{\rm T}$ 値は、 確率的影響による放射線損害全体に対する個々の臓器・組織の寄与を表すように選ばれてい る。実効線量の単位は J/kg で、その特別な名称はシーベルト(Sv)である。この単位は等価 線量と実効線量、そして実用量についても同じである(2.3 節参照)。

(**36**) 2007 年勧告(ICRP, 2007)に従って *w*_T 値が指定されている臓器・組織を表 2.2 に 示す。

(37) これらの $w_{\rm T}$ の値は、両性およびすべての年齢にわたって平均化された、ヒトに対する平均値を示すものであり、したがって、いかなる特定の個人の特性とも関連づけられていない (ICRP, 2007)。残りの組織に対する $w_{\rm T}$ 値 (0.12) は、表 2.2 の脚注に挙げられた、男性・女性それぞれ 13 種類の組織に対する等価線量の算術平均線量に適用される。

祖 織	w_{T}	$\sum w_{\mathrm{T}}$		
赤色骨髄,結腸,肺,胃,乳房,残りの組織*	0.12	0.72		
生殖腺	0.08	0.08		
膀胱,食道,肝臓,甲状腺	0.04	0.16		
骨内膜 (骨表面), 脑, 唾液腺, 皮膚	0.01	0.04		
合 計		1.00		

表 2.2 組織加重係数 WT

出典: ICRP (2007)。国際放射線防護委員会の 2007 年勧告。ICRP Publication 103. Ann. ICRP 37 (2-4)。

* 残りの組織:副腎,胸郭外領域,胆嚢,心臓,腎臓,リンパ節,筋肉,口腔粘 膜,膵臓,前立腺(男性),小腸,脾臓,胸腺,および子宮/子宮頸部(女性)。 実効線量の決定

(38) 実効線量の決定手順を図2.2 に図示する。この図に示すように,吸収線量と等価線 量は成人の標準男性と標準女性に対して別々に評価する。次に,男女別の等価線量を平均し, 標準人の等価線量を得る。ついで標準人の性平均等価線量を組織加重係数によって重み付け し,表2.2 に挙げたすべての臓器・組織について合計する。この手順全体は,小児の年齢別標 準人に対しても適用することができる。

図 2.2 性別標準ファントムを用いた実効線量の計算手順の図

(39)「等価線量」と「実効線量」は測定できない。体外の線源による放射線被ばくに対し ては、これらの値は実用量を用いた放射線モニタリングか、あるいは放射線場の量を臓器等価 線量または実効線量と関連づける換算係数を適用することによって決定される。外部被ばくの 換算係数の計算には、様々な放射線場における線量評価に対して、コンピュータファントムが 用いられる(3章参照)。

標準ファントム

(40) 成人の標準男性と標準女性の等価線量と標準人の実効線量の評価は、コンピュータ モデルまたはファントムを使用して行われる。過去に ICRP は、特定のファントムを指定せ ず、両性具有の MIRD (Medical Internal Radiation Dose: 医学内部放射線量) タイプのファ ントム (Snyder ら、1969), Kramer ら (1982) の性別ファントム、Cristy と Eckerman (1987) の年齢別ファントムなどの様々な数学ファントムを使用してきた。ICRP は現在、臓 器・組織の等価線量の計算に、成人の男性と女性の標準コンピュータファントムを使用してい る。これらのファントムは医学断層画像に基づいたものである (ICRP, 2009)。このファント ムは小さな三次元の体積要素 (ボクセル) で構成されている。ICRP Publication 89 (ICRP, 12 2. 外部被ばくに対する放射線防護に用いられる量

2002) で成人の標準男性と標準女性に指定されている標準的臓器質量を近似するように,臓器の体積は調節され,組織の密度が設定されている。

(41) これらのモデルは、成人の標準男性と標準女性をコンピュータ上で表現したものであり、体外の放射線場による、また、体内取り込み後の放射性核種の壊変による臓器・組織 Tにおける平均吸収線量 D_Tを計算するために使用される。

実効線量のための性の平均化

(42) 放射線防護の目的のために,両性に1つの実効線量値を適用する。表2.2の組織加 重係数は,男性と女性の乳房,男女の生殖腺を含むすべての臓器・組織に対する性平均および 年齢平均された値である。この「平均する」ということは,本アプローチを適用するのは,放 射線防護における実効線量の決定に限定されること,特に個人のリスクの評価には使用できな いことを意味している。実効線量は,成人の標準男性と標準女性の臓器・組織Tに対して評 価された等価線量から,以下の式に従い計算される。

$$E = \sum w_{\rm T} \left[\frac{H_{\rm T}^{\rm M} + H_{\rm T}^{\rm F}}{2} \right] \tag{2.10}$$

(43) 残りの組織に対する等価線量は,他の臓器・組織に対するアプローチと同様,成人の標準男性と標準女性について別々に定められ,それらの値は式(2.10)に含まれている(図 2.2 参照)。残りの組織に対する等価線量は,表2.2の脚注に挙げられた,男性・女性それぞ れに対する13種類の組織の等価線量の算術平均として計算される。成人の標準男性のH^M_{rem}と 標準女性のH^F_{rem}の残りの組織の等価線量は,次式のように決定される。

$$H_{\rm rem}^{\rm M} = \frac{1}{13} \sum_{\rm T}^{\rm I3} H_{\rm T}^{\rm M} \quad \text{$\ddagger $\tt L U} \quad H_{\rm rem}^{\rm F} = \frac{1}{13} \sum_{\rm T}^{\rm I3} H_{\rm T}^{\rm F} \tag{2.11}$$

ここで、Tは表2.2の脚注にある残りの組織である。

(44) 防護の目的のための実効線量は、人体の臓器や組織の平均吸収線量に基づいている。 実効線量は、標準人について定義され、評価されるものである(図2.2参照)。この量は、あ る個人について特定の被ばく条件は考慮するが、その個人の特性は考慮しない値を与える。特 に、組織加重係数は、両性の多数の個人にわたって平均化された結果を示す平均値である。

2.2.5 線量限度

(45) 線量限度は計画被ばく状況にのみ適用され,患者の医療被ばくには適用されない。
ICRP Publication 103 (ICRP, 2007) において,委員会は,ICRP Publication 60 (ICRP, 1991) で勧告された線量限度は,現在でも引き続き適切な防護レベルを与えるものと結論づけた。作業者集団と一般公衆の両者に対し ICRP Publication 103 において定められた名目損害係数は,数値は若干小さいが,ICRP Publication 60 で与えられたものと一致する。これらのわずかな違いは実用上重大ではない (ICRP Publication 103 付属書 A 参照)。職業被ばくまた

表 2.3 計画被ばく状況において勧告された線量限度の値*1

四中のタイプ	年線量限度					
限度のタイプ	職業被ばく	公衆被ばく				
実効線量	定められた5年間の平均値として,20mSv*2	1 mSv*3				
以下の組織における年等価線量						
眼の水晶体	定められた5年間の平均値として,20mSv*4	15 mSv				
皮 膚*5,*6	500 mSv	50 mSv				
手 足	500 mSv	_				

出典: ICRP (2007)。国際放射線防護委員会の 2007 年勧告。ICRP Publication 103. Ann. ICRP 37 (2-4)。

*1 実効線量の限度は、ある特定の期間の外部被ばくからの該当する実効線量と、同じ期間における 放射性核種の摂取からの預託実効線量の合計である。

*2 実効線量はいかなる1年にも50mSvを超えるべきでないという追加の規定がある。妊娠女性の 職業被ばくには追加の制限が適用される。

*3 特別な事情の下では、単年における実効線量のより高い値が許容されることもあり得るが、ただ し5年間をわたる平均が1mSv/年を超えないこと。

*4 この年限度は 2011 年 4 月に ICRP によって 150 mSv から下げられ,また,線量はどの 1 年においても 50 mSv を超えるべきでないという規定が加えられた。

*5 実効線量の制限は、皮膚の確率的影響に対して十分な防護を与える。

*6 被ばく面積に関係なく、皮膚面積1cm²あたりの平均値である。

は公衆被ばくを問わず,線量限度は,既に正当化されている行為に関連する線源からの被ばく の合計に適用される。勧告された線量限度は表2.3にまとめられている。

2.3 実用量

(46) 防護量である「等価線量」と「実効線量」は測定できず,それゆえ放射線モニタリ ングにおける量として直接使用できない。したがって,職業被ばくに係る規則を遵守している ことの実証のため,そして経済的・社会的要因を考慮に入れて線量を合理的に達成できる限り 低くする原則の適用のためには,実効線量または組織・臓器の等価線量の評価に対して実用量 が用いられる。実用量は,線量当量(2.3節(49)-(55)参照)に基づき,外部放射線場におけ る測定のために ICRU によって定義されたもので,周辺線量当量,方向性線量当量(2.3節 (56)-(64)参照)および個人線量当量(2.3節(65)-(67)参照)である。周辺線量当量と方向 性線量当量はエリアモニタリングに,個人線量当量は個人モニタリングに用いられる。

(47) 実用量は,ほとんどの照射条件下にあるヒトの被ばく,または潜在被ばくに関係する防護量の値の合理的な推定値(この推定値は一般には保守側の高めの値である)を与えることを目的としている。実用量は,実際の規則またはガイダンスにしばしば用いられる。外部放

14 2. 外部被ばくに対する放射線防護に用いられる量

射線被ばくのモニタリングに対しては,ICRU(1985,1998b)によって定義された実用線量が、多くの国々において放射線防護の実務に導入されている。

(48) 実用量が,新しく指定された実効線量および他の防護量の合理的な推定値を与える かどうかを究明することは重要である。この課題は5章で議論する。

2.3.1 線量当量

(49) 線量当量 H は,組織中のある点における Q と D の積である。ここで,D は吸収線 量,Q はその点における線質係数である。したがって,次の式で表される。

H = QD

(2.12)

(50) 電離放射線の生物効果は、組織中の荷電粒子の飛跡に沿ったエネルギー沈着の特性, 特に電離密度と強く相関していると考えられている。放射線防護における適用においては、そ のような飛跡の複雑な構造は、単一のパラメータである制限のない LET(*L*_∞)によって特徴づ けられる。したがって、線質係数*Q*は、水中における荷電粒子の制限のない LET の関数 *Q*(*L*)として定義される。

(51) 線質係数の関数 *Q*(*L*) は, ICRP *Publication 60* (ICRP, 1991) で以下のように定義 されている。

$$Q(L) = \begin{cases} 1 & L < 10 \text{ keV/}\mu\text{m} \\ 0.32L - 2.2 & 10 \le L \le 100 \text{ keV/}\mu\text{m} \\ 300/\sqrt{L} & L > 100 \text{ keV/}\mu\text{m} \end{cases}$$
(2.13)

(52) この関数は、細胞系および分子系についての放射線生物学的な研究の結果、並びに 動物実験の結果を考慮した判断の成果である。この関数の評価に対する放射線生物学データベ ースは、1990年以降ほとんど変わっていない(ICRP、2003 参照)。

(53) 組織中のある点における線質係数Qは、次式で表される。

$$Q = \frac{1}{D} \int_{L=0}^{\infty} Q(L) D_L \mathrm{d}L \tag{2.14}$$

ここで, *D*はその点における吸収線量, *D*_Lは線エネルギー付与*L*における*D*の分布, *Q*(*L*) は着目する点における対応する線質係数である。積分は, すべての荷電粒子について, それら の二次電子を除いた*L*にわたって行う。中性子の相互作用によって様々なタイプの二次荷電 粒子が組織中に生じるので, この関数は特に中性子に対して重要である。

(54) 外部被ばくにおけるエリアモニタリングや個人モニタリングの種々のモニタリング の仕事に対して,異なる実用線量の適用を記述するため,表2.4に示すスキームを用いること ができる。

(55) 個人被ばくを評価するために、個人線量測定が使われず、エリアモニタリングが適

 目的
 実用線量

 エリアモニタリング
 個人モニタリング

 実効線量の管理
 周辺線量当量 H*(10)
 個人線量当量 H_p(10)

 皮膚,末端部の線量の管理*
 方向性線量当量 H'(0.07, Ω)
 個人線量当量 H_p(0.07)

 眼の水晶体の線量の管理*
 方向性線量当量 H'(3, Ω)
 個人線量当量 H_p(3)

表 2.4 外部被ばくモニタリングのための実用量

 * モニタリング機器が H'(3, Q) あるいは H_p(3) を測定するように設計されていない場合は、 H'(0.07, Q) と H_p(0.07) を適用してよい。

用される状況が存在する。このような状況には,航空機乗務員の線量の評価,予測線量の評価,および作業場と自然環境における線量の評価が含まれる。

2.3.2 エリアモニタリングに対する実用量

(56) すべてのタイプの外部放射線について,エリアモニタリングに対する実用量は,組織等価物質からなる理論上の構成物である ICRU 球(直径 30 cm,密度 1 g/cm³,質量組成は酸素 76.2%,炭素 11.1%,水素 10.1%,窒素 2.6%の ICRU 4 元素組織)の内に存在する線量当量に基づいて規定されている。ほとんどの場合,このファントムは考慮されている放射線場の散乱と減衰に関して人体に十分近い。

(57) ICRU 球で定義されたエリアモニタリングの実用量は、点についての量であるという特性と加算性とを保っている。これは、それぞれの量の定義において、ある決まった深さを 使用することによって達成されている。

(58) 拡張放射線場は、フルエンスとその方向分布およびエネルギー分布が、着目する体 積全体にわたって、基準点における実際の場と同じ値を持つ仮想的な場として定義される。放 射線場の拡張は、ICRU 球全体が実際の放射線場の着目する点と同じフルエンス、エネルギー 分布および方向分布を持つ均一な放射線場にさらされていることを保証する。

(59) すべての放射線が ICRU 球の指定された半径ベクトル Ω に反対向きであるように拡 張放射線場内で整列している場合,拡張整列放射線場が得られる。この仮想の放射線場におい て,ICRU 球は1方向から均一に照射を受け,その場のフルエンスは実際の放射線場の着目す る点におけるフルエンスの方向分布の積分である。拡張整列放射線場においては,ICRU 球の いかなる点における線量当量の値も,実際の放射線場に存在し得る放射線の方向分布に依存し ない。放射線場の量をエリアモニタリングのための実用量に関係付ける換算係数は,拡張整列 場と ICRU 球ファントムのモデルを用い,ファントムの外側は真空と仮定して,実際の放射線 場の着目する点の粒子に対して計算されている。 16 2. 外部被ばくに対する放射線防護に用いられる量

周辺線量当量*H**(10)

(60) エリアモニタリングについて,実効線量を評価するための実用量は,ICRU (2001) によって定義された周辺線量当量 (*H**(10)) である。

(61) ある放射線場の中のある1点における周辺線量当量 H*(10)は,対応する拡張整列 場により,ICRU 球内の整列場に対向する半径上の深さ10mmにおいて生じる線量当量であ る。

方向性線量当量 $H'(d, \Omega)$

(62) エリアモニタリングに対しては、皮膚と末端部(手、手首および足)の線量、さら に眼の水晶体の線量を評価するための量は、方向性線量当量 $H'(d, \Omega)$ であり、これは以下の ように定義される。ある放射線場の中のある 1 点における方向性線量当量 $H'(d, \Omega)$ は、ICRU 球内のある指定された方向 Ω の半径上の深さ d において、対応する拡張場によって生じる線 量当量である。

(63) 皮膚と末端部の線量の評価に対しては d=0.07 mm が用いられ、したがって、 $H'(d, \Omega)$ は $H'(0.07, \Omega)$ と書かれる。

(64) 眼の水晶体の線量をモニタリングする場合, d=3 mm とする実用量 $H'(d, \Omega)$ の使 用が ICRU によって勧告された。しかし,モニタリング機器が $H'(3, \Omega)$ を測定するように設 計されていない場合は, $H'(0.07, \Omega)$ を代わりに用いてよい。

2.3.3 個人モニタリングに対する実用量

(65) 外部被ばくの個人モニタリングは,通常,身体に着用した個人線量計を用いて行われ,この適用に対して定義された実用量はそのような状況を考慮している。個人モニタリングに対して,実用量は個人線量当量 *H*_p(*d*) である。

(66) 個人線量当量 $H_p(d)$ は、人体上のある指定された点の適切な深さ d における ICRU 軟組織中の線量当量である。この目的のための軟組織は、ICRU 4 元素組織(ICRU, 1985)と して定義されている。個人線量当量を評価するために人体上で指定される点は、個人線量計を 着用する目的に左右される。

(67) 放射線防護量「実効線量」の評価には深さd=10 mmが選ばれ、また皮膚、手、手首および足の等価線量の評価には、深さd=0.07 mmが勧告されている。眼の水晶体への線量をモニタリングする特別なケースには、深さd=3 mmが最も適切であると提案されている。

2.4 参考文献

Cristy, M., Eckerman, K.F., 1987. Specific Absorbed Fractions of Energy at Various Ages from Internal Photon Sources. Vol. 1-7. ORNL Report TM-8381/Vol. 1-7. Oak Ridge National Laboratory, Oak

ICRP Publication 116

Ridge, TN.

- ICRP, 1991. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Ann. ICRP 21 (1-3).
- ICRP, 2002. Basic anatomical and physiological data for use in radiological protection: reference values. ICRP Publication 89. Ann. ICRP 32(3/4).
- ICRP, 2003. Relative biological effectiveness (RBE), quality factor (Q), and radiation weighting factor ($w_{\rm R}$). ICRP Publication 92. Ann. ICRP **33**(4).
- ICRP, 2007. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 37 (2-4).
- ICRP, 2009. Adult reference computational phantoms. ICRP Publication 110. Ann. ICRP 39(2).
- ICRU, 1985. Determination of Dose Equivalents Resulting from External Radiation Sources. ICRU Report 39. International Commission on Radiation Units and Measurements, Bethesda, MD.
- ICRU, 1993. Quantities and Units in Radiation Protection Dosimetry. ICRU Report 51. International Commission on Radiation Units and Measurements, Bethesda, MD.
- ICRU, 1998a. Fundamental Quantities and Units for Ionizing Radiation. ICRU Report 60. International Commission on Radiation Units and Measurements, Bethesda, MD.
- ICRU, 1998b. Tissue Substitutes, Phantoms and Computational Modelling in Medical Ultrasound. ICRU Report 61. International Commission on Radiation Units and Measurements, Bethesda, MD.
- ICRU, 2001. Determination of Operational Dose Equivalent Quantities for Neutrons. ICRU Report 66. International Commission on Radiation Units and Measurements, Bethesda, MD.
- ICRU, 2011. Fundamental Quantities and Units for Ionizing Radiation (Revised). ICRU Report 85a. International Commission on Radiation Units and Measurements, Bethesda, MD.
- Kramer, R., Zankl, M., Williams, G., et al., 1982. The Calculation of Dose from External Photon Exposures Using Reference Human Phantoms and Monte Carlo Methods. Part I: the Male (Adam) and Female (Eva) Adult Mathematical Phantoms. GSF Report S-885. GSF—National Research Centre for Environment and Health, Neuherberg.
- Snyder, W.S., Ford, M.R., Warner, G.G., et al., 1969. Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. Medical Internal Radiation Dose Committee Pamphlet No. 5. J. Nucl. Med. 10 (Suppl. 3).

3.1 ICRP/ICRU 標準コンピュータファントム

(68) 本報告書では, 臓器吸収線量の計算に, 成人の標準男性と標準女性を表す男性と女 性の標準コンピュータファントム (ICRP, 2007)を使用した。これらのファントムは, ICRP/ICRUの基準換算係数の計算のためのファントムとして, ICRP と ICRU によって採用 され, ICRP Publication 110 (ICRP, 2009)で詳しく記述されている。この標準コンピュータ モデルは, 人体構造のデジタル化された三次元表現で,実際のヒトのコンピュータ断層撮影デ ータに基づいている。これらのファントムは, 成人男性と成人女性のそれぞれに対する標準の 解剖学的パラメータについて, ICRP Publication 89 (ICRP, 2002)に示されている情報と一 致している。標準コンピュータファントム (すなわちモデル)は,身長と体重が標準データと 同じような 2 つのボクセルモデル (男性 Golem と女性 Laura)を修正することにより作られ た (Zankl と Wittmann, 2001; Zankl ら, 2005)。いずれのファントムの臓器質量も,ファン トムの実際の解剖学的構造を大きく変えることなく,高い精度で標準男性と標準女性に関する ICRP のデータに合うように調整された。これらのファントムは,放射線防護の目的のため に,電離放射線によるヒトの被ばくの評価に関連するすべての標的領域 (すなわち,「実効線 量」に寄与するすべての臓器と組織) (ICRP, 2007)を含んでいる。

(69) それぞれのファントムは、縦列、横列、およびスライスに配置された直方体のボク セルの三次元配列として表される。この配列のそれぞれの要素は、対応するボクセルが属して いる臓器または組織を指定している。男性の標準コンピュータファントムは、約195万個の組 織ボクセル(周囲の真空を表すボクセルを除く)で構成されており、各ボクセルのスライス厚 (ボクセル高さに対応する)は8.0 mm、面内の解像度(すなわちボクセルの幅と奥行き)は 2.137 mm であることから、ボクセル体積は36.54 mm³である。スライス数は220 あること から、身長は1.76 m、体重は73 kg である。女性の標準コンピュータファントムは、約389 万個の組織ボクセルから構成されており、各ボクセルのスライス厚は4.84 mm、面内の解像 度は1.775 mm であることから、ボクセル体積は15.25 mm³である。スライス数は346 あり、 身長は1.63 m、体重は60 kg である。個々に分割された組織構造の数は、各々のファントム において136 であり、53 の異なる組織の組成がそれらに割り当てられている。様々な組織の 組成は、実質組織の元素組成(ICRU, 1992)と各々の臓器の血液含有率(ICRP, 2002)を反

図 3.1 男性(左)と女性(右)コンピュータファントムの画像 以下の 臓器は、表面の色の違いによって特定することができる。乳房、骨、 結腸、眼、肺、肝臓、膵臓、小腸、胃、歯、甲状腺、および膀胱。筋 肉と脂肪組織は透明に表示されている。描画のため、ボクセル化した 表面は滑らかにしてある。(カラー画像は口絵参照)

映している。図 3.1 は,男性(左)と女性(右)のコンピュータファントムの正面(冠状)図 を表している。

(70) これらのファントムの基になった断層撮影データの解像度が限られていること,また,線源領域と標的領域のいくつかは寸法が非常に小さいことから,すべての組織を必ずしも明示的に表現できるわけではない。例えば,骨格において着目する標的組織は,海綿質の髄腔内の赤色骨髄と,これらの空洞の内側を覆っている骨内膜層(現在は厚さ50 µm と仮定されている)である。これらの2つの標的組織は,寸法が小さいため,標準ファントム内に海綿質の均質な構成成分として取り入れなければならなかった。これらの組織領域では,光子と中性子のエネルギーが低いと,あるエネルギー範囲にわたって,二次荷電粒子平衡が完全には成り

立たない。骨格の線量評価において、これらの影響を考慮するためのより精緻な技術については、3.4節と付属書DおよびEで述べる。

(71) 同様に,眼の水晶体の微細構造は,標準ファントムのボクセルの形状寸法によって 記述することができなかった。そのため,眼の水晶体の放射線防護に関係する限られた種類の 粒子と照射ジオメトリーに対して,様式化された眼のモデルを使用した(付属書 F 参照)。さ らに,表皮の基底細胞は放射線誘発リスクにさらされる皮膚組織であるが,標準ファントムの ボクセルの形状寸法で表現することができない。そのため,電子とアルファ粒子に対するフル エンスあたりの局所的な皮膚線量は,組織等価スラブによって得た。この線量は,皮膚のほと んどの部分で放射線感受性のある層の深さにあたる 50~100 µm にわたって平均化を行ない得 たものである(3.5 節および付属書 G 参照)。

3.2 考慮した照射ジオメトリー

(72) 本報告書の換算係数を得るために,計算は,職業被ばくを表すと想定される幅広い 一方向のビームによって,真空中に置かれたファントムが全身照射を受けると仮定して行っ た。いくつかの典型的な照射ジオメトリーを以下の項で記述する。図3.2に各ジオメトリーを 図示する。

図 3.2 考慮した理想化されたジオメトリーの略図 AP:前方-後方, PA:後方-前方, LLAT:左側方, RLAT:右側方, ROT:回転, ISO:等方

3.2.1 前方 - 後方ジオメトリーと後方 - 前方ジオメトリー

(73) 前方 - 後方(AP)ジオメトリーでは,電離放射線は身体の長軸と直角の方向から身体の前面に入射する。後方 - 前方(PA)ジオメトリーでは,電離放射線は身体の長軸と直角の方向から身体の背面に入射する。

3.2.2 側方ジオメトリー

(74) 側方(LAT)ジオメトリーでは,電離放射線は身体の長軸と直角の方向から身体のいずれかの側面に入射する。LLAT と RLAT は,それぞれ,左側方ジオメトリーと右側方ジオメトリーを示す。

3.2.3 回転ジオメトリー

(75) 回転 (ROT) ジオメトリーでは,身体は電離放射線の平行ビームによって照射され,そのビームは,身体の長軸に直角の方向から長軸のまわりを一様な速度で回転する。または線源が回転する代わりに,ROT ジオメトリーは,身体の長軸に直角の軸上にある静止線源からの電離放射線の平行ビームにより身体を照射する間,身体をその長軸を中心に一様な速度で回転する,と定義してもよい。

3.2.4 等方ジオメトリー

(76) 等方(ISO)ジオメトリーは、単位立体角あたりの粒子フルエンスが、空間中の方向や場所に依存しない放射線場と定義される。

(77) 上に定義されたジオメトリーは理想化されているが,実際の被ばく条件の近似とす ることができる。例えば,AP,PAおよびLATジオメトリーは,かなり離れたところにある 単一の線源と特定の身体の向きによって作られる放射線場の近似と考えられるので,これらは 実際の職業被ばくのジオメトリーにほぼ近い。ROTジオメトリーは,広く拡がった面線源か らの照射(例えば,環境汚染から起こり得る)の近似と見なされる。この近似は,場の中に立 っているか,または歩き回るヒトの長軸に直角に入射する放射線になる。ROTジオメトリー は,身体の長軸を直角に照射する線源の放射線場の中でランダムに動くヒトのジオメトリー の近似にもなる。ISOジオメトリーは,放射性ガスの大きな雲中に浮遊している状態,または散 乱放射線が非常に多い状態で身体が被ばくする放射線場の近似になる。このジオメトリーはし ばしば,航空機や宇宙での被ばく,住宅または環境中での天然放射性核種による照射,または 放射性核種の環境への大気放出(すなわち半球状雲)による照射に対して想定される。

(78) 職業上の放射線被ばくをシミュレーションすることを意図した上述の被ばく状況で は、身体は真空中に置かれると仮定されている。したがって、身体を取り巻く空気による放射 線の散乱や吸収は考慮していない。

3.3 放射線輸送のシミュレーションに使用されるモンテカルロコードの概要

(79) 臓器線量換算係数は,課題グループ DOCAL のメンバーによって,本報告書のため に特別に計算された。計算品質の保証のため,いくつかのデータセットを,課題グループの複 数のメンバーが別々に,同じ標準コンピュータファントムで異なる放射線輸送コードを用いて 作成した。

(80) 人体形状ファントム中の吸収線量分布と線量関連量を計算するのに用いた手法を詳細に記述するのは,本報告書の範囲外である。ここでは,本報告書で提示する臓器吸収線量を 得るために使用した放射線輸送コードの主な特徴の概要だけを述べる。

(81) これらの計算に用いた放射線輸送計算のモンテカルロ法では、最初に、着目する照 射ジオメトリーによって設定された特定のエネルギーと方向に限定して粒子のランダムな放出 をシミュレーションする。ファントム内における放射線の相互作用とその後の行路は、粒子ま たは光子のエネルギー、方向および行路長の値を適切な確率分布からランダムに選択すること によってシミュレーションされる。確率分布は、粒子または光子が物質を通過するあいだに起 こる相互作用の物理現象によって決定される。その粒子または光子のヒストリーは、二次粒子 や光子の生成を含めた様々な相互作用を受けながら物質内を通過するあいだ続き、粒子または 光子が吸収されるか、着目する領域から出ていくか、あるいは着目すべき運動エネルギーをも はや持たなくなったときに終わる。

(82) 線量換算係数の正確さは、物理的入力パラメータ(例えば相互作用断面積)の不確 かさや、粒子輸送シミュレーションと実際の被ばく状況との違いによって制限される。臓器吸 収線量への換算係数の統計的な相対不確かさは、臓器の大きさ、身体中の位置、粒子エネルギ ーおよび照射ジオメトリーのような、いくつかのパラメータに依存する。

3.3.1 EGSnrc ⊐−ド

(83) 本報告書で提示した計算値のために,電子-ガンマ-シャワーコードシステム EGSnrc バージョン 4-2-3-0 (Kawrakow ら, 2009) が使用された。このコードは, EGS4 (Nelson ら, 1985)の拡張および改良版であり,カナダ国家研究評議会 (NRC) によって維持 管理されている。光子,電子および陽電子の輸送を,数 keV から数百 GeV までの粒子運動エ ネルギーに対してシミュレーションすることができる。しかし,物理過程に関するいくつかの 強化は,1 GeV 未満にのみ有効である。

(84) 光子輸送に対しては、束縛電子のコンプトン散乱と K 殻, L 殻および M 殻からの光 電子をすべてのエネルギーについて考慮する。いずれの場合も、結果として生じる蛍光または オージェ電子および Coster-Kronig 電子を追跡する。光子断面積の入力データは Seuntjens ら (2002) により更新されており、彼らは光電効果、レイリー散乱および電子対生成の断面積を 改良するために XCOM データベース (Berger と Hubbell, 1987) を使った。1 GeV 未満では、 Brown と Feynman の式 (1952) に基づく1 ループ近似における放射コンプトン補正を適用 する。しかし、大きな散乱角度に対する断面積を減少させる効果は、二重コンプトン事象の組 み入れによって一部相殺される。電子対生成断面積については、85 MeV 未満の場合を除き、

極相対論的ボルン近似を使用し,85 MeV 未満では,Øverbøら(1973)の手法に従ってNRC により計算された,より精巧な断面積を用いる。光核反応は,臓器線量への寄与が0.1%未満 と考えられるため考慮に入れていない。本報告書では,光子エネルギーが2 keV 未満に低下 した時点で光子輸送を終了している。

(85) 電子と陽電子の輸送計算は、ある特定のエネルギー以上で生成される二次粒子を輸 送するクラス II 圧縮ヒストリー(condensed history)法(Berger, 1963)によって行う。1 GeV 未満の運動エネルギーに対する制動放射断面積は、米国国立標準技術研究所(National Institute of Standards and Technology: NIST) のデータベース (Seltzer と Berger, 1985, 1986)の値と一致している。そして、この NIST データベースは、ICRU (1984)が推奨する 放射阻止能の基礎になっている。1 GeV を超えると、Koch と Motz (1959) に基づくクーロ ン補正相対論的断面積を使用する。1 GeV 未満では、初期設定の断面積(Kawrakow, 2002) を用いて電子衝突電離をモデル化する。より高いエネルギー,またはサンプリングが電離を生 じない場合,古典的な Møller 断面積または Bhabha 断面積を適用する。弾性散乱の場合,ス ピン効果を考慮に入れる。電子対生成は、EGS4 (Nelson ら、1985) のようにシミュレーショ ンする。すべての粒子に対して、3電子生成過程を無視している。本報告書では、電子の輸送 ヒストリーは、運動エネルギーが20 keV を下回った時点で通常終了する。例外として、初期 運動エネルギーが 50 keV 未満の電子に対しては、2 keV までヒストリーを追跡する。外部照 射の場合,運動エネルギーが 500 keV 未満の電子は体内の臓器にめったに到達しない。放射 線が到達した体内の臓器でも線量は低く、それは主として、標準ファントムの皮膚ボクセル 内で生成される制動放射線によって与えられる。体内臓器の線量換算係数の統計的な相対不 確かさを低減するため,「制動放射スプリッティング」と呼ばれる分散低減手法を使用した (Kawrakow ら, 2009)。

3.3.2 FLUKA コード

(86) FLUKA (FLUctuating KAscades) コードは,物質中での粒子と光子の輸送計算を するための汎用モンテカルロプログラムである (Fassò ら, 2005; Battistoni ら, 2006)。この プログラムは,光子と電子 (1 keV から 1 PeV),ニュートリノ,ミュー粒子 (1 keV から 1 PeV), 20 TeV までのエネルギーのハドロン [FLUKA コードと Dual Parton モデルおよび JET (DPMJET) コードをリンクさせることにより 10 PeV まで拡張],すべての対応する反 粒子,熱エネルギーまでの中性子,および 10 PeV/u までの重イオンを含む,約 60 種類の 様々な粒子の放射線輸送をシミュレーションすることができる。放射性核種のインベントリの 時間推移と,不安定な残留核から放出される放射線の追跡を直接行うことができる。本報告書 では,FLUKA 2008 を使用した。

(87) ハドロン相互作用をシミュレーションするために、一次粒子のエネルギーに応じて

異なる物理モデルが使われる。FLUKA のハドロン - 核子相互作用モデルは、数 GeV 未満の 入射粒子エネルギーに対しては,共鳴の生成と壊変に基づいている。それより高いエネル ギーでは、Dual Parton モデルを使用する。ハドロン - 原子核相互作用では、さらに2つのモ デルを使用する。3~5 GeV/u 未満では、PEANUT パッケージを使用する。これには非常に 詳細な汎用核内カスケード(GINC)と前平衡過程を組み込んでいる。高いエネルギーでは, 精緻さに劣るバージョンの GINC に Gribov-Glauber 多重衝突メカニズムを含めている。すべ てのエネルギーに対し、PEANUT モデルが初期設定されている。どちらのハドロン - 原子核 相互作用モデルも、その後に平衡過程が続き、そこで残留励起状態は、蒸発、核分裂、フェル ミ崩壊、およびガンマ線脱励起を通じて散逸される。FLUKA コードは、光核反応(ベクトル 中間子支配モデル、デルタ共鳴モデル、準重陽子モデル、巨大双極共鳴モデルによって記述さ れる)をシミュレーションすることもできる。イオンによって生じる原子核相互作用は、外部 イベントジェネレータとのインタフェースを通じて扱われる。ただし、低エネルギー範囲 (150 MeV/u 未満) は例外であり、この範囲に対しては、ボルツマン・マスター方程式模型に 基づくモデルが最近導入された。100 MeV/u から5 GeV/u の間では,相対論的量子分子動力 学(RQMD)ジェネレータが呼び出され,5 GeV/u を超えるエネルギーでは,DPMJET コー ドが使用される。

(88) 荷電粒子の輸送は、クーロン散乱の Moliere 理論に基づく多重散乱アルゴリズムを 適用することによって記述する。エネルギー損失は Bethe-Bloch 理論,また制動放射と電子 対生成から決定される。

(89) 運動エネルギーが 20 MeV 未満の中性子に対して, FLUKA コードは多群輸送アル ゴリズムを使用する。この輸送アルゴリズムは, この中性子エネルギー範囲を 260 グループに 細分化し, FLUKA コードのために作成された中性子断面積ライブラリに基づいている。これ らのライブラリは 200 以上の種々の物質を含み,最新の評価済みデータから作られている。水 素以外の原子核については,カーマ係数を使ってエネルギー沈着を計算する。

(90) FLUKA コードは、よく知られている組合せジオメトリー (combinatorial geometry) パッケージの改良版を使用することによって、非常に複雑なジオメトリーを扱うことが できる。繰り返し構造(格子)とボクセルジオメトリーも扱うことができる。

3.3.3 PHITS コード

(91) PHITS (Particle and Heavy Ion Transport Code System) コードは,任意の三次元 ジオメトリーにおいて,ハドロン,レプトン,および重イオンの輸送とそれらの相互作用をシ ミュレーションする多目的モンテカルロコードである (Iwase 6, 2002; Niita 6, 2006, 2010)。本報告書では PHITS バージョン 2.14 を使用した。

(92) PHITS コードでは、20 MeV から 10⁻⁵ eV までの中性子輸送は MCNP4C コード

(Briesmeister, 2000) で使用されるものと同様な手法でシミュレーションされ,評価済み核デ ータライブラリに基づいている。20 MeV を超える中性子,そして 200 GeV までの陽子,中間 子,およびその他のハドロンに対して,PHITS コードは JAM (Jet AA Microscopic Transport) モデル (Nara ら, 1999) を使用する。JAM はハドロンカスケードのモデルであり,ス ピンとアイソスピンを明示的に取り扱うことにより,存在が確定している共鳴状態を含むすべ てのハドロンの状態や,それらの反粒子をすべて扱うことができる。原子核 – 原子核衝突は, 10 MeV/u から 100 GeV/u までのエネルギーに対して JQMD (JAERI Quantum Molecular Dynamics) シミュレーションモデル (Niita ら, 1995) で記述されている。JAM と JQMD 計 算で生成された残留核が励起状態にある場合の蒸発と核分裂過程には,GEM (Generalised Evaporation Model) (Furihata, 2000) を使用する。今回の計算では、核子が引き起こす反応 に JQMD モデルを採用した。荷電粒子と原子核のエネルギー損失は、物質の電荷密度と粒子 の運動量により計算されており,エネルギー損失や角度に関するゆらぎが考慮されている。1 keV から 1 GeV までの光子と電子の輸送は、評価済み核データライブラリを用いて MCNP4C コードと同様の手法でシミュレーションする。

(93) PHITS コードは、(1) JAM モデルと JQMD モデルを使って核子 - 原子核衝突およ び原子核 - 原子核衝突から生成される二次粒子のスペクトルを適切に予測する、(2) カーマ近 似の代わりにイベントジェネレータモード(Iwamoto ら, 2008; Niita ら, 2008)を用いて 低エネルギー中性子の原子核反応から放出される荷電粒子のエネルギーを決定する、そして (3) LET または線エネルギーの観点から吸収線量の確率密度を評価する(Sato ら, 2009)こ とができる。

(94) PHITS コードは、組合せジオメトリー(combinatorial geometry)と一般ジオメト リー(general geometry)の表現方法を使って、計算モデルのジオメトリーを定義する。ま た、このコードでは、三次元ボクセルファントムを定義するために、繰り返し構造と格子ジオ メトリーを記述する機能を利用できる。PHITS コードはグラフィックパッケージ ANGEL (Niita ら、2010)を使って、計算ジオメトリーや計算結果の二次元および三次元図を描く機能 を有している。

3.3.4 MCNPX ⊐−ド

(95) ロスアラモス・モンテカルロ放射線輸送コード MCNPX (Monte Carlo N-Particle eXtended) (Waters, 2002; Pelowitz, 2008) は、34 の粒子タイプ(核子と軽イオン)と 2000 以上の重イオン (Z>2)を、ほぼすべてのエネルギーにおいて追跡することができる。この コードは、中性子、光子、電子、陽子および光核反応に対して、標準の評価済みデータライブ ラリを使用し、他の粒子タイプや表形式のデータライブラリが得られないエネルギーについて は、物理モデルを使用する。表形式の断面積データは、すべての核種について、中性子は

10⁻¹¹ MeV から 20 MeV, 電子は 1 keV から 1 GeV, 光子は 1 keV から 100 GeV まで利用でき る。LA150 断面積ライブラリ(Chadwick ら, 1999)は,実験データと GNASH モデルコード (Young ら, 1996)を使った原子核モデル計算に基づいて,42の同位体(H,C,N,O を含む) に対して 150 MeV(陽子の場合は 250 MeV)までの中性子,陽子および光核反応の断面積を 提供する。本報告書では,MCNPX バージョン 2.6.0 を使用した。

(96) 光子,電子および陽電子の輸送は,MCNP4C3 コードと同じである。MCNPX コードの電子の物理過程は、サンディア国立研究所のIntegrated Tiger Series のコード (ITS3.0)
 (Halbleib ら, 1992) に基づいている。陽電子輸送にも電子の物理過程を使用する。

(97) 現在の物理モジュールは、LAHET コードシステムから受け継がれた Bertini モデル と Isabel モデル, CEM03 および INCL4 (Kirk, 2010) から構成される。最新版のコードは, 中性子の弾性および非弾性相互作用で生成されるすべての二次荷電粒子を輸送するために必要 な物理モデルを,若干の制約はあるものの組み入れている。重イオンの物理モデルが組み入れ られたことで,反跳核の輸送が可能になっている。したがって,陽子,重陽子,トリトン,ヘ リウムイオンおよびアルファ粒子などの比較的軽いイオンに加えて,現在は組織内の重い反跳 核 (C,N および O) も輸送することができる。重イオンのモデルは,たとえ線源粒子が重イ オンでなくても,いかなる物理モデルから生成される残留核もすべて自動的に輸送する。重イ オンに対する現在の阻止能は,SRIM (Stopping and Range of Ions in Matter)の結果 (Ziegler ら, 2003) に良く合致するように特別なやり方 (Pelowitz, 2008) で調節されている。 荷電粒子は,運動エネルギーの下限値である 5 MeV にまで減速されると,残りのエネルギー はその場所に沈着する。

3.3.5 GEANT4 コード

(98) GEANT4 コードは汎用モンテカルロコードで、同コードの従来版と同様、CERN (欧州原子核研究機構)加速器における高エネルギー物理と応用のニーズのために開発された。 このコードは、国際的な GEANT4 共同研究(http://geant4.web.cern.ch/geant4)によって改 良と維持がなされている(Agostinelli ら、2003)。GEANT4 コードは、250 eV から 1 TeV ま でのエネルギーの中性子、陽子、ミュー粒子およびパイ中間子の輸送をシミュレーションする ことが可能であり、低エネルギー中性子に対しては meV の範囲まで拡張できる。

(99) 本報告書の計算では,GEANT4バージョン8.2を使用した。ボクセル化されたジオ メトリーを導入するために「G4ファントムパラメタリゼーション」と呼ばれる機能を使用し た (GEANT4, 2006b)。

(100) GEANT4 コードは,不安定な粒子の輸送と壊変(G4Decay)の物理過程をシミュ レーションする。すべての GEANT4 の物理過程とモデルに関する詳細は,プログラム物理ガ イド (GEANT4, 2006a) に記述されている。GEANT4 コードに装備されている標準的な電磁

物理過程のリストは,光子,電子,陽電子およびミュー粒子と反ミュー粒子両方の相互作用過 程を含む電磁物理から採用された。電子と陽電子の生成に対する初期設定のカットオフ値は, 媒質中の飛程1mmに設定した。すべての物質において,この飛程は,これを下回った場合に 連続減速近似が適用されるエネルギーに相当する。

(101) ハドロン物理に関して,断面積データは利用できる3つの情報源から得ている。第 1 に,低エネルギー粒子と高エネルギー粒子に対しては,GEANT3-GHEISHA パッケージを 用いてパラメータ化されたモデル (Fesefeldt, 1985)から計算されたデータである。このモデ ルは,非弾性終状態生成ばかりでなく,誘導核分裂,捕獲および弾性散乱などの物理過程を含 んでいる。第2に,実験データまたは評価済みデータ (ENDF/B-VI やその他)に基づくデー タ駆動型モデルを使用する。第3に,エネルギー範囲に応じて異なるアプローチを使用する理 論モデルを用いる。3 GeV までの中性子と陽子に対しては,G4CascadeInterface に組み入れ られた理論的モデルを使用した。これは,励起子,前平衡モデル,核破砕モデル,核分裂モデ ル,および蒸発モデルを伴う Bertini 核内カスケードモデルを含んでいる (GEANT4, 2006a)。

3.4 骨格組織の線量を評価するための特別な考察

(102) 放射線防護の目的のため,委員会は,確率的な生物影響に関連する線量評価上着目 すべき2つの骨細胞集団を定義する。すなわち,(1) 放射線誘発白血病のリスクに関連する造 血幹細胞と,(2) 放射線誘発骨がんのリスクに関連する骨芽前駆細胞である。造血幹細胞が, 海綿骨中の骨梁表面近くに優先的に見られるという新しい証拠があるが(Watchman ら, 2007; Bourke ら, 2009),放射線防護のための現在のモデル化では,造血幹細胞が造血機能を 有する活性骨髄の髄腔内に一様に分布すると仮定している。骨芽前駆細胞について,委員会は それらの細胞の場所が骨梁と皮質骨の骨内膜の厚さ10 µm の単一細胞層であり,それぞれ骨 梁とハヴァース管の表面に沿って存在していると以前に定義した(ICRP, 1977)。ICRP Publication 110 (ICRP, 2009) では,骨芽前駆細胞の代替となる標的組織は,海綿骨の骨梁表面, そしてすべての長骨の骨幹部にある髄腔の内表面に沿って厚さ50 µm で存在すると再定義さ れた。その結果,皮質骨とハヴァース管内の細胞はもはや線量評価の標的組織と見なされなく なった。本報告書では,骨芽前駆細胞に対して見直された50 µm の代替標的組織を「骨内膜」 (endosteum) と呼び,記号 TM₅₀(骨表面の厚さ50 µm 内の骨髄全体)で表す。「骨表面」 (bone surfaces) という用語は、もはや放射線誘発骨がんに関係する標的細胞層を表すために は使用しない。

(103) 放射線リスクを有するこれらの骨格の標的組織のいずれも, ICRP 標準ファントムのボクセル構造内で幾何学的に表現することができない。上述したように, 男性と女性の標準

コンピュータファントムの骨格は、皮質骨、骨髄髄質または骨梁海綿質のいずれかを定義する ボクセルによって表される。骨梁海綿質は、その微視的な組織成分――骨梁、活性骨髄と不活 性骨髄*―の均質な混合物なので、男女それぞれの標準ファントムの骨格のどの骨であるか に応じて、元素組成と質量密度のいずれもが変わる。したがって、海綿質と骨髄髄質の吸収線 量を、活性骨髄または骨内膜の吸収線量に関連づける計算アルゴリズムを用いなければならな い。骨梁海綿質の構成組織の元素組成を表 3.1 に示す。骨内膜 TM₅₀ の元素組成は、ICRP *Publication 70* (ICRP, 1995)の標準髄細胞質において決められた特定の骨格部位における活 性骨髄と不活性骨髄混合物の元素組成に等しいことにも注意すべきである。

組織/	元 素 組 成 (質量%)											
ファントム	Н	С	Ν	0	Na	Mg	Р	S	Cl	Κ	Са	Fe
活性骨髄												
男 性	10.44	35.58	3.38	49.76	0.02		0.10	0.20	0.22	0.20		0.10
女 性	10.45	35.86	3.38	49.47	0.02		0.10	0.20	0.22	0.20		0.10
不活性骨髄												
男 性	11.48	63.63	0.74	23.85	0.10		0.00	0.10	0.10	0.00		0.00
女 性	11.48	63.65	0.74	23.83	0.10		0.00	0.10	0.10	0.00		0.00
骨 梁												
男 性	3.91	15.69	4.14	46.33	0.29	0.19	8.92	0.29	0.02	0.01	20.18	0.01
女 性	3.91	15.69	4.14	46.35	0.29	0.19	8.92	0.29	0.02	0.01	20.18	0.01

表 3.1 ICRP の標準男性と標準女性コンピュータファントム(成人)の,血液成分を含めた 活性骨髄,不活性骨髄および骨梁の元素組成

出典: ICRP, 2009。成人標準コンピュータファントム。ICRP Publication 110. Ann. ICRP 39(2), 5.3 節。

(104) 本報告書で考慮される粒子のタイプとエネルギーの範囲が幅広いことを考慮し,課題グループは以下の吸収線量の近似推定値を活性骨髄と TM₅₀ に一様に適用することにした。

$$D_{\text{skel}}(\text{AM}) = \sum_{x} \frac{m(\text{AM}, x)}{m(\text{AM})} D(\text{SP}, x)$$
(3.1)

および

$$D_{\text{skel}}(\text{TM}_{50}) = \sum_{x} \frac{m(\text{TM}_{50}, x)}{m(\text{TM}_{50})} D(\text{SP}, x) + \sum_{x} \frac{m(\text{TM}_{50}, x)}{m(\text{TM}_{50})} D(\text{MM}, x)$$
(3.2)

ここで、 $D_{skel}(AM)$ と $D_{skel}(TM_{50})$ はそれぞれ活性骨髄と骨内膜の骨格平均吸収線量、 m(AM, x) と $m(TM_{50}, x)$ は骨部位xにおけるそれぞれの組織の質量、m(AM) と $m(TM_{50})$ は骨格全体にわたって合計した両標的組織の質量、そして、D(SP, x) とD(MM, x) はそれぞ

^{*(}訳注) 造血の活発さに着目して命名された, ICRP 独自の用語。解剖学の用語では,「黄色骨髄」 と「脂肪髄」を指す。

			標準男性	(成人)		標準女性(成人)			
臓器	骨部位	活性骨髄		骨团	内膜	活性	骨髄	骨内膜	
		質量 (g)	質量 (%)	質量 (g)	質量 (%)	質量 (g)	質量 (%)	質量 (g)	質量 (%)
14	上腕骨,上半分-海綿質	26.9	2.3	9.41	1.7	20.7	2.3	7.16	1.8
15	上腕骨,上半分 - 髄腔			0.19	0.0			0.14	0.0
17	上腕骨,下半分-海綿質			11.25	2.1			8.32	2.0
18	上腕骨,下半分 - 髄腔			0.25	0.0			0.19	0.0
20	前腕骨 - 海綿質			16.31	3.0			12.03	3.0
21	前腕骨 - 髄腔			0.09	0.0			0.07	0.0
23	手首と手 - 海綿質			12.50	2.3			7.10	1.7
25	鎖骨 - 海綿質	9.3	0.8	2.50	0.5	7.2	0.8	1.90	0.5
27	頭蓋 - 海綿質	88.9	7.6	83.40	15.3	68.4	7.6	64.20	15.8
29	大腿骨, 上半分 - 海綿質	78.4	6.7	43.34	8.0	60.3	6.7	33.53	8.2
30	大腿骨,上半分 - 髄腔			0.86	0.2			0.67	0.2
32	大腿骨,下半分 - 海綿質			47.83	8.8			23.67	5.8
33	大腿骨,下半分 - 髄腔			0.67	0.1			0.33	0.1
35	下腿骨 - 海綿質			87.38	16.1			79.91	19.6
36	下腿骨 - 髄腔			5.02	0.9			4.59	1.1
38	足首と足 - 海綿質			42.20	7.8			24.40	6.0
40	下顎骨 - 海綿質	9.4	0.8	2.00	0.4	7.2	0.8	1.60	0.4
42	骨盤 - 海綿質	205.2	17.5	51.70	9.5	157.5	17.5	39.70	9.7
44	肋骨 - 海綿質	188.8	16.1	29.80	5.5	144.9	16.1	22.90	5.6
46	肩甲骨 - 海綿質	32.8	2.8	9.80	1.8	25.2	2.8	7.60	1.9
48	頸椎 - 海綿質	45.6	3.9	11.50	2.1	35.1	3.9	8.80	2.2
50	胸椎 - 海綿質	188.8	16.1	26.90	4.9	144.9	16.1	20.60	5.1
52	腰椎 - 海綿質	143.9	12.3	23.40	4.3	110.7	12.3	18.00	4.4
54	仙骨 - 海綿質	115.9	9.9	20.60	3.8	89.1	9.9	15.80	3.9
56	胸骨 - 海綿質	36.3	3.1	5.50	1.0	27.9	3.1	4.30	1.1
	合 計	1,170.2	100	544.4	100	899.1	100	407.50	100

表 3.2 ICRP の標準男性と標準女性コンピュータファントム(成人)の骨格組織の質量

出典: ICRP, 2009。成人標準コンピュータファントム。ICRP Publication 110。Ann. ICRP 39(2)。

れコンピュータファントムの骨部位*x*における海綿質と骨髄髄質の吸収線量である。男性と 女性の標準コンピュータファントムの活性骨髄と骨内膜の質量値を表 3.2 に示す。

(105) 高エネルギーの直接電離放射線に対しては,式(3.1)と(3.2)が放射線防護に適 用する近似として合理的である。光子や中性子のような間接電離放射線に対しては,髄腔全体 にわたって二次荷電粒子平衡が成立しないエネルギー領域が存在する。光子と中性子の両方の 照射において,それぞれ異なってはいるが互いに補いあう理由により,海綿質においてこの荷 電粒子平衡が成立しない可能性がある。約200 keV 未満のエネルギーで海綿質に光子を照射 すると,髄組織よりも骨梁において,より多くの光電効果の事象が生じる。その結果,光電子 が骨梁から発生し,隣接する髄組織にエネルギーを沈着することで,活性骨髄と骨内膜の吸収 線量の増大が起こる(Johnson ら, 2011)。骨内膜は厚さが 50 µm と活性骨髄に比べて薄く, また多くの骨部位で骨梁表面に近いことから,骨内膜の線量増加は,活性骨髄のそれに比べて 一層重要になる。これに対して,海綿質における約 150 MeV 未満のエネルギーの中性子によ る弾性衝突と非弾性衝突では,骨梁内に比べ髄組織の方が水素含有量が高いため,反跳陽子が 髄組織内でより多く生じることになる。これらの反跳粒子は多くの場合,髄領域を横切り,残 存エネルギーを周囲の骨梁で失う。その結果,広いエネルギー領域にわたる中性子照射に対す る最終的な結果として,カーマ近似で予測される結果と比較して,髄組織の吸収線量は低くな る(Kerr と Eckerman, 1985; Bahadori ら, 2011)。

(106) 光子照射(10 keV から 10 MeV)と中性子照射(10⁻³ eV から 150 MeV)における 骨格組織の吸収線量を評価するための追加の計算ツールが、本報告書の付属書 DとEにそれ ぞれ記載されている。両付属書は、粒子フルエンスあたりの吸収線量として定義される骨格の 線量応答関数の表データを提示している。さらに、両付属書では、この線量応答関数法を用い て得た骨格組織線量と式(3.1)と(3.2)を使用したものを比較し、それらの相対差について 議論している。

3.5 皮膚の線量評価

(107) 皮膚の場合,確率的影響と組織反応(すなわち確定的影響)の両方が,外部被ばく に関係する。確率的影響には,電離放射線被ばくによる皮膚がんの誘発が含まれる。組織反応 には,皮膚紅斑,水疱形成,および湿性落屑などの皮膚の急性損傷が含まれる。

3.5.1 確率的影響

(108) 確率的リスクを考慮するために,皮膚は実効線量に寄与する組織に含められ,表 2.2 で示すように組織加重係数 $w_{\rm T}$ =0.01 が割り当てられている。実効線量に寄与する皮膚線 量は,皮膚等価線量 $H_{\rm skin}$ であり,この値は,皮膚組織すべてにわたり平均化されたものであ る。したがって,本報告書で示している皮膚の線量換算係数は $H_{\rm skin}$ に対応している。皮膚の 線量換算係数は,男性と女性の標準コンピュータファントムのすべての皮膚ボクセルに対する 平均吸収線量に基づいて評価されている (ICRP, 2009)。

(109) 皮膚にすべてのエネルギーを沈着する弱透過性の粒子の場合,皮膚の厚さは吸収線 量の大きさを左右する重要なパラメータである。ICRP Publication 110 (ICRP, 2009) で述べ られているように,男性と女性のファントムのボクセルの厚さ (それぞれ 2.137 mm と 1.775 mm) は,標準の皮膚の厚さ (成人の標準男性 1.6 mm,標準女性 1.3 mm) より大きい。し たがって,連続減速近似 (CSDA) 飛程が上述のボクセルの厚さよりも短いが標準の皮膚の厚 さよりも長い粒子に対しては,本報告書に示している皮膚の線量換算係数は,実際の値を最大

で35%過小評価している可能性がある。

3.5.2 確定的影響

(110) ICRP Publication 103 (ICRP, 2007)は、「実効線量は確率的影響(がんおよび遺 伝性影響)の発生を制限するために用いられ、組織反応の可能性の評価には適用できない。年 実効線量限度未満の線量範囲では、組織反応は起こらないはずである。ごくわずかなケース (例えば、皮膚のような組織加重係数の小さい単独の臓器の急性局所被ばく)において、実効 線量の年限度の使用が組織反応の回避に不十分なことがあり得る。そのようなケースでは、局 所組織の線量も評価する必要があろう」と述べている。さらに、皮膚に対する特定の年線量限 度(職業被ばくについては 500 mSv,公衆被ばくについては 50 mSv)は、皮膚で最も高く照 射を受ける部位の1 cm² あたりの平均線量に適用すると述べている。10 keV から 10 MeV の 電子と、6.5 MeV から 10 MeV のアルファ粒子に対する局所の皮膚等価線量の換算係数は、 付属書 G に示す。

3.6 参考文献

- Agostinelli, S., Allison, J., Amako, K., et al., 2003. GEANT4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 506, 250–303.
- Bahadori, A.A., Johnson, P.B., Jokisch, D.W., et al., 2011. Response functions for computing absorbed dose to skeletal tissues from neutron irradiation. *Phys. Med. Biol.* 56, 6873–6897.
- Battistoni, G., Muraro, S., Sala, P.R., et al., 2006. The FLUKA code: description and benchmarking. In: Albrow, M., Raja, R. (Eds.), Hadronic Shower Simulation Workshop, 6-8 September 2006, Fermi National Accelerator Laboratory (Fermilab), Batavia, IL, AIP Conference Proceeding 896, pp. 31-49.
- Berger, M.J., 1963. Monte Carlo calculation of the penetration and diffusion of fast charged particles. In: Alder, B., Fernbach, S., Rotenberg, M. (Eds.), Methods in Computational Physics. Academic Press, New York, pp. 135–215.
- Berger, M.J., Hubbell, J.H., 1987. XCOM: photon cross sections on a personal computer. NBSIR 87-3597. National Bureau of Standards (former name of NIST), Gaithersburg, MD.
- Bourke, V. A., Watchman, C. J., Reith, J. D., et al., 2009. Spatial gradients of blood vessels and hematopoietic stem and progenitor cells within the marrow cavities of the human skeleton. *Blood* **114**, 4077-4080.
- Briesmeister, J.F. (Ed.), 2000. MCNP—A General Monte Carlo N-Particle Transport Code, Version 4C. Report LA-13709-M. Los Alamos National Laboratory, Los Alamos, NM.
- Brown, L., Feynman, R., 1952. Radiative corrections to Compton scattering. Phys. Rev. 85, 231-244.
- Chadwick, M.B., Young, P.G., Chiba, S., et al., 1999. Cross section evaluations to 150 MeV for acceleratordriven systems and implementation in MCNPX. *Nucl. Sci. Eng.* 131, 293–328.
- Fassò, A., Ferrari, A., Ranft, J., et al., 2005. FLUKA: a Multi-particle Transport Code. CERN-2005-10 (2005), INFN/TC_05/11, SLAC-R-773. CERN, Geneva.
- Fesefeldt, H.C., 1985. Simulation of Hadronic Showers, Physics and Application. Technical Report PITHA 85-02, Physikalisches Institut, Technische Hochschule Aachen, Aachen.
- Furihata, S., 2000. Statistical analysis of light fragment production from medium energy proton-

induced reactions. Nucl. Instrum. Methods B171, 251-258.

- GEANT4, 2006a. GEANT4: Physics Reference Manual. 次のサイトで入手可能: http://geant4.web. cern.ch/geant4/UserDocumentation/UsersGuides/PhysicsReferenceManual/fo/PhysicsReference Manual.pdf (最終アクセスは, 2014年12月).
- GEANT4, 2006b. GEANT4 User's Guide for Application Developers. 次のサイトで入手可能: http://geant4.web.cern.ch/geant4/support/userdocuments.shtml (最終アクセスは, 2014年12月).
- Halbleib, J.A., Kensek, R.P., Valdez, G.D., et al., 1992. TS Version 3.0: the Integrated TIGER Series of Coupled Electron/Photon Monte Carlo Transport Codes SAND91-1634. Sandia National Laboratories, Albuquerque, New Mexico 87185 and Livermore, California 94550, US.
- ICRP, 1977. Recommendations of the International Commission on Radiological Protection. ICRP Publication 26. Ann. ICRP 1 (3).
- ICRP, 1995. Basic anatomical and physiological data for use in radiological protection: the skeleton. ICRP Publication 70. Ann. ICRP 25(2).
- ICRP, 2002. Basic anatomical and physiological data for use in radiological protection: reference values. ICRP Publication 89. Ann. ICRP 32(3/4).
- ICRP, 2007. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 37 (2-4).
- ICRP, 2009. Adult reference computational phantoms. ICRP Publication 110. Ann. ICRP 39(2).
- ICRU, 1984. Stopping Powers for Electrons and Positrons. ICRU Report 37. International Commission on Radiation Units and Measurements, Bethesda, MD.
- ICRU, 1992. Photon, Electron, Proton and Neutron Interaction Data for Body Tissues. ICRU Report 46. International Commission on Radiation Units and Measurements, Bethesda, MD.
- Iwamoto, Y., Niita, K., Sakamoto, Y., 2008. Validation of the event generator mode in the PHITS code and its application. In: Bersillon, O., Gunsing, F., Bauge, E., Jacqmin, R., Leray, S. (Eds.), Proceedings of the International Conference on Nuclear Data for Science and Technology, April 2007, Nice, EDP Sciences, pp. 945–948.
- Iwase, H., Niita, K., Nakamura, T., 2002. Development of a general-purpose particle and heavy ion transport Monte Carlo code. J. Nucl. Sci. Technol. 39, 1142–1151.
- Johnson, P.B., Bahadori, A.A., Eckerman, K.F., et al., 2011. Response functions for computing absorbed dose to skeletal tissues from photon irradiation—an update. *Phys. Med. Biol.* 56, 2347–2365.
- Kawrakow, I., 2002. Electron impact ionization cross sections for EGSnrc. Med. Phys. 29, 1230.
- Kawrakow, I., Mainegra-Hing, E., Rogers, D.W.O., et al., 2009. The EGSnrc Code System: Monte Carlo Simulation of Electron and Photon Transport. PIRS Report 701. National Research Council of Canada, Ottawa.
- Kerr, G.D., Eckerman, K.F., 1985. Neutron and photon fluence-to-dose conversion factors for active marrow of the skeleton. In: Schraube, H., Burger, G., Booz, J. (Eds.), Proceedings of the Fifth Symposium on Neutron Dosimetry. Commission of the European Communities, Luxembourg, pp. 133-145, 17-21 September 1984, Munich, Germany.
- Kirk, B.L., 2010. Overview of Monte Carlo radiation transport codes. Radiat. Meas. 45, 1318-1322.
- Koch, H.W., Motz, J.W., 1959. Bremsstahlung cross-section formulas and related data. *Rev. Mod. Phys.* 31, 920–955.
- Nara, Y., Otuka, N., Ohnishi, A., et al., 1999. Relativistic nuclear collisions at 10 A GeV energies from p+Be to Au+Au with the hadronic cascade model. *Phys. Rev.* C 61, 024901.
- Nelson, W.R., Hirayama, H., Rogers, D.W.O., 1985. The EGS4 Code System. SLAC Report 265. Stanford Linear Accelerator Center, Stanford, CA.
- Niita, K., Chiba, S., Maruyama, T., et al., 1995. Analysis of the (N, xN') reactions by quantum molecular dynamics plus statistical decay model. *Phys. Rev.* C52, 2620–2635.
- Niita, K., Iwamoto, Y., Sato, T., 2008. A new treatment of radiation behaviour beyond one-body observables. In: Bersillon, O., Gunsing, F., Bauge, E., Jacqmin, R., Leray, S. (Eds.), Proceedings of

the International Conference on Nuclear Data for Science and Technology, April 2007, Nice, EDP Sciences, pp. 1167–1169.

- Niita, K., Matsuda, N., Iwamoto, Y., et al., 2010. PHITS—Particle and Heavy Ion Transport Code System, Version 2.23. JAEA-Data/Code 2010–022. Japan Atomic Energy Agency, Tokai-mura.
- Niita, K., Sato, T., Iwase, H., et al., 2006. PHITS—a particle and heavy ion transport code system. *Radiat*. *Meas.* **41**, 1080–1090.
- Øverbø, I., Mork, K.J., Olsen, A., 1973. Pair production by photons: exact calculations for unscreened atomic fields. *Phys. Rev.* A8, 668–684.
- Pelowitz, D.B. (Ed.), 2008. MCNPX User's Manual, Version 2.6.0. LA-CP-07-1473. Los Alamos National Laboratory, Los Alamos, NM.
- Sato, T., Kase, Y., Watanabe, R., et al., 2009. Biological dose estimation for charged-particle therapy using an improved PHITS code coupled with a microdosimetric kinetic model. *Radiat. Res.* 171, 107-117.
- Seltzer, S.M., Berger, M.J., 1985. Bremsstrahlung spectra from electron interactions with screened atomic nuclei and orbital electrons. Nucl. Instrum. *Methods Phys. Res. Sect.* B12, 95–134.
- Seltzer, S.M., Berger, M.J., 1986. Bremsstrahlung energy spectra from electrons with kinetic energy from 1 keV to 10 GeV incident on screened nuclei and orbital electrons of neutral atoms with Z=1-100. Atom. Data Nucl. Data Tables 35, 345-418.
- Seuntjens, J.P., Kawrakow, I., Borg, J., et al., 2002. Calculated and measured air-kerma response of ionization chambers in low and medium energy photon beams. In: Seuntjens, J.P., Mobit, P. (Eds.), Recent Developments in Accurate Radiation Dosimetry, Proceedings of an International Workshop, Montreal, July 14-18, 2002. Symposium Proceedings 13, Medical Physics Publishing, Madison, USA. pp. 69-84.
- Watchman, C.J., Bourke, V.A., Lyon, J.R., et al., 2007. Spatial distribution of blood vessels and CD34+ hematopoietic stem and progenitor cells within the marrow cavities of human cancellous bone. J. Nucl. Med. 48, 645–654.
- Waters, L.S. (Ed.), 2002. MCNPX User's Manual, Version 2.3.0. LA-UR-02-2607. Los Alamos National Laboratory, Los Alamos, NM.
- Young, P.G., Arthur, E.D., Chadwick, M.B., 1996. Comprehensive nuclear model calculations: theory and use of the GNASH code. In: Reffo, G.A. (Ed.), IAEA Workshop on Nuclear Reaction Data and Nuclear Reactors: Physics Design, and Safety, Trieste, 15 April-17 May, pp. 227-404.
- Zankl, M., Becker, J., Fill, U., et al., 2005. GSF male and female adult voxel models representing ICRP Reference Man: the present status. In: The Monte Carlo Method: Versatility Unbounded in a Dynamic Computing World. Chattanooga, TN.
- Zankl, M., Wittmann, A., 2001. The adult male voxel model 'Golem' segmented from whole body CT patient data. *Radiat. Environ. Biophys.* 40, 153–162.
- Ziegler, J.F., Biersack, J.P., Ziegler, M., et al., 2003. SRIM—the Stopping and Range of Ions in Matter. American Nuclear Society, La Grange Park, USA. 次のサイトで入手可能:www.srim.org (最終ア クセスは, 2014年12月).
(111) 防護量である「等価線量」と「実効線量」は測定できず、したがってそれらの値 は、粒子フルエンス Ø あるいは空気カーマ K_aのような放射線場の物理量との関係を使って決 定される。標準人に対して定義された換算係数は、放射線防護量と場の物理量との数値的関係 を与える。したがって、ICRP/ICRUの基準換算係数が、職業被ばくに対する放射線防護の実 務で一般に利用可能となっていることが重要である。

(112) ICRP/ICRU 共同課題グループの作業に基づき,委員会は,「外部放射線に対する放 射線防護に用いるための換算係数」に関する報告書(ICRP, 1996; ICRU, 1998)を刊行した。 この報告書は,特定の全身照射条件下での単一エネルギーの光子,中性子および電子による外 部被ばくに対する防護量と実用量への換算係数のデータセットを勧告した。さらに,ICRP *Publication 74*(ICRP, 1996)は,特定の理想化された照射被ばくジオメトリーについて,防 護量である「実効線量」と実用線量との関係を調査した。この評価に用いた防護量のデータの 大部分は,ヒトの解剖学的構造の様式化されたモデルに基づいて計算された。

(113) 成人の標準男性と標準女性(ICRP, 2002)を表す ICRP のボクセルに基づく標準フ ァントムが作られたことにより,現在の ICRP/ICRU のデータセット(ICRP, 1996)を置き換 えるため,重要となる放射線と照射ジオメトリーに対して新しい換算係数の計算が必要となっ た。実効線量の換算係数は,加重係数 *w*_R と *w*_T の値に依存し,本報告書では,これらの加重 係数の変更やボクセルに基づく標準ファントムの使用が換算係数の値に与える影響を,特に光 子と中性子について調査している。

(114) 本報告書に示されたすべてのデータセットは,男性と女性の標準コンピュータファ ントム (ICRP, 2009)を使って,課題グループ DOCAL が計算した結果に基づいている。3.3 節で示したとおり,放射線輸送シミュレーションには,いくつかのモンテカルロコードを使用 した。計算品質の保証のため,データセットの計算は,モンテカルロ計算を行う第1グループ と,確認を行うグループ(第2計算者)によって遂行された。ほとんどの場合,更なる確認計 算が3番目または4番目のグループによっても行われた。第1計算者は,すべてのエネルギー とジオメトリーをカバーし,第2計算者は,これらのパラメータのほとんどをカバーした。そ して,第3計算者と第4計算者は,その中から選択したジオメトリーと粒子エネルギーに対し て計算を行った。異なるコードから得た結果には,全体的に非常に良い一致が見られた。そし てほとんどの場合,その結果のばらつきは統計的な相対不確かさより小さかった。しかし,あ

る粒子やエネルギー領域については、輸送モデルによる違いが見られ、これらの違いはより詳 しく検討された。基準値は、データの平均化、平滑化およびフィッティング(付属書 I 参照) などの方法を組み合せて求めた。実効線量換算係数は、2.2節(**35**)-(**44**)項で述べたように評 価した。

(115) 本報告書は, ICRP Publication 74 (ICRP, 1996) で示した範囲よりも広い範囲の 粒子とエネルギーについて検討している。表4.1 に,本報告書で考慮した粒子,エネルギー範 囲および照射ジオメトリーを示す。表4.1 には,これらの計算に使用したモンテカルロコード も挙げられている。放射線輸送に関する文献では,「エネルギー」という語を「運動エネルギ ー」の意味で使用しており,本報告書の図や表,添付した CD-ROM でも,これ以降,その意 味で使用する。

(116) 3.4節で述べたように,活性骨髄と骨内膜の線量は,個々の骨部位における海綿質 と骨髄髄質の吸収線量から評価した。そして,これらの組織の骨格平均吸収線量は,海綿質と 骨髄髄質の線量の質量加重平均として求めた。一貫性をもたせるため,この方法をすべての粒 子の計算に適用した。課題グループは,本報告書の目的上,この近似で十分であると判断した。 光子に対して EGSnrc コードで行ったテスト計算によって,線量応答関数 (DRF)を用いたと きも,実効線量の値に大きな影響を生じないことが示された。これは図 4.1 に示されている。

(117) 付属書 A に、すべての粒子、エネルギーおよび照射ジオメトリーに対する実効線 量の基準換算係数を示す。付属書 B と C に、ICRP Publication 103 (ICRP, 2007) に定義さ れている実効線量に寄与する臓器(すなわち、赤色(活性)骨髄、結腸、肺、胃、乳房、卵巣、 精巣、膀胱壁、食道、肝臓、甲状腺、骨内膜、脳、唾液腺、皮膚)および残りの組織に対する光 子と中性子それぞれについての臓器吸収線量換算係数を示す。データは、男性と女性のファン トムについて、考慮した個々の照射ジオメトリーごとにまとめられている。付属書 F には、光 子、電子および中性子に対する眼の水晶体の線量換算係数を示す。本報告書に添付した CD-ROM には、残りの組織の個々の臓器に対する臓器線量換算係数を含む、すべての完全な臓器 線量換算係数が与えられている。残りの組織の個々の臓器とは、副腎、胸郭外領域、胆嚢、心 臓、腎臓、リンパ節、筋肉、口腔粘膜、膵臓、前立腺、小腸、脾臓、胸腺、子宮/子宮頸部で ある。すべての粒子に対する眼の水晶体の線量換算係数も CD-ROM に収載されている。表 4.2 は、すべての標的組織に対する略語のリストを挙げており、これらは ICRP Publication 110 (ICRP, 2009) の付属書 D から引用した。臓器識別番号ごとの標的組織の組成は、同書 (Publication 110) の表 A.1 に記載されている。臓器吸収線量は、入射粒子フルエンス Ø に 対する比として表され、単位は pGy・cm² である。さらに、10 MeV* までのエネルギーの光子

^{*(}訳注) 本文と CD-ROM の表には 20 MeV までのデータが記載されており, 20 MeV までのエネ ルギーについて利用可能である。本書の (**124**), (**A3**), (**J4**)の各項においても同様。

	表 4.1 臓器および実効線量換	算係数を決定する	ために行った計算の言	まとめ	
粒子	ーキルキー	ジオメトリー	第1計算	第2計算	確認計算
光子	10 keV~10 GeV 以下のエネルギーを含む。 0.511, 0.662, 1.117, 1.330, 6.129 MeV	AP, PA, LLAT, RLAT, ISO, ROT	EGSnrc HMGU (Schlattl)	MCNPX 2.6-CEM GaTech (Hertel)*	GEANT4 HMGU (Simmer)
中性子	0.001 eV∼10 GeV	AP, PA, LLAT, RLAT, ISO, ROT	PHITS JAEA (Sato)	FLUKA INFN (Pelliccioni)	MCNPX 2.5 RPI (Xu) GEANT4 HMGU (Simmer)
"王	$50 \text{ keV} \sim 10 \text{ GeV}$	AP, PA, ISO	MCNPX 2.6-CEM MCNPX 2.6 Bertini (1 MeV D/F) GaTech (Hertel)*	EGSnrc HMGU (Schlattl)	GEANT4 HMGU (Simmer)
陽電子	$50 \text{ keV} \sim 10 \text{ GeV}$	AP, PA, ISO	MCNPX 2.6-CEM GaTech (Hertel)*	EGSnrc HMGU (Schlattl)	GEANT4 HMGU (Simmer)
十 醫	1 MeV∼10 GeV	AP, PA, LLAT, RLAT, ISO, ROT	PHITS JAEA (Sato)	FLUKA INFN (Pelliccioni)	MCNPX 2.6 JAEA (Endo) GEANT4 HMGU (Simmer)
パイマイナス中間子	1 MeV∼200 GeV	AP, PA, ISO	FLUKA JAEA (Endo) PHITS JAEA (Sato)		
パイプラス中間子	1 MeV∼200 GeV	AP, PA, ISO	FLUKA JAEA (Endo) PHITS JAEA (Sato)		
ミューマイナス粒子	1 MeV∼10 GeV	AP, PA, ISO	FLUKA JAEA (Endo)	MCNPX 2.6-CEM GaTech (Hertel)*	GEANT4 HMGU (Simmer) FLUKA INFN (Pelliccioni) MCNPX 2.6-Bertini JAEA (Endo)
ミュープラス粒子	1 MeV∼10 GeV	AP, PA, ISO	FLUKA JAEA (Endo)	MCNPX 2.6-CEM GaTech (Hertel)*	GEANT4 HMGU (Simmer) FLUKA INFN (Pelliccioni)
ヘリウムイオン	$1 \text{ MeV/u} \sim 100 \text{ GeV/u}$	AP, PA, ISO	PHITS JAEA (Sato)	FLUKA JAEA (Endo)	
AP : 前方 - 後方, PA : JAEA : 日本原子力研究 * Nolan Hertel と Eric ¹ 説、テネシー州オーク	後方 - 前方, LLAT:左側方, RLAT:右側方, ROT 開発機構, GaTech:ジョージア工科大学, INFN:> 3urgett(アイダホ州立大学), Michele Sutton Ferei ・リッジ)。	 二 回転, ISO:等方, イタリア核物理学国立 nci (ペンシルヴァニ) 	HMGU (Helmholtz Zent 研究所, RPI : レンセラ・ r州立大学医療センター)	rum München):ドイン - 工科大学。 ・および Ken Veinot(ノ環境健康研究センター, アー12 国家安全保障複合施

臓器および実効線量換算係数を決定するために行った計算のまとめ

図 4.1 前方 - 後方 (AP),後方 - 前方 (PA),等方 (ISO)の各照射ジ オメトリーに対して,本報告書で使用した方法と線量応答関数 (DRF)を使用した方法で計算した活性骨髄 (RBM)および骨 内膜 (Endost-BS)線量を用いて評価した空気カーマあたりの 実効線量の比較

標的領域	略号	標的領域	略号
活性 (赤色) 骨髄 結 腸	R-marrow Colon	後鼻道+咽頭の基底細胞 胸郭外 (ET) 領域のリンパ節	ET2-bas LN-ET
右肺+左肺	Lungs	気管支の基底細胞	Bronchi-bas
胃壁	St-wall	気管支の分泌細胞	Bronchi-sec
乳房 a+乳房 g	Breast	細気管支の分泌細胞	Brchiol-sec
右卵巢+左卵巢	Ovaries	肺胞間隙	AI
精 巣	Testes	胸部領域のリンパ節	LN-Th
膀胱壁	UB-wall	右肺葉	RLung
食道 (壁)	Oesophagus	左肺葉	LLung
肝 臓	Liver	右副腎	RAdrenal
甲状腺	Thyroid	左副腎	LAdrenal
50 μm 骨内膜領域	Endost-BS	不活性(黄色)骨髓	Y-marrow
脳	Brain	右乳房脂肪	RBreast-a
唾液腺	S-glands	右乳腺	RBreast-g
皮 膚	Skin	左乳房脂肪	LBreast-a
右副腎+左副腎	Adrenals	左乳腺	LBreast-g
胸郭外領域	ET	右乳房 a+右乳房 g	RBreast
胆嚢壁	GB-wall	左乳房 a+左乳房 g	LBreast
心臓壁	Ht-wall	右乳房 a+左乳房 a	Breast-a
右腎臓+左腎臓	Kidneys	右乳房 g+左乳房 g	Breast-g
リンパ節(LN-ET と LN-Th を除く)	Lymph	眼の水晶体	Eye-lens
筋肉	Muscle	右腎臓皮質	RKidney-C
口腔粘膜	O-mucosa	右腎臓髄質	RKidney-M
膵臓	Pancreas	右腎盂	RKidney-P
前立腺	Prostate	右腎臓 C+M+P	RKidney
小腸壁	SI-wall	左腎臟皮質	LKidney-C
脾 臓	Spleen	左腎臓髄質	LKidney-M
胸腺	Thymus	左腎盂	LKidney-P
子宮/子宮頸部	Uterus	左腎臓 C+M+P	LKidney
舌	Tongue	右卵巣	ROvary
扁桃腺	Tonsils	左卵巣	LOvary
右結腸壁(上行+右側横行)	RC	下垂体	P-gland
左結腸壁(左側横行+下行)	LC	脊髓	Sp-cord
S 状結腸壁+直腸壁	RSig	尿管	Ureters
前鼻道の基底細胞	ET1-bas	脂肪/残りの組織	Adipose

表 4.2 ICRP Publication 110 ファントムにおける標的領域と略号のリスト

出典: ICRP, 2009。成人の標準コンピュータファントム。ICRP Publication 110 Ann. ICRP 39(2)。

については、空気カーマ*K*_aあたりの臓器吸収線量の換算係数(Gy/Gy で表される)も表にま とめられている。すべての場合において、ファントムは真空中で照射されると仮定した。

(118) 本報告書に示した換算係数について,値の間の正確な補間が必要な場合には, ICRP Publication 74(ICRP, 1996)において使用されたものと同様の手順に従うよう勧告する。 フルエンスあたりの吸収線量と実効線量の補間には、4点(三次)ラグランジュ補間公式が推 奨され、対数 - 対数グラフスケールがより適切である。光子の空気カーマあたりの吸収線量と 実効線量の補間は、4点(三次)ラグランジュ補間公式を使い、直線 - 対数グラフスケールが より適切である。

4.1 光 子

4.1.1 人体における光子によるエネルギー沈着の特徴

(119) 光子は、3つの主要な相互作用、すなわち、光電効果、コンプトン散乱および電子 対生成(また3電子生成)を経て、エネルギーを電子や陽電子に与える。人体でのエネルギー 沈着は、電子や陽電子へ転移し、それらの行程に沿って失われるエネルギーにより生じる。電 子や陽電子は、制動放射線や電離後に出る特性 X 線としての二次光子および陽電子の粒子消 滅による二次光子を発生することができる。

(120) 軟組織において、30 keV 未満の光子のエネルギー沈着では、光電効果が支配的で ある。それに対し、30 keV から 25 MeV のエネルギーでは、光子のエネルギーは主にコンプ トン散乱を通じて電子へ転移する。エネルギーが 25 MeV 以上では、電子対生成が支配的な相 互作用となる。

4.1.2 光子に対する計算条件

(121) 外部入射光子に対する第1計算は, EGSnrc バージョン 4-2-3-0 (Kawrakow ら, 2009) で行った。使用したコードの詳細は, 3.3節 (83)-(85) 項と Schlattl ら (2007) に記載 されている。大きな臓器(例えば肺や肝臓)の線量換算係数は, すべてのジオメトリーにおい て, 0.5%未満の統計的な相対不確かさで決定できた。最も小さな臓器でも, 統計的な相対不 確かさを 2%未満にするために, インポータンスサンプリング*を使用した。胆嚢, 前立腺, 精巣, 卵巣, 胸腺および甲状腺に到達する粒子の数を人為的に5倍に高め, 乳腺組織領域と副 腎における光子の数は, これらの臓器の外側の組織領域よりも 10 倍高くした。全体として,

^{*(}訳注) ある量の期待値を計算する場合,確率分布の中で重要と考えられる領域に,より大きな重 みを置いてサンプリングすることで,期待値の評価精度を向上させる手法。粒子輸送計算 で用いられる分散低減法のひとつ。

低い光子エネルギーにおいて,統計的不確かさは小さかった。それでも,考慮した最も低いエ ネルギー(10 keV から 20 keV)では,胆嚢などの小さな臓器に到達できる光子がごくわずか であったため,これらの臓器の統計的な相対不確かさは 10%に達した。

(122) 外部入射光子に対する第2計算は, MCNPX バージョン2.6 で行った。起こり得る 光核反応を計算に組み入れるため,光子の輸送計算には CEM03 物理モデルを選択した。その 結果得られた吸収線量を,光核反応モデルを Bertini モデルにして,いくつかの同じエネルギ ーで計算した線量と比較した。このエネルギー範囲では,光核反応の吸収線量への寄与が小さ いため,観察された差は無視できる程度であった。大きな臓器(例えば肺や肝臓)の線量換算 係数は,すべてのジオメトリーとエネルギーについて,0.5%未満の統計的な相対不確かさで 決定された。それより小さい臓器では,統計的な相対不確かさが5%に近づく非常に高いエネ ルギーを除けば,最も小さな臓器でも統計的な相対不確かさは2%未満であった。全体とし て,不確かさは,光子エネルギーが低いほど小さかった。それでも,考慮した最も低いエネル ギー(10 keV から 20 keV)では,胆嚢などの小さな臓器へほとんどの光子が到達しないた め,統計的な相対不確かさは10%に達した。

(123) 確認計算は、AP 照射について GEANT4 コードで行った。30 keV 以上のエネルギーの光子に対して、統計的な相対不確かさは、最大でも、大きな臓器では3%、小さな臓器では10%であった。30 keV 未満でエネルギー沈着事象がファントムの深い領域でほとんど起こらない場合、小さな臓器(例えば副腎)の統計的な相対不確かさは10%を上回った。

(124) 理想化された外部被ばくに対する線量換算係数は,粒子フルエンスあたりの吸収線 量として評価し,pGy·cm²の単位で示した。さらに,10 MeV までのエネルギーについては, 換算係数を,空気カーマ K_aあたりの臓器吸収線量(単位:Gy/Gy)として表にまとめた。こ の変換には、フルエンスあたりの空気カーマの換算係数(Seltzer, 1993)を用いた。

(125) 3.4節で述べたように,活性骨髄と骨内膜の線量は,個々の骨部位における海綿質 と骨髄髄質の吸収線量から評価した。これら2つの標的組織の骨格平均吸収線量は,海綿質と 骨髄髄質の線量の質量加重平均として求めた。

(126) 実効線量の計算は、2.2節(35)-(44)項で述べた手順で行った。

4.1.3 光子に対するモンテカルロコードによる違い

(127) EGSnrc コード, MCNPX 2.6 コード, および GEANT4 コードから得られたデー タセットは,非常に良い一致を示している。一例として,図4.2 に AP 照射ジオメトリーで, 女性ファントム内の結腸と男性ファントム内の甲状腺に対して,3つの輸送コードによって得 られた吸収線量換算係数を示す。

(128) 基準吸収線量換算係数は、データの平均化、平滑化およびフィッティングを適用することによって、すべての計算者のデータから評価した。基準実効線量換算係数を付属書 A

図 4.2 3つのモンテカルロコードによって計算した,前方-後方(AP)ジオメ トリーにおける結腸(女性)および甲状腺(男性)の線量換算係数の比較

に記載した。付属書 B は,実効線量に寄与するすべての臓器と残りの組織について,光子に 対する基準臓器吸収線量換算係数のリストを示している。眼の水晶体の換算係数は,付属書 F に示す。

4.1.4 光子に対する臓器線量換算係数の分析

(129) 臓器の吸収線量換算係数は、男女のファントム間で顕著な差を示している (Schlattl ら, 2007)。成人の標準女性の身体が小さいことから、標準男性に比べ、いくつかの 臓器で大きな値(30%から50%、あるいはそれ以上)になる。これに対して、APジオメトリ ーで光子エネルギーが低い場合、女性の乳房による遮蔽が、上半身のいくつかの臓器につい

図 4.3 男性および女性標準ファントムの光子に対する後方 - 前方(PA) ジオメトリーにおける胃と左側方(LLAT)ジオメトリーにおけ る肝臓の臓器線量換算係数の比較

て、男性ファントムに比べて換算係数を小さくする。男性ファントムと女性ファントムに対す る臓器線量換算係数は、約40 keV から80 keV の光子エネルギーで差が最も大きくなる。相 対差は、1 方向からの照射(すなわち AP, PA, LLAT および RLAT)で最も大きくなり、 50%に近づく場合がある。ほとんどの場合、これらの差は、光子エネルギーが低下すると増加 する。光子エネルギーが低下するにつれて、人体内の臓器の深さがますます重要なパラメータ になり、臓器線量換算係数の値に強く影響する。そのため、光子エネルギーが約20~30 keV よりも低いと、換算係数の相対差が100%か、それ以上になる場合もある。

(130) 図4.3 に、PA 照射ジオメトリーでの胃と LLAT 照射ジオメトリーでの肝臓の線量 換算係数を表す。ROT と ISO 照射ジオメトリーについては、臓器線量換算係数は、男性ファ ントムと女性ファントムのすべての臓器でほとんど同じである。

4.1.5 光子に対する実効線量換算係数の分析

(131) 図 4.4 に、考慮した理想化されたジオメトリーにおける光子被ばくに対するフルエ ンスあたりの実効線量を示す。4 MeV までのエネルギーについては、AP 照射ジオメトリーで 実効線量が最も大きな値になる。しかし、30 MeV を上回ると AP ジオメトリーは最も小さい 値を示す。

 図 4.4 様々なジオメトリーにおける光子被ばくに対するフルエンスあた
 りの実効線量 AP:前方-後方,PA:後方-前方,LLAT:左側方, RLAT:右側方,ROT:回転,ISO:等方(カラー画像は口絵参照)

4.1.6 光子に対する ICRP Publication 74 (ICRP, 1996) との比較

(132) 光子に対する ICRP Publication 74 (ICRP, 1996) のデータは、MIRD (Medical Internal Radiation Dose: 医学内部放射線量) タイプのファントム (Snyder ら, 1969, 1978) から作られた数学ファントムである Adam と Eva (Kramer ら, 1982) を用いて計算された。
オークリッジ国立研究所で開発された ALGAM コード (Warner と Craig, 1968) の後継である GSF コードが使われた (Kramer ら, 1982; Veit ら, 1989)。使用した断面積は、
DLC99/HUGO ライブラリ (Roussin ら, 1983) のものであった。

(133) ICRP Publication 74 (ICRP, 1996) では、光子が相互作用した点で転移されたエ ネルギーは、その点に沈着すると仮定された(すなわち、二次電子は追跡しなかった)。この 簡略化は「カーマ近似」と呼ばれる。カーマ近似は、着目する体積において、ほぼ二次荷電粒 子平衡が存在する場合に限り有効であり、身体の十分内側に存在するすべての点について許容 できる仮定である。しかし、体表面の臓器(例えば皮膚、乳房および精巣)の場合、10 MeV の光子エネルギーにおいて、カーマ近似は吸収線量を最大2倍まで過大評価する。体表面臓器 の場合、カーマ近似は約1 MeV 未満において有効である。本報告書では、入射光子エネルギ ーに関係なく、すべての二次電子を追跡した。光子による外部照射では、付随する二次電子 (および陽電子)による被ばくが常に伴うため、吸収線量を評価するには、それらの寄与を含 めなければならないことに注意すべきである*。

(134) ICRP *Publication 74* (ICRP, 1996) では、単純化した元素組成を Adam と Eva の 様式化されたファントムに仮定した。本報告書では、ICRP *Publication 110* (ICRP, 2009) に 記載されている、より広範囲の組織の元素組成リストを考慮している。

臓器吸収線量

(135) 本報告書のために計算した臓器線量換算係数と ICRP Publication 74 (ICRP, 1996) に示されている臓器線量換算係数の最も大きな違いは、使用したモデルの解剖学的構造の差に 帰することができる。このことは、他の著者 (Jones, 1997; Chao ら, 2001; Zankl ら, 2002; Ferrari と Gualdrini, 2005; Kramer ら, 2005; Schlattl ら, 2007)が、彼らの所有するボクセ ルファントムと ICRP Publication 74 (ICRP, 1996)との比較から得た以前の知見を裏付ける ものである。観察された線量換算係数のいくつかの違いは、埋め込んだ腕の骨を持つ引き延ば した楕円面で構成される様式化された数学モデルの胸部の形状によって説明することができ る。この形状は、胸部の断面が長方形に近い、実際のヒトの解剖学的構造と幾分異なっている。

(136) 次に,本報告書と ICRP *Publication 74* (ICRP, 1996)の重要な違いは,本報告書の計算では,二次電子が局所にエネルギーを沈着するカーマ近似を使用せずに,二次電子の輸

図 4.5 本報告書で計算した,前方 - 後方(AP)ジオメトリーにおける男性 ファントムの皮膚の吸収線量換算係数と ICRP *Publication 74* (ICRP, 1996)の値との比較

^{*(}訳注) 線量換算係数の計算は、ファントムを真空中に配置して行っている。実際の放射線作業場 では、光子が空気中で発生する二次電子も人体に入射してくるために、この寄与を考慮す る必要があることを意味する。

図 4.6 本報告書で計算した,前方 - 後方ジオメトリー(AP)における女性 ファントムの乳房の吸収線量換算係数と ICRP Publication 74 (ICRP, 1996)の値との比較

送を考慮した点である。これは、体表面臓器、例えば皮膚と乳房の吸収線量換算係数において、入射光子エネルギーが、それぞれ 400 keV と 1 MeV を超える場合に影響する(図 4.5 と 図 4.6)。これらのエネルギーでは、表面にある厚みの薄い臓器内で放出された電子のすべてが、その場で吸収されるわけではない。この結果、線量換算係数は、カーマ近似で計算される線量換算係数に比べて小さい。

(137) また, Schlattl ら (2007) は, 40 keV 未満では, 輸送コード, 断面積, および臓器 組成の差異が線量換算係数の値に影響する場合があり, その相対差は 20%にまで達すると結 論づけた。数学ファントムとボクセルファントムの違いにより, RLAT 被ばくに対して, よ り大きな線量換算係数が, 標準コンピュータファントムの, 特に結腸, 膵臓および胃において 認められている。活性骨髄と甲状腺では, より小さい線量換算係数が得られている。さらに, 肺と胸腺は, 標準コンピュータファントムの胸郭によってもっと遮蔽されるので, これらの臓 器の吸収線量換算係数は, 様式化された数学ファントムの場合より小さくなる。例えば, 100 keV における肺の吸収線量換算係数は, ICRP *Publication 74* (ICRP, 1996) に示されている 対応する値よりも約 30%小さい。Lee ら (2006) によって指摘されたように, 様式化された ファントムでは, 幾分単純化された腕の位置は, LAT 被ばくに対する肺線量の過大評価の要 因にもなる。膵臓を除いて, 同じ傾向が LLAT 照射に対してはっきりと見られる。この場合, 膵臓の線量換算係数は, 数学ファントムとボクセルファントムでほぼ同じである。肝臓につい ては, 数学ファントムと比較して, 標準コンピュータファントムでは LLAT 照射からの遮蔽 が少ないため, 換算係数が大きくなる。AP 照射では, 胃と胸腺は, 標準ボクセルファントム では吸収線量が小さくなるが, 活性骨髄と, 特に食道について, ICRP *Publication 74* (ICRP, 1996) に示されている線量換算係数は過小評価されている。様式化された数学ファントム Adam と Eva では, 食道は実際のヒトよりも身体の後方にあり, このファントムタイプで PA ジオメトリーにおける食道の換算係数がかなり大きくなっていることは, この位置関係によっ て説明される。

(138) ICRP Publication 74 (ICRP, 1996) と比較して, PA ジオメトリーでは, 胸腺と甲 状腺で,より大きな線量換算係数が得られている。様式化された数学ファントムでは,これら の臓器は脊柱によって,もっと遮蔽されている。これと対照的に,活性骨髄,小腸と大腸,腎 臓および膵臓では,より小さい換算係数が得られている。これは,様式化された数学ファント ムでは,腸,腎臓および膵臓の身体の背部までの距離を過小評価していること,または,臓器 がファントムの前面寄りに位置していること,あるいはその両方を示している。

(139) 結論として,ほとんどの臓器について,新しい線量換算係数は,ICRP Publication 74 (ICRP, 1996) に示されている基準値から最大で20%異なる。しかし,実効線量に大きく 寄与する多くの臓器を含め,臓器によっては相対差が特定の照射ジオメトリーにおいて約 30%またはそれより大きくなる。全体的に見て,ICRP Publication 74 (ICRP, 1996) と本報 告書の臓器線量換算係数の主要な違いは,ICRP Publication 110 (ICRP, 2009) の標準ファン トムによって表された,より現実に近い解剖学的構造に帰することができる。

実 効 線 量

(140) 図 4.7 は、AP, PA および ISO ジオメトリーにおける光子照射について、本報告書の空気カーマあたりの実効線量と ICRP *Publication 74* (ICRP, 1996) および ICRU Report 57
 (ICRU, 1998) に示されている値との比を示している。AP と ISO ジオメトリーでは、0.1

ICRP Publication 116

MeV から6 MeV の間の入射光子エネルギーにおいて、空気カーマあたりの実効線量換算係数 は, ICRP Publication 74 (ICRP, 1996) に示されている値と非常に近い。AP ジオメトリーで 光子エネルギーが6 MeV から10 MeV では、本報告書の空気カーマあたりの実効線量の値は、 カーマ近似で乳房線量が過大評価になっていた以前の値より小さい。最も大きな違いは、PA 照射とLAT 照射に対して観察されたが、0.1 MeV 以上では、換算係数セットの値の差は、最 高でも Sv/Gy で数パーセントである。これらの違いに対しては, ICRP Publication 103 (ICRP, 2007)における組織加重係数の変更が最も大きく影響した。PA 照射における実効線 量換算係数が小さいのは,加重係数が大きい臓器(例えば活性骨髄,肺および大腸)の換算係 数が小さくなったことが主たる原因である。LAT 照射については,臓器線量換算係数が ICRP Publication 74 (ICRP, 1996) の値よりも小さくなった臓器(肺,活性骨髄,食道およ び甲状腺)もあれば、大きくなった臓器(結腸と胃)もある。これらの競合する増減は平均化 され、LAT 照射に対する実効線量換算係数をやや増加させる。それでも、ICRP Publication 103 (ICRP, 2007) における乳房と残りの組織の組織加重係数の増加と、生殖腺の組織加重係 数の減少によって,LAT 照射に対する実効線量換算係数は ICRP Publication 74 (ICRP, 1996) で従来提示されていた値より幾分大きくなる。結論として、実効線量換算係数の変化は 相対的に小さい (20% 未満)。したがって,新しいファントムと ICRP Publication 103 (ICRP, 2007)の改訂された加重係数による線量評価手順の変更の影響は、外部光子被ばくの 場合、それほど大きくない。

4.2 電子と陽電子

4.2.1 人体における電子と陽電子によるエネルギー沈着の特徴

(141) 電子と陽電子輸送のシミュレーションは,光子のシミュレーションより複雑であ る。これは主として,1回の相互作用における電子の平均エネルギー損失が非常に小さい(数 + eVのオーダー)ことに起因する。その結果,高エネルギー電子は,事実上媒質に吸収され るまでに数多くの相互作用を受ける。一般的な放射線輸送コードでは,これらの相互作用は通 常そのままではモデル化されず,粒子のエネルギー損失は多重散乱理論を通じて扱われる。

(142) 人体内の行程に沿って,電子と陽電子は,数多くの散乱事象を経て,時々二次電子 (デルタ線)を生成しながらエネルギーを失う。制動放射光子が散乱過程で生成される場合が ある。エネルギーが約100 MeV より低い場合,軟組織における電子の主要なエネルギー損失 過程は,構成原子の電離と励起による。一方,それより高いエネルギーでは,制動放射生成が 支配的な過程となる。

(143) 軟組織では,約300 keV より低いエネルギーの電子と陽電子の飛程は1 mm 未満であり,そのため電子と陽電子はボクセルファントムの皮膚にしか入ることができない。陽電子

の場合,消滅光子が身体深部の臓器における吸収線量の原因となり得る。電子は,制動放射過 程によって放出される光子しか皮膚を通過することができない。軟組織中の低エネルギー電子 と陽電子は,エネルギーのごく一部しか制動放射光子へ転移しない。したがって,身体深部の 臓器の吸収線量は,これらの低エネルギー粒子の場合も非常に小さい。

(144) 電子 - 電子相互作用(Møller 散乱)と陽電子 - 電子相互作用(Bhabha 散乱)の断 面積はほぼ等しいので,これらの粒子の人体中の透過深さはほとんど同じになる。それでも, 陽電子は組織内に存在する電子とともに消滅し,511 keV の2つの光子を生成する。これらの 光子は,特に数 MeV 未満のエネルギーの陽電子の場合,線量のかなりの部分に寄与し得る。

4.2.2 電子と陽電子に対する計算条件

(145) 第1計算は, MCNPX バージョン 2.6.0 (Pelowitz, 2008) で行った。このコード の詳細は、3.3節(95)-(97)項を参照のこと。吸収線量全体に占める寄与は非常にわずかであ るものの、光核反応を含めるために CEM03 物理モデルを使用した。電子と陽電子の臓器線量 換算係数の不確かさは、平行ビームのエネルギーと方向に強く依存して変動したため、不確か さの大きさについての詳細な説明は,この議論に含めていない。エネルギーが 150 keV 未満 の粒子に対して計算された臓器線量のほとんどで、皮膚を除いて、統計的不確かさが非常に大 きかった。これは、低エネルギーでは粒子の飛程が短いことと、体表面とほとんどの体内の臓 器との間に介在する組織の量から予想されることである。十分な透過力のあるエネルギーの電 子/陽電子の場合,臓器線量の相対不確かさは2%未満であった。透過力がそれより劣るエネ ルギーの場合、体内の臓器には最大10%の相対不確かさがあった。飛程が非常に短い電子と 陽電子という最も悪いケースで、不確かさは小さな臓器で 70%から 100%に達したが、その不 確かさが大きいケースのほとんどすべては、エネルギーが 150 keV 未満の場合であった。100 keV を上回るエネルギーについては、実効線量の相対不確かさは、すべて2%未満であった。 それより低いエネルギーの入射粒子で、ファントムのより深部にある臓器の吸収線量の相対不 確かさが大きくなるのは、表面に近い組織で生成されるわずかな制動放射光子のエネルギー沈 着の結果である。MCNP コードは、粒子輸送における電子と陽電子の差を、消滅、電荷蓄積、 および磁場における追跡という明白な場合を除いて、従来から無視していることに注意すべき である。

(146) 外部電子照射の第2セットの計算は, EGSnrc コードで行った。200 keV 以下の電 子エネルギーについては,外部から入射する電子の飛程を超える体内臓器における吸収線量の 統計的な相対不確かさを低減するために,「制動放射スプリッティング」(Rogers と Bielajew, 1990; Rogers ら, 1995) と呼ばれる分散低減法を適用した。

(147) 確認計算は, AP 照射について GEANT4 コードを用いて行った。電子と陽電子の 輸送において, GEANT4 コードは, 制動放射, 電離/励起, デルタ線生成, および陽電子消

滅の過程を考慮している。電子の場合,入射エネルギー 600 keV に対して,統計的な相対不 確かさは,大きな臓器で4%未満,小さな臓器で10%未満であった。陽電子消滅事象により, 陽電子に対する統計的な相対不確かさは,すべての体内の臓器について,10 keV において 2%未満であった。

(148) AP, PA および ISO 被ばくに対する線量換算係数は、粒子フルエンスあたりの吸収 線量として計算した。実効線量の計算は、2.2節(35)-(44)項で述べた手順で行った。

4.2.3 電子と陽電子に対するモンテカルロコードによる違い

(149) MCNPX 2.6, EGSnrc および GEANT4 コードで計算した換算係数は,非常に良い 一致を示した。例として,図4.8にAPジオメトリーで外部入射電子により照射された成人の 標準女性の甲状腺におけるフルエンスあたりの吸収線量を示す。違いが見られるのは,数MeV の陽電子エネルギーにおける MCNPX の計算結果であり,それを図4.9に示す。この図は, PAジオメトリーで入射する陽電子に対して,男性の結腸のフルエンスあたりの吸収線量を示 している。この不一致は,EGSnrc コードや GEANT4 コードとは異なり,MCNPX コードが, 陽電子を輸送するために電子物理モデルを使っている事実によると考えられる(H. Grady Hughes,ロスアラモス国立研究所,私信)。したがって,1MeV から20MeV の間の陽電子エ ネルギーの MCNPX の結果は,本報告書では無視し,基準換算係数の決定に使用していない。

4.2.4 電子と陽電子に対する臓器線量換算係数の分析

(150) 基準吸収線量換算係数は、データの平均化、平滑化、およびフィッティングを適用 することによって、すべての計算者のデータから評価した。電子と陽電子に対する実効線量に

図 4.8 異なるモンテカルロコードによって計算した,前方-後方(AP) ジオメトリーにおける甲状腺(女性)の線量換算係数の比較

図 4.9 異なるモンテカルロコードによって計算した,後方-前方(PA) ジオメトリーにおける結腸(男性)の線量換算係数の比較

寄与するすべての臓器,残りの組織および眼の水晶体の基準臓器吸収線量換算係数のリスト は、本報告書に添付した CD-ROM にある。

(151) 3.4節で述べたように,活性骨髄と骨内膜の吸収線量は,個々の骨部位における海 綿質と骨髄髄質の吸収線量から評価した。これらの2つの標的組織の骨格平均吸収線量は,海 綿質と骨髄髄質の吸収線量の質量加重平均として求めた。

(152) 電子と陽電子に対する線量換算係数は,粒子エネルギーが100 MeV を上回ると, 電子と陽電子の相互作用断面積が類似してくるため,非常に近い値になる。これは,外部から 入射する電子と陽電子に対する男性ファントムの膵臓の換算係数を示す図4.10 で実証されて いる。

(153) 低エネルギーの電子と陽電子は、体内を透過して深部の臓器に到達することができ ない。そのため、これらの深部臓器の吸収線量は、二次光子によるものだけとなる。電子の場 合、光子は制動放射過程からしか放出されず、この過程では電子エネルギーが増加するにつれ て、光子の生成量と平均エネルギーの両方が増加する。このため、10 keV では、線量換算係 数は 10⁻⁶ pGy·cm² のオーダーかそれ以下という非常に小さい値になる。10 keV を超えると、 線量換算係数は、入射電子エネルギーのほぼ二次関数として増加する。低エネルギー陽電子は 皮膚内で消滅し、511 keV の 2 つの消滅光子が生成され、それらはより深部の臓器に到達する ことができる。消滅光子による深部臓器の吸収線量は、外部入射電子で生成された制動放射光 子による吸収線量よりはるかに大きい。その結果、多くの臓器で、10 keV から約 1 MeV の陽 電子エネルギーに対して、陽電子の臓器線量換算係数は、ほぼ一定である。

(154) 約1 MeV から10 MeV のエネルギーで,陽電子と電子は身体深部の臓器に直接到

達し始め、このエネルギー領域で線量換算係数は3桁以上上昇する。この上昇の始まりは、臓 器の実効的深さに強く依存し、実効的な深さは照射方向とファントムの性別に左右される。い くつかの臓器(例えば卵巣)では、このエネルギー範囲において曲線の形状や相対的位置、そ して対応する換算係数の値に著しい違いを生じる(図4.11参照)。大きな臓器(例えば肺)で は、照射ジオメトリーとファントムの性別による換算係数の違いは顕著ではない。

(155) 図 4.12 から分かるように、身体深部の臓器について、女性ファントムに体外から 入射する電子と陽電子に対する換算係数は、ほとんどが男性ファントムの値より大きい。生殖

図 4.10 前方 - 後方 (AP) と後方 - 前方 (PA) ジオメトリーにお ける電子と陽電子に対するフルエンスあたりの膵臓(男性) の線量の比較

図 4.11 前方 – 後方(AP)ジオメトリーにおける,女性ファントムの 電子フルエンスあたりの臓器線量換算係数

ICRP Publication 116

図 4.12 前方 - 後方 (AP) と後方 - 前方 (PA) ジオメトリーにおける, 電子フルエンスあたりの男性と女性の膀胱壁の線量の比較

図 4.13 前方 - 後方 (AP),後方 - 前方 (PA) および等方 (ISO) ジオメ トリーにおける,電子フルエンスあたりの生殖線の線量の比較

線は例外で、図4.13で示すように、男性の線量換算係数は女性の値より大きい。これは、男 性の精巣と女性の卵巣の深さと位置の違いの影響である。

(156) 皮膚は、一次粒子に常に直接さらされる。男性と女性ファントムの皮膚の厚さは、 それぞれ約 2.1 mm と約 1.8 mm である。皮膚における 600 keV の電子の連続減速近似 (CSDA) 飛程は 2.1 mm である。したがって、600 keV 以下のエネルギーの場合、ほとんど すべてのエネルギーは、男女いずれのファントムでも皮膚に沈着する。600 keV を上回るエネ ルギーでは、電子と陽電子は皮膚のボクセルを通過することができるので、線量換算係数の値

図 4.14 前方 - 後方(AP) ジオメトリーにおける,男性および女性ファ ントムの電子と陽電子のフルエンスあたりの皮膚の線量

は粒子エネルギーと皮膚の質量では決まらない。入射エネルギーが約60 MeV を上回ると、電子と陽電子は胸部全体を通過することができ、エネルギーがこの値以上になると、線量換算係数は、電子または陽電子のエネルギーにほぼ比例して増加する。図4.14 は、男性と女性のファントムにおける電子と陽電子のフルエンスあたりの皮膚線量を示す。男性と女性の換算係数の差は、主にそれらの皮膚の質量の違いによる(3.5節(**108**)-(**109**)項も参照)。

4.2.5 電子と陽電子に対する実効線量換算係数の分析

(157) 図4.15に、考慮した理想化されたジオメトリーにおける電子と陽電子のフルエン スあたりの実効線量換算係数の値をエネルギーの関数として示す。エネルギーが増加すると、 身体深部の臓器に入射粒子が次第に到達するため、電子と陽電子の実効線量の値は、エネルギ ーとともに増加することが分かる。エネルギーが約1MeVまでは、皮膚の吸収線量が実効線 量に最も大きく寄与する。基準実効線量換算係数は、付属書Aおよび本報告書に添付した CD-ROMに表形式で示されている。

4.2.6 電子と陽電子に対する ICRP Publication 74 (ICRP, 1996) との比較

(158) 図 4.16 は、本報告書のフルエンスあたりの実効線量の基準値を ICRP Publication 74 (ICRP, 1996) に示されている値と比較している。ICRP Publication 74 の値は、100 keV から 10 MeV のエネルギー範囲で計算された。600 keV 未満では、ほとんどすべての入射粒子 エネルギーは皮膚に沈着する。ICRP Publication 74 (ICRP, 1996) で電子の計算に用いた様 式化されたファントムの皮膚には 70 µm の不感層があったが、ここで用いたボクセルモデル

図 4.15 前方 - 後方 (AP),後方 - 前方 (PA) および等方 (ISO) ジオメ トリーにおける電子と陽電子のフルエンスあたりの実効線量

図 4.16 前方 - 後方(AP) ジオメトリーにおける電子のフルエンスあたりの 実効線量の本報告書と ICRP *Publication 74*(ICRP, 1996)で 示されている値との比較

には組み入れられていない。この不感層のため、最小エネルギー 100 keV において、フルエ ンスあたりの実効線量の値が小さくなっている。400 keV では良い一致が見られる。しかし、 約1 MeV から4 MeV では、ICRP Publication 74 の値は、本報告書で勧告する結果より小さ い。これらの差は、ICRP Publication 74 (ICRP, 1996)の様式化されたモデルと ICRP Publication 110 (ICRP, 2009)のボクセルファントムに見られるように、それぞれ対応する乳房 と生殖腺(精巣と卵巣)のモデルの違いによるものである。4 MeV を超えると、ICRP Publication 74 の線量換算係数と本推奨値との一致は、非常に良い。

4.3 中性子

4.3.1 人体における中性子によるエネルギー沈着の特徴

(159) 中性子は、人体内で多くの相互作用を経て、様々な種類の二次粒子を生成する。そのエネルギー沈着は複雑な過程であり、一般にフルエンスから吸収線量への換算係数は、エネルギーに強く依存する。

(160) 図4.17は、ISOジオメトリーでの男性ボクセルファントム全身における二次荷電 粒子の吸収線量への相対的寄与を、入射中性子エネルギーの関数として表している。入射エネ ルギーが約10keVまでの中性子では、二次光子が体内深部での吸収線量の主要な割合を占 め、吸収線量の約90%は水素による中性子捕獲時に放出される2.2MeVの光子に由来する。 光子は電子と陽電子を通じてエネルギーを沈着するので、図4.17において、光子の寄与は 「電子/陽電子」の項に分類されている。残りの吸収線量(約10%)は、¹⁴N(n, p)¹⁴C反応に 由来する。すなわち、陽子と¹⁴C反跳枝がエネルギーを沈着し、これらは、それぞれ「陽子」 と「原子核」に分類されている。光子は、熱中性子と熱外中性子の照射による吸収線量の 90%を占める。10keVを上回る中性子エネルギーでは、吸収線量に占める光子の寄与は急激 に減少し、1MeVでは20%未満である。エネルギーが約1keVを超えると、水素との弾性散 乱で生じる反跳陽子によって沈着するエネルギーが重要になり、一方、数MeV以上のエネル ギーでは、原子核反応による荷電粒子の生成が、入射中性子のエネルギー沈着をもたらす重要 なメカニズムになっていく。中性子の入射エネルギーが増加するにつれ、非弾性の原子核反応 で放出される様々な二次粒子が、体内臓器の吸収線量分布に重要な役割を果たすようになる。

図 4.17 中性子によって誘発された反応や弾性散乱によって生成される様々な 二次荷電粒子による吸収線量への相対的寄与度の計算値

(161) モンテカルロ法によって臓器吸収線量を計算するために、すべての二次荷電粒子を 追跡し、各々の臓器において結果として生じるエネルギー沈着を合計する。しかし通常、20 MeV 未満の中性子エネルギーでは、吸収線量はカーマ近似によって計算される。実際、二次 荷電粒子の飛程は、ほとんどの臓器の大きさと比べて非常に短く [20 MeV 陽子の飛程は組織 内でおよそ4 mm である (ICRU, 1993)]、それゆえ荷電粒子平衡は多くの臓器においてほぼ 達成される。ある中性子エネルギーに対して、臓器吸収線量は、その臓器中の中性子フルエン スに適切なカーマ係数を乗じるだけで簡単に決定される。20 MeV を上回ると、荷電粒子平衡 にあると見なすことができる人体の臓器と組織は少なくなるので、二次荷電粒子の詳細な輸送 計算を行わなければならない。

4.3.2 中性子に対する計算条件

(162) 4つの異なるコードが,ここで報告するデータを計算するために使われた(表 4.1)。考慮したエネルギー範囲は0.001 eV から10 GeV までであり,シミュレーションした 照射ジオメトリーは AP, PA, LLAT, RLAT, ROT および ISO であった。

(163) 第1計算の結果は、PHITS コードで得た。このコードは、20 MeV 未満の中性子エ ネルギーについては、評価済み核データファイル ENDF/B-VI を用い、カーマ近似を採用して いる。20 MeV から 3.5 GeV までの中性子によって引き起こされる原子核反応は、JQMD モ デルでシミュレーションし、それよりも高いエネルギーの粒子によって引き起こされる原子核 反応は、JAM モデルを用いて取り扱った。PHITS によるシミュレーションでは、臓器の換算 係数の統計的な相対不確かさは一般に小さく、5%未満であったが、小さな臓器(例えば甲状 腺)では最高 15% であった。PHITS コードによるシミュレーションのより詳細な内容は、 Sato ら (2009) の論文で見ることができる。

(164) 第2計算は、FLUKA コードで行った。20 MeV 未満では、臓器の吸収線量は260 グループからなる中性子断面積ライブラリを用い、カーマ近似を使って計算した。20 MeV か ら5 GeV までのエネルギーでは、ハドロン - 核子およびハドロン - 原子核の相互作用は、汎 用核内カスケードモデルと前平衡モデルを組み込んだ PEANUT パッケージによってシミュレ ーションした。5 GeV を超えるエネルギーについては、Dual Parton モデルを使用した。大き な臓器の統計的な相対不確かさは、中性子エネルギーに応じて、主に0.8%から3%の間であ った。しかし、小さな臓器(例えば甲状腺)では、統計的な相対不確かさは、0.8%から8% の範囲であった。

(165) 確認計算は, MCNPX バージョン 2.5.0 と GEANT4 コードを用いて行った。 MCNPX の計算では, 各々の臓器の吸収線量は, ENDF/B-VI と LA-150 ライブラリ, および カーマ近似を用いて計算した。LA-150 ライブラリにある核種については, 表形式の断面積を 150 MeV まで使用した。LA-150 ライブラリに含まれていない核種については, 20 MeV 以下 では ENDF/B-VI のデータを使用した。表形式のデータがない場合は、3.5 GeV まで Bertini 核内カスケードモデルを使用し、3.5 GeV 以上では FLUKA89(Aarnio ら、1990)の高エネ ルギージェネレータを使用した。

(166) GEANT4の確認計算は、APジオメトリーに対して行った。20 MeV 未満の中性子 については、各々の臓器の吸収線量をカーマ近似と ENDF/B-VI ライブラリを使って計算し た。20 MeV から 3 GeV では、Bertini 核内カスケードモデル(GEANT4, 2006)を使用して 相互作用過程をシミュレーションした。3 GeV より上では、LEP(Low Energy Parameterized)モデルと HEP(High Energy Parameterized)モデル(GEANT4, 2006)を使用し た。これらのモデルは、GEANT3(Fesefeldt, 1985)のよく知られた GHEISHA パッケージ の改良版である。統計的な相対不確かさは、エネルギー範囲全体にわたり、すべての臓器で 5%未満であった。

(167) 高エネルギー中性子照射のエネルギー沈着過程では、原子核反応から生成される二 次粒子が主要な役割を果たすため、高エネルギーの原子核反応をシミュレーションするために コードで使われているモデルの依存性を調査した。PHITS では、20 MeV から 3.5 GeV の間の エネルギーに対して、汎用蒸発モデル(GEM)と組み合わせた JQMD モデルを使用し、3.5 GeV を上回るエネルギーに対して、GEM と組み合わせた JAM モデルを使用した。FLUKA コードでは、5 GeV までは PEANUT(カスケード前平衡モデル)を使用し、5 GeV を超える と Dual Parton モデルを使用した。MCNPX コードでは、3.5 GeV 未満では Bertini 核内カス ケードモデルを使用し、3.5 GeV を超えると FLUKA89(Aarnio ら、1990)の高エネルギー ジェネレータに切り替えた。GEANT4 コードは、3 GeV までは Bertini 核内カスケードモデル を使用し、3 GeV を超えると 20 GeV までのエネルギーに適した LEP モデルを使用した。

4.3.3 中性子に対するモンテカルロコードによる違い

(168) 異なるコードによって得られた臓器吸収線量データの比較から,ほとんどすべての 場合において,計算結果間の違いは,評価された統計的な相対不確かさよりもかなり小さいこ とが明らかとなった。基準線量換算係数は,すべての計算結果から平均化と三次スプライン関 数(de Boor, 1978)による平滑化によって得た。女性ファントムの生殖線の吸収線量換算係 数と男性ファントムの肺の吸収線量換算係数を表す図4.18から分かるように,コード間の一 致は非常に良い。この図には,各々のコードから得られたデータポイントを,最終的な基準値 とともに示してある。

4.3.4 中性子に対する臓器線量換算係数の分析

(169) 付属書 C の表 C.1 から C.30 は, ICRP が組織加重係数を勧告している個々の臓器 (すなわち,赤色(活性)骨髄,結腸,肺,胃,乳房,卵巣,精巣,膀胱壁,食道,肝臓,甲状

図 4.18 中性子に対する後方 – 前方 (PA) ジオメトリーでの生殖腺 (女性) および肺 (男性)の吸収線量の基準データと元データ

腺,骨内膜,脳,唾液腺および皮膚)と残りの組織の評価済み換算係数を示している。眼の水 晶体の換算係数は,付属書Fにある。データは,男性ファントムと女性ファントムについて 別々に,そして考慮したすべての照射ジオメトリー(すなわち AP, PA, LLAT, RLAT, ROT および ISO)に対して示している。本報告書に添付している CD-ROM には,上記の臓 器の線量換算係数と共に,残りの組織に含まれている臓器(すなわち,副腎,胸郭外領域,胆 嚢,心臓,腎臓,リンパ節,筋肉,口腔粘膜,膵臓,前立腺,小腸,脾臓,胸腺および子宮/ 子宮頸部)の換算係数もある。

(170) 評価済み基準臓器線量換算係数の例として,成人の標準男性ファントムの甲状腺と 胃の吸収線量換算係数を,考慮したすべてのジオメトリーについて図4.19に示す。AP 照射 が,低エネルギー中性子と高エネルギー中性子に対して,それぞれ線量換算係数の最も大きな

 図 4.19 男性標準ファントムにおける甲状腺と胃壁の中性子フルエンスあた
 りの基準吸収線量 AP:前方-後方, PA:後方-前方, LLAT:左側方, RLAT:右側方, ROT:回転, ISO:等方

値と最も小さな値を与えることが分かる。この傾向はファントム前面近くに位置する臓器(例 えば甲状腺と胃)についてあてはまる。PA 照射ジオメトリーでは,背面の表面に近い臓器 (例えば脊柱と骨盤内の活性骨髄)でこの傾向が見られる。LLAT と RLAT 照射に対する換算 係数は,体の左側にある胃などの非対称に位置する臓器を除いて,おおむね同じ値である (Sato ら, 2009)。これらの結果は,臓器線量換算係数が臓器から照射面までの距離に強く依 存することを示しており,入射エネルギーが 20 MeV 未満では,照射面近くの臓器の換算係数 は,その他の臓器の換算係数と比べて大きいが,この関係は高エネルギーの場合では逆転す る。これらの効果は,低エネルギー中性子の照射によるエネルギー沈着過程では,一次粒子が 支配的な役割を果たすが,高エネルギー中性子の照射では,二次粒子が支配的な役割を果たす という事実によって説明することができる。照射面からの距離が大きくなるにつれて,一次粒 子のフルエンスは減少するが、二次粒子のフルエンスは増加する。高エネルギー中性子は、人体中で複雑な原子核反応を連続的に誘発することによって二次粒子のカスケードを引き起こす ことに注意されたい(Sato ら、2009)。

(171) 臓器線量換算係数の性別依存性は,生殖腺を除いて小さいことが分かった。これは,精巣と卵巣では,照射面までの距離に大きな差があることによって説明できる。

4.3.5 中性子に対する実効線量換算係数の分析

(172) 様々な照射ジオメトリーにおける中性子に対する実効線量換算係数を,入射中性子 エネルギーの関数として付属書 A と図 4.20 に示す。実効線量の値を決定するうえで重要ない くつかの臓器(すなわち,組織加重係数が大きい臓器)は、身体前面近くにあるため、高エネ ルギーにおける AP 照射ジオメトリーに対する実効線量のエネルギー依存性は、他の照射ジオ メトリーのエネルギー依存性とは異なる。10 MeV を上回ると、PA、LAT、ROT および ISO 照射ジオメトリーでは、実効線量は中性子エネルギーの増加とともに増加し続ける。しかし、 AP 照射ジオメトリーでは、実効線量は実際わずかに減少する。

(173) 図 4.20 において, 50 MeV 未満の中性子については, AP 照射に対する実効線量換 算係数の値が, すべての照射ジオメトリーのなかで最も大きいことが分かる。50 MeV から 2 GeV の中性子については, PA 照射に対する換算係数が最も大きな値を与え, 2 GeV を超える と ISO の値が最も高くなる。

図 4.20 中性子フルエンスあたりの実効線量 AP:前方-後方, PA:後方-前方,LLAT:左側方,RLAT:右側方,ROT:回転,ISO:等方(カラー 画像は口絵参照)

4.3.6 中性子に対する ICRP Publication 74 (ICRP, 1996) との比較

(174) 図 4.21 は、本報告書のために評価された実効線量と ICRP Publication 74 (ICRP, 1996) に示されている実効線量との比を示している。400 keV 未満と 50 MeV を超える中性子 エネルギーにおいては、本報告書の値は ICRP Publication 74 に示されている値より小さく、 その間のエネルギーでは両方の値はかなり良く一致している。これらの違いは、主として、 ICRP Publication 103 (ICRP, 2007) で勧告された新しい w_R の値を使用したことに起因して いる。図 4.21 は, ICRP Publication 103 (ICRP, 2007) で示された w_{R} 値の ICRP Publication 60 (ICRP, 1991)の値に対する比も示している。低エネルギーと高エネルギーの中性子の w_R の値が、ICRP Publication 103 (ICRP, 2007) において5から2.5 に下方修正されたことに注 意されたい。w_Rの比が1よりも小さいエネルギー範囲(*E*_R<1 MeV)では、実効線量は単に wr 値の比に基づいて予想されるよりも減少幅は小さい。その原因は、主に様式化されたファ ントムと標準ボクセルファントムとの解剖学的違いに帰することができる。w_Rの比が1に等 しいエネルギー範囲 (1 MeV < E_n < 100 MeV) では, PA 照射を除いて, 本報告書の実効線量の 値は, ICRP Publication 74 (ICRP, 1996)の実効線量の値より大きい傾向がある。これは様 式化されたファントムから標準ボクセルファントムに変わったことと、乳房について勧告され た w_↑の値が大きくなった(0.05 に代わり 0.12) ことの複合効果による。このことは, AP 照 射に対する実効線量への寄与を中性子エネルギーの関数として表した図 4.22 に示されている。

図 4.21 前方 - 後方(AP)と等方(ISO)照射ジオメトリーにおける,本報告書の中性子フルエンスから実効線量への換算係数と ICRP
 Publication 74 (ICRP, 1996)の中性子フルエンスから実効線量への換算係数との比。ICRP Publication 103 (ICRP, 2007)の w_R 値と ICRP Publication 60 (ICRP, 1991)のw_R 値との比も示す。

図 4.22 前方 – 後方(AP)方向に入射する中性子に対する実効線量への寄与が大 きい臓器。上のグラフは本報告書の計算で評価された寄与を示し、下の グラフは ICRP *Publication 74*(ICRP, 1996)での寄与を表す。

4.4 陽 子

4.4.1 人体における陽子によるエネルギー沈着の特徴

(175) 陽子は,主に多重散乱事象でのクーロン相互作用を通じてエネルギーを失う。ある 一定のエネルギーを超えると,陽子は軟組織中の非弾性核反応も経て,様々な二次粒子や光子 を生成する。移動距離の関数として表すと,陽子によるエネルギー沈着は飛程の終端で「ブラ ッグピーク」と呼ばれる特徴的な最大値を示す。わずかな制動放射が二次粒子の電子によって 生成される。低エネルギー陽子の軟組織での飛程は短い。例えば,10 MeV 未満のエネルギー の入射陽子は、どの照射ジオメトリーでも、ほとんどすべてのエネルギーを皮膚に沈着する。

乳房での AP 照射の場合,20 MeV から100 MeV までのエネルギーの陽子は,この臓器にエネ ルギーのほとんどすべてを沈着する。したがって,低エネルギー陽子に対する臓器線量換算係 数は、ファントムの形態に大きく依存する(4.4節(185)-(188)項も参照)。これと対照的に, 高エネルギーの陽子は、中性子や光子を含む様々な二次粒子を生成するハドロンカスケードを 引き起こす。これらの二次粒子は、照射された表面からの深さが増加するに従ってフルエンス が増加するため、高エネルギー陽子入射のエネルギー沈着過程において支配的な役割を果たす。

4.4.2 陽子に対する計算条件

(176) 中性子の計算と同様に、4つの異なるコードを使って、男性と女性の成人標準コン ピュータファントムについて、外部入射陽子に対する臓器線量換算係数と実効線量換算係数を 計算した(表4.1参照)。計算に使用した輸送コードの一般的な特徴は、3.3節で述べた。1 MeV から 10 GeV までエネルギーを考慮し、シミュレーションしたジオメトリーは、AP、 PA、LLAT、RLAT、ROT および ISO であった。

(177) 第1のデータセットは、PHITS コードで得た。10 MeV から3.5 GeV までのエネ ルギーの陽子によって引き起こされる原子核反応は、JQMD モデルでシミュレーションし、 より高いエネルギーの粒子によって引き起こされる原子核反応は、JAM モデルを使用した。 PHITS によるシミュレーションでは、臓器の換算係数の統計的な相対不確かさは一般に小さ く、5%未満であったが、小さな臓器(例えば甲状腺)では15%近くあった。PHITS コード によるシミュレーションのより詳細な内容は、Satoら(2009)の論文で見ることができる。

(178) 第2計算は、APと ISO 照射ジオメトリーに対し FLUKA コードで行った。使用したモデルは、3.3 節に記述されている。

(179) 確認計算は、AP 照射に対し GEANT4 コードで行った。非弾性過程は、いくつか のモデルでシミュレーションした。3 GeV 未満では、励起子、前平衡、核破砕、核分裂および 蒸発モデルと結びつけた Bertini 核内カスケードモデルを使用した。3 GeV を超える場合は、 GEANT3-GHEISHA (Fesefeldt, 1985) パッケージに基づく LEP モデル (GEANT4, 2006) を使用した。このモデルは、20 GeV までのエネルギーに適している。統計的な相対不確かさ は、20 MeV より上で、すべての臓器で 4%未満であり、20 MeV 未満のエネルギーでは最大 で 11%に達した。

(180) もうひとつの確認計算を, MCNPX バージョン 2.6.0 (Pelowitz, 2008) で行った。 MCNPX によるシミュレーションは, AP, PA および ISO の照射ジオメトリーにおいて, い くつかの選ばれたエネルギーについて行った。3.5 GeV までの陽子エネルギーについては, Bertini 核内カスケードモデルを使用し, 3.5 GeV を超えるエネルギーについては, FLUKA の古いバージョンであり LAHET コード (Prael と Lichtenstein, 1989) から直接取り入れた FLUKA89 (Aarnio ら, 1990) を使用した。臓器吸収線量は, すべての粒子からのエネルギー 沈着を記録する衝突発熱タリー (collision heating tally)を使って計算した。

4.4.3 陽子に対するモンテカルロコードによる違い

(181) 異なるコードにより得られた臓器吸収線量データの比較から、コードによる計算結 果の違いは、ほとんどすべての場合において、評価された統計的不確かさよりもかなり小さい ことが明らかとなった。基準線量換算係数は、すべての計算結果から、平均化、そして曲線の 形状に応じて、三次スプライン、最小二乗Bスプライン、非一様有理Bスプライン法(de Boor、1978; Hewitt と Yip、1992)を組み合せた平滑化によって、男性ファントムと女性ファ ントムに対し別々に得た。10 MeV を超えると、図 4.23 から分かるように、コード間の一致

図 4.23 等方 (ISO) ジオメトリーにおける女性の肺,および前方 - 後方 (AP) ジオメトリーにおける男性の生殖腺の陽子フルエンスあた りの吸収線量の評価済み基準データと元データ

は非常に良い。この図は、例として、女性ファントムの肺の吸収線量換算係数と男性ファント ムの生殖腺の吸収線量換算係数を示している。この図には、各々のコードから得られたデータ ポイントを基準値とともに示してある。

(182) AP ジオメトリーで入射する 10 MeV の陽子に対して,男性ファントムの生殖腺の 吸収線量換算係数が,FLUKA/MCNPX コードと PHITS/GEANT4 コード間で異なっている ことが分かる。この不一致は、コードで使用する陽子の輸送モデルの違いに起因する。すなわ ち、FLUKA と MCNPX コードは、弾性散乱角度の変位を考慮しているのに対し、PHITS と GEANT4 コードは、この影響を考慮に入れていない。AP 照射ジオメトリーにおいて、一次 陽子は、皮膚ボクセルに垂直に入射する。皮膚のボクセルの一部は生殖腺のボクセルに隣接 し、これらのボクセルの境界近くに入射する陽子のいくつかは、低エネルギー陽子の散乱角の ゆらぎによって生殖腺のボクセルに入る。低エネルギー陽子の取扱いには特別な配慮が必要と され、これについては 4.4 節 (185)-(188) 項で論じる。

4.4.4 陽子に対する臓器線量換算係数の分析

(183) 計算された臓器吸収線量の例として,図4.24に,いろいろなジオメトリーにおける赤色骨髄(RBM)および結腸(男性),乳房および皮膚(女性)の換算係数を,陽子エネル ギーの関数として比較したものを示す。

(184) 中性子の場合と同様に, 臓器線量換算係数の性別依存性は, 生殖腺を除いて小さい ことが分かった。この結果もまた, 精巣と卵巣の皮膚表面からの距離の違いによって説明する ことができる。すなわち, 精巣は, 卵巣よりもかなり皮膚の近くに位置している。

4.4.5 低エネルギー陽子に対する特別な考察

(185) 筋肉における 10 MeV の陽子の飛程は 0.12 cm であり,エネルギーが 10 MeV 未満 の陽子は,ICRP 標準ボクセルファントムの皮膚を透過することができない。これは,男性フ ァントムと女性ファントムのボクセルの面内解像度が,それぞれ 0.2137 cm と 0.1775 cm で あるためである。図 4.25 に示すように,低エネルギー陽子(10 MeV 未満)に対する乳房の 吸収線量は,このエネルギーの一次陽子が直接乳房に到達できないという事実にもかかわら ず,AP ジオメトリーと ISO ジオメトリーとで大きく異なることが観察された。

(186) AP ジオメトリーと ISO ジオメトリーにおける男性の乳房の吸収線量の違いは,標準ボクセルファントムの幾何学的な制限によるものである。標準ボクセルファントムの皮膚は,ファントム外表面にある,1つのボクセル厚の層である。しかし,いくつかの内部臓器または組織は,ISO ジオメトリーにおいては数箇所で一次放射線に直接さらされる。図4.26 は,乳房を通過する成人の標準男性ファントムの断面図(矢状面)を表しており,乳房組織のボクセルの1つが外部領域(真空)のボクセルと直接接触していることを示している。AP 照射ジ

図 4.24 男性標準ファントム(赤色骨髄,結腸)と女性標準ファントム(乳房,皮膚)における エネルギーの関数として表した陽子フルエンスあたりの臓器線量 AP:前方-後方, PA:後方-前方,LLAT:左側方,RLAT:右側方,ROT:回転,ISO:等方

オメトリーでは、低エネルギー陽子は皮膚ボクセルに垂直に入射し、皮膚ボクセルに吸収さ れる。ISO ジオメトリーでは、一部の一次陽子は、ファントムのボクセル配列の外部領域に露 出している乳房のボクセルに直接入射する。したがって、1 MeV の陽子でさえ、乳房に有意 な線量を与える。しかし、これはコンピュータファントムによる人為的な結果であり、現実に 起こる現象ではない。なぜなら、人体は皮膚によって一様に覆われており、エネルギーが 10 MeV 未満の陽子は、この組織層を透過することができないからである。

(187) これらの観察された人為的な結果と実際の放射線防護との関連性は小さい。実効線 量について、APジオメトリーにおける乳房の寄与は最大で1%である。ISOジオメトリーで は、乳房の線量は高くなるが、それでも実効線量への寄与はわずか2%にすぎない。陽子の局 所照射の適用例(例えば眼への照射)を除き、低エネルギー陽子による被ばくは、ほぼ起こら ない。皮膚を透過できない粒子は、実際問題として衣類によっても遮蔽される。したがって、 この問題は現実との関連では限定される。

(188) 要約すると,エネルギーが 10 MeV 未満の陽子は,皮膚を透過することができない。体内臓器中のエネルギー沈着は二次粒子によって生じ,それは皮膚線量と比べ非常に小さ

図 4.25 前方 - 後方(AP) ジオメトリーと等方(ISO) ジオメトリーに おける男性ファントムの乳房の線量

い。そのうえ、これより低いエネルギーでは、モンテカルロ計算の統計的な相対不確かさは大きかった。したがって、10 MeV 未満の陽子入射については、皮膚以外のすべての臓器の吸収線量はゼロにした。4.7 節 (222)-(224) 項で論じられるように、この議論はヘリウムイオンにも適用される。

4.4.6 陽子に対する実効線量換算係数の分析

(189) 付属書 A と図 4.27 に,標準の照射ジオメトリーにおける陽子の実効線量換算係数 を,陽子エネルギーの関数として示す。図 4.27 から,AP ジオメトリーの実効線量換算係数 は,入射エネルギーが 100 MeV 未満の場合に最も大きな値になることが分かる。3 GeV を超

図 4.26 男性ファントムの乳房周辺の断面図

図 4.27 標準のジオメトリーにおける陽子フルエンスあたりの実効線量 AP:前方-後方, PA:後方-前方, LLAT:左側方, RLAT:右側方, ROT:回転, ISO:等方

ICRP Publication 116

えると, ISO 照射ジオメトリーが最も大きな値になる。これら2つのエネルギー(100 MeV < *E* < 3 GeV)の間では,線量換算係数は,照射ジオメトリーが異なっても,ほぼ同じである。

4.5 ミュープラス粒子とミューマイナス粒子

4.5.1 人体におけるミュー粒子によるエネルギー沈着の特徴

(190) 着目するエネルギー範囲(すなわち1 MeV から10 GeV)において,人体中のミュー粒子によるエネルギー損失は,電離(および励起)が支配的である。電子対生成,制動放射放出,光核反応などのその他のエネルギー損失メカニズムは,約10 GeV までは重要でない (Groom ら, 2001)。さらに,ミュー粒子の寿命が短いことも,線量換算係数の計算において 考慮すべきである。

(191) ミュー粒子は不安定な粒子であり,静止状態で2.2×10⁻⁶秒の寿命で1つの電子と 2つのニュートリノへ壊変する ($\mu^{\pm} \rightarrow e^{\pm} + \nu_e + \nu_\mu$)。壊変過程から生じる電子と陽電子は比較 的高いエネルギーを持ち,人体内で電子 - 光子カスケードが発生する。数百 MeV を超える と,デルタ線の発生が顕著になり始める。生成断面積と発生するデルタ線のエネルギーは、ミ ュー粒子のエネルギーとともに増加するので、デルタ線の輸送を考慮すべきである。

(192) ミューマイナス粒子が物質内で静止すると、それは原子核のクーロン場で捕獲され、ミュー粒子原子が形成される。捕獲されたミュー粒子は、オージェ電子と特性 X 線を放出しながら 1s 状態に下方遷移する。ミュー粒子は、さらに電子と2つのニュートリノに壊変するか、あるいは原子核によって捕獲される。この捕獲により、中性子とニュートリノが生成される。

4.5.2 ミュー粒子に対する計算条件

(193) 体外から入射するミューマイナス粒子とミュープラス粒子の両方に対する線量換算 係数を計算した。第1計算は, AP, PA および ISO ジオメトリーにおいて, 1 MeV から 10 GeV までのエネルギー範囲で FLUKA コードを用いて行った。ほとんどの臓器において, 吸 収線量は, 0.5%未満の統計的な相対不確かさで決定された。小さな臓器(例えば副腎, 卵巣) の場合でも, 統計的な不確かさは1%未満であった。

(194) 第2計算は, AP, PA および ISO ジオメトリーにおいて, いくつかの選ばれたエネ ルギーのミューマイナス粒子とミュープラス粒子の両方に対して, CEM モデルを用いた MCNPX バージョン 2.6.0 で行った。ほとんどの臓器において, 吸収線量は, 2%未満の統計 的な相対不確かさで決定された。

(195) 確認計算は, AP ジオメトリーにおけるミューマイナス粒子とミュープラス粒子の 両方に対して GEANT4 コードで, ISO ジオメトリーにおけるミューマイナス粒子とミュープ
ラス粒子の両方に対して FLUKA コードで, さらに AP, PA および ISO ジオメトリーにおけ るミューマイナス粒子に対して Bertini モデルを用いた MCNPX 2.6.0 コードで行った。

4.5.3 ミュー粒子に対するモンテカルロコードによる違い

(196) 図4.28は、4つのモンテカルロコードで計算された臓器線量データの違いの一例 を示している。FLUKAとGEANT4コードは、人体内のエネルギー沈着にとって重要と考え られるすべてのミュー粒子のエネルギー沈着過程を含んでおり、エネルギー範囲全体にわたっ て、極めて良い一致を示している。2つの物理モデルCEMとBertiniを使ったMCNPXコー ドは、1GeVまではFLUKAコードおよびGEANT4コードと良い一致を示している。しか し、1GeVを超えると、MCNPXコードはFLUKAコードおよびGEANT4コードより高い値 を示し、この不一致は、入射ミュー粒子のエネルギーが高くなるにつれて増加する。

(197) 4.5節(190)-(192)項で述べたように、デルタ線の生成が1 GeV を超えると顕著 になり、そのデルタ線のエネルギーは、入射ミュー粒子のエネルギーとともに増加する。エネ ルギーの高いデルタ線は標準ボクセルファントムの臓器寸法よりも大きい飛程を持つため、デ ルタ線は、それらが生成された臓器から出ていくようになる。MCNPX コードは、ミュー粒 子に対して、デルタ線の生成と輸送を考慮しておらず、これを無視することが、1 GeV を超え る入射ミュー粒子エネルギーでの臓器線量の過大評価につながる。同じ傾向は、ミューマイナ ス粒子とミュープラス粒子の両方に対して、すべての臓器において見られる。したがって、ミ ュー粒子の基準臓器線量データセットの評価において、1 GeV を超えるエネルギーでは、 MCNPX コードによって計算した臓器線量を外すこととした。

図 4.28 異なるモンテカルロコードで計算した,前方-後方(AP)ジオ メトリーにおけるミューマイナス粒子に対する男性ファントム の甲状腺のフルエンスあたりの吸収線量

72 4. 外部被ばくに対する換算係数

4.5.4 ミュー粒子に対する臓器線量換算係数の分析

(198) 図4.29は、身体前面から様々な深さに位置するいくつかの選ばれた臓器について、 AP ジオメトリーにおける吸収線量換算係数を示す。吸収線量は、臓器の深さに応じて、5 MeV から 60 MeV の間のエネルギーで最大値に達する。一方、入射ミュー粒子のエネルギー が 200 MeV を超えると、吸収線量は、エネルギーや臓器に依存しなくなり、その後低下して、 ある一定値に近づく。

(199) 5, 10, および 100 MeV における軟組織中のミュー粒子の CSDA 飛程は, それぞれ 0.193, 0.695, および 31.1 g/cm² である (Groom ら, 2001)。臓器線量は, その臓器内でブラ ッグピークが形成されるエネルギーで増加し, 最大値に達する。例えば, 膀胱壁の吸収線量 は, 15 MeV と 40 MeV の近傍で 2 つのピークを形成する。女性ファントムの前面から膀胱壁 を表現しているボクセルまでの深さは 0.8 cm から 8.4 cm の範囲にあり, 深さの分布には約 1.3 cm と 5.8 cm に 2 つのピークがある (ICRP, 2009)。これらの距離は, 14 MeV と 34 MeV のミュー粒子の CSDA 飛程とそれぞれ一致する。このように, 膀胱壁の吸収線量のエネルギ ー依存性は, 他の臓器の場合と同様, 臓器位置と入射ミュー粒子の飛程との関係によって説明 することができる。

(200) 200 MeV を超えると、ミュー粒子は、AP, PA および ISO 照射ジオメトリーで人体を完全に透過する。300 MeV から 500 GeV までは、軟組織におけるミュー粒子の阻止能は、 ミュー粒子のエネルギーの増加とともにわずかに増加する(Groom ら、2001)。しかし、エネ ルギーの高いデルタ線が人体から逃れ出て、阻止能の増加を相殺するので、吸収線量ははぼ一 定になる。

図 4.29 前方 - 後方(AP) ジオメトリーにおけるミューマイナス粒子に 対する女性ファントムのフルエンスあたりの臓器線量換算係数

4.5.5 ミュー粒子に対する実効線量換算係数の分析

(201) 図 4.30 は、AP, PA および ISO 照射ジオメトリーにおける実効線量換算係数を、 ミューマイナス粒子のエネルギーの関数として示したものである。実効線量は、ミュー粒子の エネルギーとともに増加し、AP ジオメトリーでは 50 MeV, PA ジオメトリーでは 60 MeV, そして、ISO ジオメトリーでは 80 MeV で最大値に達する。4.5 節 (198)-(200) 項で論じたよ うに、これらのピークエネルギーの差は、臓器の深さ、照射方向、およびミュー粒子の飛程に 応じたものである。200 MeV を超えると、ミュー粒子は完全に人体を透過し、エネルギーの 高いデルタ線は人体から逃れ出る。したがって、このような高い入射エネルギーでは、実効線 量は入射方向にほとんど依存せず、入射ミュー粒子のエネルギーにも依存しなくなる。

図 4.30 ミューマイナス粒子に対するフルエンスあたりの実効線量換算係数 AP:前方-後方, PA:後方-前方, ISO:等方

4.5.6 ミュー粒子の電荷依存性

(202) 図 4.31 は, ISO ジオメトリーにおけるミューマイナス粒子とミュープラス粒子の 実効線量換算係数を比較したものである。100 MeV 以上の線量換算係数はほとんど同じであ るが,それより低いエネルギーでは、ミュープラス粒子がミューマイナス粒子よりわずかに値 が大きい。この差は、ミュープラス粒子の壊変から生成される陽電子が、ミューマイナス粒子 の壊変から生成される電子に比べ、より高い線量を与えることに起因する。エネルギー沈着事 象の解析から、10 MeV において、ミューマイナス粒子の捕獲により生じる核反跳によって沈 着するエネルギーの相対的寄与は、一次エネルギーの0.1%未満であることが明らかとなった。 74 4. 外部被ばくに対する換算係数

図 4.31 等方(ISO)ジオメトリーにおけるミューマイナス粒子とミュー プラス粒子に対するフルエンスあたりの実効線量換算係数の比較

4.5.7 様式化されたファントムを用いてミュー粒子に対して行われた従来の計算との比較

(203) Ferrari ら (1997) は、FLUKA コードと MIRD タイプのファントムを使って、ミ ューマイナス粒子とミュープラス粒子の臓器線量および実効線量換算係数を計算した。実効線 量は、ICRP *Publication 60* (ICRP, 1991) に定義されている $w_{\rm T}$ と $w_{\rm R}$ (ミュー粒子に対して $w_{\rm R}$ =1) を使って計算した。

(204) 図 4.32 では、ミューマイナス粒子について、本報告書のデータと Ferrari らの結

図 4.32 等方(ISO) ジオメトリーにおける、本報告書のデータと Ferrari ら(1997)の実効線量換算係数との比較

ICRP Publication 116

果を比較している。エネルギー範囲全体にわたって、これらの値は良く一致していることが分 かる。10 MeV から 20 MeV までのエネルギーで約 10%から 20%の相対差が観察される。こ れらの差は、使用した人体モデルの解剖学的構造の違い、特に乳房のような臓器の位置や形状 が異なっていることに起因する。さらに、ICRP *Publication 103*(ICRP, 2007)では、乳房の $w_{\rm T}$ 値が、ICRP *Publication 60*(ICRP, 1991)の定義から、大幅に変更されている。

(205) 200 MeV を超えると、ミュー粒子は完全に人体を透過し、すべての臓器は一様に 照射される。そのため、実効線量は、人体ファントムの解剖学的な違いに対して敏感でなくな り、図 4.32 で示すように、両方のファントムで同じような値となる。

4.6 パイプラス中間子とパイマイナス中間子

4.6.1 人体におけるパイ中間子によるエネルギー沈着の特徴

(206) 荷電パイ中間子は、主としてクーロン相互作用を通してエネルギーを失う。エネル ギーが高いと、ハドロン – 核子相互作用とハドロン – 原子核相互作用が、人体におけるエネル ギー沈着に寄与する様々な二次粒子を生成する。さらに、線量換算係数を計算するためには、 荷電パイ中間子の以下の特性が重要である。荷電パイ中間子は不安定な粒子で、平均寿命 2.6×10^{-8} 秒でミュー粒子とミュー粒子ニュートリノに壊変する ($\pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}$)。壊変過程 で生成されるミュー粒子は、4.5節 (**190**)–(**192**) 項で述べたように、人体と相互作用する。パ イマイナス中間子が人体内で静止すると、通常は原子核によって捕獲され、その後、その原子 核が壊変して様々な高 LET 粒子を放出する (いわゆる "star fragmentation")。

4.6.2 パイ中間子に対する計算条件

(207) 線量換算係数は,パイプラス中間子とパイマイナス中間子の両方について計算した。中性のパイ中間子は短寿命であるため(8.7×10⁻¹⁷秒),計算に含めなかった。計算は,2 つのモンテカルロコード,FLUKAとPHITSを用いて,AP,PAおよびISO照射ジオメトリ ーに対して,1 MeV から 200 GeV までのエネルギー範囲にわたって行った。

(208) FLUKA コードを使用した計算では,吸収線量は,ほとんどの臓器で0.5%未満の 統計的な相対不確かさで決定された。小さな臓器(例えば副腎と卵巣)の場合でも,統計的な 相対不確かさは1%未満であった。PHITS コードを使用した計算では,吸収線量はほとんど の臓器で5%未満の統計的な相対不確かさで決定された。小さな臓器で入射エネルギーが低い 場合,統計的な不確かさは10%程度であった。

4.6.3 パイ中間子に対するモンテカルロコードによる違い

(209) 図 4.33 は、FLUKA と PHITS コードを使って決定された臓器吸収線量データの比

76 4. 外部被ばくに対する換算係数

図 4.33 異なるモンテカルロコードで計算した、等方(ISO)ジオメトリー におけるエネルギーの関数として表したパイマイナス中間子に対 する男性ファントムの赤色骨髄のフルエンスあたりの吸収線量

較の例を示している。3 GeV から 100 GeV までの入射パイ中間子のエネルギーでは,最大 20%に達する相対差が見られた。3.3 節 (86)-(94) 項に述べたように,FLUKA コードは,5 GeV までは汎用核内カスケードモデルと前平衡モデルを組み込んだ PEANUT パッケージを, これに続いて 5 GeV を超えると Dual Parton モデルを使用している。PHITS コードは,2.5 GeV 未満ではハドロン-核子相互作用とハドロン - 原子核相互作用に JQMD モデルを,そし て 2.5 GeV を超えると JAM モデルを使用している。FLUKA コードの結果では 5 GeV で, PHITS コードの結果では 3 GeV で,わずかながら不連続性が見られた。これは,それぞれの コードで,相互作用モデルが切り替えられたことによるものである。3 GeV より上での差は, FLUKA コードと PHITS コードが,それぞれ異なる原子核反応モデルを使用していることに 由来することが判明した。したがって,基準データは,FLUKA と PHITS の結果を平均し, その後,データを平滑化して評価すべきであるとした。

4.6.4 パイ中間子に対する臓器線量換算係数の分析

(210) 図4.34は、身体前面から異なった深さに位置する選ばれた臓器について、AP照 射ジオメトリーにおけるパイマイナス中間子の吸収線量換算係数を示す。全体的に、臓器吸収 線量は、パイ中間子の入射エネルギーが増加するにつれて増加し、最大値に達した後、減少す る。500 MeV を超えると、臓器吸収線量は再び増加する。100 MeV 未満では、臓器吸収線量の エネルギー依存性は、図4.29 に示したミュー粒子のエネルギー依存性と似ており、臓器の深 さ、パイ中間子の入射エネルギー、組織内での対応する飛程などの多くの要因の影響を受ける。

(211) 図 4.34 に示したように, 500 MeV を超えたところからの臓器吸収線量の増加は,

図 4.34 前方 - 後方(AP) ジオメトリーにおけるパイマイナス中間子に 対する女性ファントムのフルエンスあたりの臓器線量換算係数

身体深部にある脾臓で最も顕著である。高エネルギーのパイ中間子は,複雑な原子核反応を通 して二次粒子のハドロンカスケードを生成する。これらの二次粒子は,身体内の深部にある臓 器に,より多くのエネルギーを沈着する。

4.6.5 パイ中間子に対する実効線量換算係数の分析

(212) 図 4.35 は、AP, PA および ISO 照射に対する実効線量換算係数を、パイマイナス

図 4.35 パイマイナス中間子のフルエンスあたりの実効線量換算係数 AP:前方-後方, PA:後方-前方, ISO:等方

ICRP Publication 116

中間子のエネルギーの関数として示す。100 MeV 未満における実効線量換算係数のエネルギー依存性は, 臓器の深さ, 粒子の入射方向, パイ中間子のエネルギーと対応する組織内での飛 程を比較することによって説明できる。

(213) 50 MeV までは、AP ジオメトリーの実効線量換算係数が、PA と ISO ジオメトリ ーの実効線量換算係数より大きい。これは、AP ジオメトリーでは、入射パイ中間子が実効線 量に大きく寄与する臓器(例えば乳房)に達するためである。一方、PA ジオメトリーにおい て、5 MeV までのエネルギーでは、皮膚線量が実効線量の主要な寄与要因となっている。5 MeV を超えると、入射パイ中間子は皮膚を透過するものの、感受性のある臓器には到達する ことができず、実効線量は低下する。パイ中間子の入射エネルギーがさらに高くなると、これ らの粒子は、より内部の臓器に達することができるために、実効線量は再び増加する。高エネ ルギー領域では、4.6 節(206)項で述べたように、ハドロンカスケードで生成される二次粒子 により、ISO ジオメトリーでは、AP や PA ジオメトリーに比べて換算係数が大きくなる。こ れは荷電粒子に共通の現象であり、同様のエネルギー依存性は、陽子(図 4.27) やヘリウム イオン(図 4.40)で見られる。

4.6.6 パイ中間子の電荷依存性

(214) 図 4.36 は, ISO ジオメトリーにおいて,人体に入射するパイマイナス中間子とパ イプラス中間子に対する実効線量換算係数の比較を示す。パイ中間子が静止すると,パイマイ ナス中間子は,通常,原子核によって捕獲され,その後,その原子核が壊変して様々な二次粒 子を放出する。一方,パイプラス中間子は,通常,ミュー粒子とニュートリノに壊変する。図

図 4.36 エネルギーの関数として表した、パイマイナス中間子とパイプラス 中間子の実効線量換算係数の比較 ISO:等方

ICRP Publication 116

4.36 に示すように, エネルギーが 80 MeV 未満のパイマイナス中間子に由来する高 LET 二次 粒子によるエネルギー沈着は, 同じフルエンスのパイプラス中間子が沈着するエネルギーより も大きい。一方,約200 MeV では,パイプラス中間子の線量換算係数は, このエネルギー領 域におけるデルタ共鳴による組織の断面積の違いにより,パイマイナス中間子の線量換算係数 よりも大きくなる。

4.6.7 パイ中間子に対する従来の研究との比較

(215) Ferrari ら(1998)は、ICRP Publication 60(ICRP, 1991)の定義に従って、 FLUKA コードと様式化された MIRD タイプのファントムを使って、パイマイナス中間子と パイプラス中間子に対する線量換算係数を計算した。ICRP Publication 60にはパイ中間子の $w_{\rm R}$ 値が示されていなかったため、Ferrari ら(1998)は、ICRU 球内の深さ 10 mm における 実効線質係数を計算し、パイマイナス中間子とパイプラス中間子の $w_{\rm R}$ 値をエネルギーの関数 として評価した。これらの計算に基づいて、パイ中間子のエネルギーと荷電に応じて以下の $w_{\rm R}$ 値を導き出した。パイプラス中間子については、エネルギーが <100 MeV に対して $w_{\rm R}$ =1、エネルギーが ≥100 MeV に対して $w_{\rm R}$ =2。パイマイナス中間子については、エネルギー が <50 MeV に対して $w_{\rm R}$ =5、エネルギーが ≥50 MeV に対して $w_{\rm R}$ =2。

(216) 図 4.37 は、パイプラス中間子の実効線量換算係数について、本報告書のデータと Ferrari ら (1998) が計算したデータとを比較したものである。100 MeV 未満で有意な差が見 られるが、それは、Ferrari らの計算では異なる $w_{\rm R}$ 値を適用したのに対し、本計算では全エ ネルギー範囲にわたって $w_{\rm R}$ =2 を使用したことによる。2 つのデータセットを比較するため

図 4.37 等方(ISO)ジオメトリーにおけるパイプラス中間子に対する 実効線量換算係数の本報告書と Ferrari ら(1998)との比較

に、Ferrariら(1998)により計算された 100 MeV 未満のデータを、*w*_R=2 を適用してプロットし直した。図 4.37 に示すように、本報告書のデータと再プロットしたデータの違いは小さくなった。これらの結果は、ファントムの解剖学的構造の違いは、荷電パイ中間子に対する線 量換算係数にほとんど影響を及ぼさないことを示している。

4.7 ヘリウムイオン

4.7.1 人体におけるヘリウムイオンのエネルギー沈着の特徴

(217) エネルギーが1 MeV/u を超えるヘリウムイオンの場合,人体におけるエネルギー 損失の支配的な過程は,組織の原子の電子励起と電離である。エネルギーが高い場合は,ヘリ ウムイオンの原子核反応がエネルギー損失の原因となる。放射過程(すなわち制動放射)によ るエネルギー損失は,非常に高いエネルギーに達するまでは無視できる。

(218) いくつかのモンテカルロコード(例えば PHITS や FLUKA コード)の最近の発展 は、高エネルギーにおけるフラグメンテーション(原子核破砕)反応を記述する精緻なモデル を使って、重イオンの複雑な相互作用の様々な面を解析することを可能にした。

4.7.2 ヘリウムイオンに対する計算条件

(219) ヘリウムイオンに対する吸収線量換算係数の第1計算は, AP, PA および ISO ジオ メトリーにおいて, 1 MeV/u から 100 GeV/u のエネルギー範囲で PHITS コードを用いて行 った (Sato ら, 2010)。ほとんどの臓器の吸収線量換算係数は, 一般に 5%未満の統計的な相 対不確かさで決定されたが, 小さな臓器 (例えば甲状腺) では 15%にまで達した。

(220) 第2計算は、AP, PA および ISO ジオメトリーにおいて、FLUKA コードを用いて 行った。重イオンに対して FLUKA コードで扱える最も低いエネルギーが 10 MeV/u である ため、計算は 10 MeV/u から 100 GeV/u までの範囲で行った。吸収線量は、ほとんどの臓器 で 5%未満の統計的な不確かさで決定された。

4.7.3 ヘリウムイオンに対するモンテカルロコードによる違い

(221) 図 4.38 は、計算された臓器線量換算係数の比較の一例を示す。PHITS コードと FLUKA コードは、すべてのエネルギー範囲で良好な一致を示している。PHITS コードを用 いた計算において、3.5 GeV/u 未満の粒子によって引き起こされる原子核反応は JQMD モデ ルでシミュレーションするが、これより高いエネルギー粒子によって引き起こされる原子核反 応は、陽子と中性子については JAM モデルで、重イオンについては JQMD モデルと JAM モ デルを組み合わせて扱う。FLUKA コードでは、原子核相互作用を 5 GeV/u までは RQMD モ デルで扱い、それ以上のエネルギーでは DPMJET モデルを使用する。PHITS コードと

図 4.38 異なるモンテカルロコードで計算した,等方(ISO)ジオメトリー における男性ファントムの結腸のフルエンスあたりの吸収線量

FLUKA コードでは、5 GeV/u を超えると異なる原子核反応モデルを使用しているにもかかわ らず、両コードの結果は良い一致を示す。基準データの評価のために、課題グループは、 PHITS コードと FLUKA コードによって計算された臓器吸収線量を平均し、その後、データ 平滑化手法を適用することとした。

4.7.4 ヘリウムイオンに対する臓器線量換算係数の分析

(222) 図 4.39 は、女性標準ファントムの身体前面から異なった距離にある選ばれた臓器 について、AP 照射ジオメトリーにおけるヘリウムイオンの吸収線量換算係数を示す。臓器吸 収線量は、エネルギーが 100 MeV/u 未満では臓器によって大きく異なるが、100 MeV/u を超 えると違いが小さくなる。入射エネルギーが低い場合、ヘリウムイオンの飛程が非常に短く、 その行程の終端に向かった特徴的なブラッグピークにおいて主にエネルギーを沈着する。ヘリ ウムイオンのエネルギー、そしてそのエネルギーに対応する飛程は、体内の臓器と組織内にお ける吸収線量分布を決定する主たる要因である。例えば、エネルギーが 10 MeV/u 未満のヘ リウムイオンは、ほとんどすべてのエネルギーを皮膚に与える。吸収線量換算係数のエネルギ ー依存性は、各臓器において異なるエネルギーで最大値を示す。各臓器のピークエネルギーに 対応するヘリウムイオンの飛程は、皮膚から当該臓器までの平均深さと一致している。例え ば、エネルギーが約 50 MeV/u の組織内の飛程は数 cm であり、これは女性の乳房の平均深さ とほぼ一致する。骨髄については、ピークは約 100 MeV/u から 150 MeV/u にあり、これは およそ8 cm から 16 cm の深さに対応している。

(223) 一方,入射エネルギーが高くなると飛程が長くなり,ヘリウムイオンはブラッグピ

図 4.39 前方 - 後方(AP) 照射における女性ファントムの選ばれた臓器に ついてのヘリウムイオンに対するフルエンスあたりの臓器吸収線量

ークを形成せずに人体を完全に通過する。したがって,吸収線量は人体内でより一様に分布す る。しかし,高エネルギー領域であっても,換算係数の臓器深さに対する依存性はまだ見られ る。体表面の近くに位置する臓器(例えば皮膚や乳房)の換算係数に比べると,身体の深部に ある臓器(例えば胃や脾臓)の換算係数は,入射エネルギーの増加とともに急速に上昇する。 この傾向は,高エネルギーのヘリウムイオンが複雑な原子核反応を通じて二次粒子のカスケー ドを引き起こすためであり,これらの二次粒子が,人体内のさらに深部により多くのエネルギ ーを沈着する。

(224) 低エネルギー陽子について 4.4 節 (185)-(188) 項で論じたように, 10 MeV/u 未満 のヘリウムイオンは皮膚を透過できない(筋肉における 10 MeV/u のヘリウムイオンの飛程 は 0.13 cm である)。したがって, 10 MeV/u 未満では,皮膚以外の臓器線量は関係しないと 見なした*。

4.7.5 ヘリウムイオンに対する実効線量換算係数の分析

(225) 図 4.40 は,標準的な AP, PA および ISO 照射ジオメトリーにおける実効線量換算 係数をヘリウムイオンのエネルギーの関数として示している。20 MeV/u までは,実効線量は 主として皮膚線量によって決定され, AP ジオメトリーと PA ジオメトリーにおける実効線量 換算係数は, ISO ジオメトリーの換算係数よりわずかに大きい。20 MeV/u から 100 MeV/u

^{*(}訳注) この解釈により、皮膚以外の臓器・組織の吸収線量はゼロとし、皮膚の吸収線量を用いて 実効線量を計算した。

図 4.40 ヘリウムイオンのエネルギーの関数として表した実効線量換算係数 AP:前方-後方, PA:後方-前方, ISO:等方

までの中間的なエネルギーでは、AP ジオメトリーと PA ジオメトリーにおける実効線量換算 係数は、ISO 照射の値に比べ、それぞれはるかに大きい値(AP 照射)と小さい値(PA 照射) になる。この傾向は、AP 照射では、入射粒子は放射線生物学的に感受性が高い臓器(例えば 乳房)でほとんど停止するのに対し、PA 照射では、入射粒子は放射線生物学的に感受性が高 い臓器に到達することができないことに起因する。20 GeV/u を超えると、ISO ジオメトリー の実効線量換算係数が、AP ジオメトリーと PA ジオメトリーの値に比べて大きくなる。これ は、高エネルギーのヘリウムイオンによって生成される二次粒子のカスケードが身体深部の臓 器にエネルギーを沈着するためである。

4.7.6 ヘリウムイオンに対する従来の研究との比較

(226) 図 4.41 は、PHITS コードと MIRD タイプのファントムを使って、ICRP Publication 60 (ICRP, 1991)の定義に従って計算された実効線量換算係数 (Sato ら, 2003) と、 図 4.40 に示した今回の計算に基づく実効線量換算係数とを比較している。従来の研究で実効 線量換算係数の計算が行われたヘリウムイオンの最大エネルギーは、3 GeV/u であったこと に注意されたい。

(227) 図 4.41 から明らかなように,約 20 MeV/u から 100 MeV/u までの中間エネルギー 領域を除いて,異なる ICRP 刊行物 (*Publication 60 と 103*) に示されている概念に従って計 算された実効線量換算係数は,ほとんど同じである。この一致は,実効線量換算係数に対する ICRP *Publication 103* (ICRP, 2007)の改訂は,4.3 節 (174) 項で論じた中性子とは対照的 に、ヘリウムイオン照射に対しては重要なものでないことを示している。これは、ICRP *Pub*-

lication 103(ICRP, 2007)において中性子の $w_{\rm R}$ 値が改訂されたのに対し,重イオンの $w_{\rm R}$ 値 は改訂されなかったためである。中間の入射エネルギーにおける違いは,ICRP *Publication 103*(ICRP, 2007)において,乳房に割り当てる $w_{\rm T}$ 値が改訂され,0.05 から0.12 に引き上げ られたことに主な原因がある。図 4.39 に示したように,中間の入射エネルギー領域では,入 射粒子の飛程が皮膚表面から乳房までの平均深さ(すなわち,数 cm)に近づくため,乳房の 吸収線量換算係数は,他の臓器の吸収線量換算係数より大きくなる。したがって,このエネル ギー領域の実効線量は,比較的大きな $w_{\rm T}$ 値を有する乳房組織の吸収線量に大きく依存する。

4.8 参考文献

- Aarnio, P.A., Miihring, H.J., Ranft, J., et al., 1990. FLUKA89. Conseil Européen pour la Recherche Nucléaire informal report, Geneva.
- Chao, T.C., Bozkurt, A., Xu, X.G., 2001. Conversion coefficients based on the VIP-Man anatomical model and EGS4–VLSI code for external monoenergetic photons from 10 keV to 10 MeV. *Health Phys.* 81, 163–183.
- de Boor, C., 1978. A Practical Guide to Splines. Springer-Verlag, New York.
- Ferrari, A., Pelliccioni, M., Pillon, M., 1997. Fluence to effective dose conversion coefficients for muons. *Radiat. Prot. Dosim.* 74, 227–233.
- Ferrari, A., Pelliccioni, M., Pillon, M., 1998. Fluence to effective dose conversion coefficients for negatively and positively charged pions. *Radiat. Prot. Dosim.* 80, 361–370.
- Ferrari, P., Gualdrini, G., 2005. An improved MCNP version of the NORMAN voxel phantom for dosimetry studies. *Phys. Med. Biol.* 50, 4299-4316.

- Fesefeldt, H.C., 1985. Simulation of Hadronic Showers, Physics and Application. Technical Report PITHA 85-02, Physikalisches Institut, Technische Hochschule Aachen, Aachen.
- GEANT4, 2006. GEANT4: Physics Reference Manual. 次のサイトで入手可能: http://geant4.web. cern.ch/geant4/UserDocumentation/UsersGuides/PhysicsReferenceManual/fo/PhysicsReferen ceManual.pdf (最終アクセスは, 2014年12月).
- Groom, D.E., Mokhov, N.V., Striganov, S.I., 2001. Muon stopping power and range tables 10 MeV-100 TeV. Atom Data Nucl. Data Tables 78, 183-356.
- Hewitt, W.T., Yip, D., 1992. The NURBS Procedure Library. Technical Report CGU76. Manchester Computing Centre, Manchester.
- ICRP, 1991. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Ann. ICRP 21 (1-3).
- ICRP, 1996. Conversion coefficients for use in radiological protection against external radiation. ICRP Publication 74. Ann. ICRP 26 (3/4).
- ICRP, 2002. Basic anatomical and physiological data for use in radiological protection: reference values. ICRP Publication 89. Ann. ICRP 32(3/4).
- ICRP, 2007. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 37 (2-4).
- ICRP, 2009. Adult reference computational phantoms. ICRP Publication 110. Ann. ICRP 39(2).
- ICRU, 1993. Stopping Power and Ranges for Protons and Alpha Particles. ICRU Report 49. International Commission on Radiation Units and Measurements, Bethesda, MD.
- ICRU, 1998. Conversion Coefficients for use in Radiological Protection Against External Radiation. ICRU Report 57. International Commission on Radiation Units and Measurements, Bethesda, MD.
- Jones, D.G., 1997. A realistic anthropomorphic phantom for calculating organ doses arising from external photon irradiation. *Radiat. Prot. Dosim.* 72, 21-29.
- Kawrakow, I., Mainegra-Hing, E., Rogers, D.W.O., et al., 2009. The EGSnrc Code System: Monte Carlo Simulation of Electron and Photon Transport. PIRS Report 701. National Research Council of Canada, Ottawa.
- Kramer, R., Zankl, M., Williams, G., et al., 1982. The Calculation of Dose from External Photon Exposures Using Reference Human Phantoms and Monte Carlo Methods. Part I: the Male (Adam) and Female (Eva) Adult Mathematical Phantoms. GSF Report S-885. GSF—National Research Centre for Environment and Health, Neuherberg.
- Kramer, R., Khoury, H.J., Vieira, J.W., 2005. Comparison between effective doses for voxel-based and stylized exposure models from photon and electron irradiation. *Phys. Med. Biol.* 50, 5105–5126.
- Lee, C., Lee, C., Lee, J.-K., 2006. On the need to revise the arm structure in stylized anthropomorphic phantoms in lateral photon irradiation geometry. *Phys. Med. Biol.* 51, N393–N402.
- Pelowitz, D.B. (Ed.), 2008. MCNPX User's Manual, Version 2.6.0. LA-CP-07-1473. Los Alamos National Laboratory, Los Alamos, NM.
- Prael, R.E., Lichtenstein, H., 1989. User Guide to LCS: the LAHET Code System LA-UR-89-3014(1989), Los Alamos National Laboratory, Los Alamos, NM, USA.
- Rogers, D.W.O., Bielajew, A.F., 1990. Monte Carlo Techniques of Electron and Photon Transport for Radiation Dosimetry. In: Kase, K.R., Bjärngard, B.E., Attix, F.H. (Eds.), The Dosimetry of Ionizing Radiation. Vol. 3. Academic Press, San Diego, CA, pp. 427–539.
- Rogers, D. W. O., Faddegon, B. A., Ding, G. X., et al., 1995. BEAM: a Monte Carlo code to simulate radiotherapy treatment units. *Med. Phys.* 22, 503–524.
- Roussin, R.W., Knight, J.R., Hubbell, J.H., et al., 1983. Description of the DLC-99/HUGO Package of Photon Interaction Data in ENDF/B-V Format. ORNL Report RSIC-46 (ENDF-335). Radiation Shielding Information Center, Oak Ridge National Laboratory, Oak Ridge, TN.
- Sato, T., Endo, A., Niita, K., 2010. Fluence-to-dose conversion coefficients for heavy ions calculated using the PHITS code and the ICRP/ICRU adult reference computational phantoms. *Phys. Med.*

86 4. 外部被ばくに対する換算係数

Biol. 55, 2235-2246.

- Sato, T., Endo, A., Zankl, M., et al., 2009. Fluence-to-dose conversion coefficients for neutrons and protons calculated using the PHITS code and ICRP/ICRU adult reference computational phantoms. *Phys. Med. Biol.* 54, 1997–2014.
- Sato, T., Tsuda, S., Sakamoto, Y., et al., 2003. Conversion coefficients from fluence to effective dose for heavy ions with energies up to 3 GeV/A. *Radiat. Prot. Dosim.* 106, 137–144.
- Schlattl, H., Zankl, M., Petoussi-Henss, N., 2007. Organ dose conversion coefficients for voxel models of the reference male and female from idealized photon exposures. *Phys. Med. Biol.* 52, 2123–2145.
- Seltzer, S. M., 1993. Calculation of photon mass energy-transfer and mass energy-absorption coefficients. *Radiat. Res.* 136, 147–170.
- Snyder, W.S., Ford, M.R., Warner, G.G., et al., 1969. Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. Medical Internal Radiation Dose Committee Pamphlet No. 5. J. Nucl. Med. 10 (Suppl. 3).
- Snyder, W. S., Ford, M. R., Warner, G. G., 1978. Estimates of Specific Absorbed Fractions for Monoenergetic Photon Sources Uniformly Distributed in Various Organs of a Heterogeneous Phantom. Medical Internal Radiation Dose Committee Pamphlet No. 5 Revised. Society of Nuclear Medicine, New York, NY.
- Veit, R., Zankl, M., Petoussi, N., et al., 1989. Tomographic Anthropomorphic Models. Part I: Construction Technique and Description of Models of an 8 Week Old Baby and a 7 Year Old Child. GSF Report 3/89. GSF—National Research Center for Environment and Health, Neuherberg.
- Warner, G.G., Craig, A.M., 1968. ALGAM: a Computer Program for Estimating Internal Dose from Gamma-ray Sources in a Man Phantom. ORNL Report TM-2250. Oak Ridge National Laboratory, Oak Ridge, TN.
- Zankl, M., Fill, U., Petoussi-Henss, N., et al., 2002. Organ dose conversion coefficients for external photon irradiation of male and female voxel models. *Phys. Med. Biol.* 47, 2367–2385.

5. 実用量と防護量に対する線量換算係数の関係

(228) この章では, ICRU の実用量の観点から, 2007 年勧告(ICRP, 2007) における防護 量の変更の影響を検討する。

(229) ICRUは、放射線防護の測定において ICRP の防護量の評価に用いるために、外部 放射線に対する一連の実用量を Report 39 (ICRU, 1985) で定義した。この実用量のセット は、ICRU Report 51 (ICRU, 1993) でさらに展開された。ICRUは、これら実用量の実際の 適用に関して 3 編の報告書, Report 43, 47 および 66 (ICRU, 1988, 1992, 2001) を出版した。 ICRP Publication 74 (ICRP, 1996) と ICRU Report 57 (ICRU, 1998) において、限られた粒 子エネルギーの範囲で、光子、中性子および電子に対する実用量の換算係数の基準値を報告 し、防護量と実用量の換算係数の比較を提示した。

(230) 防護量は、身体またはファントムが位置する媒体中で、入射粒子に対して定義され るのに対し、実用量は、ファントムが位置するところのある一点で定義される。ICRP Publication 74 (ICRP, 1996) と ICRU Report 57 (ICRU, 1998) で勧告された光子の防護量と実 用量の換算係数の値は、カーマ近似を使って計算された。この近似は、特定の状況の下では吸 収線量の合理的な良い推定値を与える。カーマ近似では、相互作用で入射粒子から転移される エネルギーが、すべてその場に沈着すると仮定する。荷電粒子平衡が存在し、放射損失が無視 でき、そして解放される荷電粒子の結合エネルギーに比べて非荷電粒子の運動エネルギーが大 きい場合に、カーマの数値は吸収線量の数値に近づく。

(231) ICRP *Publication 74* (ICRP, 1996) と ICRU Report 57 (ICRU, 1998) において, 中性子の防護量と実用量は, 20 MeV までのエネルギーについては,様々なファントムに入射 する中性子に対してカーマ近似を用いて計算した。20 MeV を超える入射中性子については, 二次荷電粒子 (A ≤ 4) を追跡し,それらのエネルギー沈着を記録した。入射中性子がファン トム内で 20 MeV までのエネルギーに減速された場合は,その後の相互作用ではカーマ近似を 適用した。

(232) 光子と中性子に対し、本報告書で示された真空中に置かれた標準ファントムに対す る防護量の計算結果と ICRP *Publication 74* (ICRP, 1996) および ICRU Report 57 (ICRU, 1998) に示された計算結果との比較において、光子の防護量の比について観察された違い は、主として使用したファントムと組織加重係数の値の違いによるものである (4.1 節 (132)-(140) 項参照)。中性子に対する違いは、主として放射線加重係数の変更の結果である (4.3 節 88 5. 実用量と防護量に対する線量換算係数の関係

(174)項参照)。

(233) カーマ近似は、実用量の換算係数の計算に対し、すべてのエネルギーで一般に受け 入れられるわけではない。光子の場合、ICRU Report 39 の作成時点で、ファントムの外側の 空気の影響に関する情報が得られていた(Dimbylow と Francis, 1979, 1983, 1984; ICRU, 1985)。しかし、現在まで、空気媒体中での放射線防護の機器校正と測定では、光子に対する 実用量のカーマ近似を使った換算係数の勧告値が、幅広い分布の粒子エネルギーと方向に対し て許容し得る防護量の近似を与え、考慮された放射線場での粒子エネルギー範囲で、ほとんど の放射線防護の実務への実際の適用に適していると考えられてきた。

(234) 機器の測定や校正の全般にわたって,実用量の定義とそれに対応する実用量の計算 で考慮すべき事項については,さらに検討する必要がある。この作業は,現在,ICRUにより 再検討が進められている

(235) 実用量の基準換算係数値の比較(ICRP, 1996; ICRU, 1998)は、考慮した放射線場 における粒子のエネルギー範囲にわたるほとんどの放射線防護への適用について、実用量が、 幅広い粒子のエネルギー分布および方向分布に対し、防護量の予測指標としていかに役立つか を実証している。

5.1 防護量の変更

(236) この章では、本報告書で勧告された防護量の線量換算係数を、以前に勧告された実 用量の換算係数と比較する。いくつかのケースでは、本報告書の防護量の線量換算係数を、 ICRP Publication 74 (ICRP, 1996) と ICRU Report 57 (ICRU, 1998)の刊行以降に報告され た実用量の値とも比較している。これは主として、本報告書において考慮しているより高いエ ネルギーにまで比較を拡張するためである。ICRP Publication 74 (ICRP, 1996) と ICRU Report 57 (ICRU, 1998)からの引用ではない実用量の値を比較に使用している場合があるが、 それらを使用していることは、いかなる意味でも、それらの値を勧告値として推奨するもので はない。なぜなら、実用量の換算係数に関する既存の査読された文献の中から、それらの値を 選ぶ上で、広範にわたる評価プロセスを経ていないからである。

(237) 本章において比較のために使用した光子の実用量に対して勧告された換算係数のす べて、すなわち ICRP *Publication 74* (ICRP, 1996) と ICRU Report 57 (ICRU, 1998)の換算 係数は、吸収線量の計算にカーマ近似を用いているが、本報告書で勧告した防護量の換算係数 は、カーマ近似には基づいていないことに注意することが重要である。実用量の換算係数を計 算するためにカーマ近似を使用することは、それらの量の定義に厳密には適合しない (Ferrari と Pelliccioni, 1994a; Bartlett と Dietze, 2010)。しかし、ICRP *Publication 74* (ICRP, 1996) と ICRU Report 57 (ICRU, 1998)の光子の実用量に対する基準値との一貫性

5.2 光 子

(238) 図 5.1 では、光子の実効線量換算係数と H*(10)の換算係数(ICRP, 1996; ICRU, 1998)を比較している。その比は、カーマ近似で計算した H*(10)が、10 MeV までのすべて のエネルギーで、実効線量より保守側の高めの値であることを示している。10 MeV を超える エネルギーでの実効線量換算係数に関する評価を示すために、図 5.2 では、周辺線量当量の値 (Ferrari と Pelliccioni, 1994a; Pelliccioni, 2000)と実効線量換算係数を 10 GeV まで比較し た。いずれの量も、真空中に置かれた身体と球で計算されたもので、吸収線量は、二次電子を 追跡する方法で計算された。約 3 MeV より上では、周辺線量当量は徐々に実効線量を過小評 価するようになり、これは図 5.1 のようなカーマ近似を使用した場合には見られない結果であ る。3 MeV における実効線量からのこの乖離は、10 MeV までしかデータをプロットしていな い図 5.2 の上のグラフで拡大して見ることができる。同様の計算が個人線量当量についても行 われており(Veinot と Hertel, 2010)、基本的に同じ結果が得られている。

図 5.1 単ーエネルギー光子に対する光子の実効線量(本報告書)と荷電 粒子平衡下での周辺線量当量(ICRP, 1996)の比 AP:前方-後方, PA:後方-前方, LLAT:左側方, RLAT:右側方, ROT:回転, ISO:等方

図 5.2 単-エネルギー光子に対する実効線量(本報告書)と周辺線量当
 量(Ferrari と Pelliccioni, 1994a; Pelliccioni, 2000)の
 比 周辺線量当量を計算するため、二次粒子を追跡している(すなわち、カーマ近似を用いていない)ことに注意すべきである。図 5.1 との比較を容易にするために、上の図は 10 MeV までの値を示している。
 AP:前方-後方、PA:後方-前方、LLAT:左側方、RLAT:右側方、ROT:回転、ISO:等方

5.3 電 子

(239) 図 5.3 では、本報告書の電子の実効線量換算係数を、周辺線量当量換算係数 (ICRP, 1996; ICRU, 1998) と比較している (ICRP *Publication 74* と ICRU Report 57 では、 周辺線量当量は具体的に報告されていないが、方向性線量当量 *H*′(10,0) が報告されている。 ICRU 球をファントムとして使用した場合、これらの2つの量は数値的に等しい)。10 MeV ま

5.3 電 子 91

では、周辺線量当量は実効線量を過大評価していることが分かる。図5.4は、実効線量換算係数を、より高いエネルギーまで報告されている線量換算係数(Ferrari と Pelliccioni, 1994a) と比較している。100 MeV を超えると、比はすべて1よりも大きいことに注意されたい。したがって、周辺線量当量は、実効線量を保守的に推定するものではないことを示している。

図 5.3 単一エネルギー電子に対する実効線量(本報告書)と ICRP *Publication 74* (ICRP, 1996)に基づく周辺線量当量 *H**(10)の比 AP:前方-後方, PA:後方-前方, ISO:等方

図 5.4 単一エネルギー電子に対する実効線量(本報告書)と Ferrari と Pelliccioni (1994b) による周辺線量当量 H*(10)の比 AP: 前方 - 後方, PA:後方 - 前方, ISO:等方

ICRP Publication 116

5.4 中性子

(240) 図 5.5 では、200 MeV までのエネルギーの中性子による AP, PA, RLAT, LLAT, ISO および ROT 照射ジオメトリーにおける中性子実効線量換算係数を、H*(10)の 値と比較している(ICRP, 1996; ICRU, 1998)。実用量の換算係数は、3 MeV までは、すべて の照射ジオメトリーにおいて、実効線量より保守側の高めの値である。実用量の換算係数は、 3 MeV から 12 MeV の間では AP 照射ジオメトリーにおける実効線量を、わずかに過小評価 している。H*(10)の換算係数は、50 MeV において、AP と PA 照射ジオメトリーにおける 実効線量換算係数を過小評価し、75 MeV を超えると、すべての照射ジオメトリーにおける実 効線量換算係数を過小評価する。75 MeV から 200 MeV のエネルギー領域では、過小評価は 最大で1.5~1.8 倍に及び、200 MeV を超えると、これらの比はすべて減少する。

図 5.5 単-エネルギー中性子に対する実効線量(本報告書)と周辺線量 当量(ICRP, 1996)の比 AP:前方-後方, PA:後方-前方, LLAT:左側方, RLAT:右側方, ROT:回転, ISO:等方

(241) 図 5.6 では、AP, PA, RLAT, LLAT, ISO および ROT 照射ジオメトリーにおける中性子の実効線量換算係数を、個人線量当量の換算係数の基準値 H_{p, slab}(10,0) (ICRP, 1996; ICRU, 1998) と比較している。H_{p, slab}(10,0) は、4 MeV から 12 MeV で、AP 照射ジオメトリーにおける実効線量よりわずかに小さいことが分かる。

(242) より高いエネルギーについても、中性子の実効線量換算係数を Ferrari と
 Pelliccioni (1998)の周辺線量当量換算係数と比較した。今回勧告した防護量と H*(10)の換算係数の比を図 5.7 に示す。H*(10) による実効線量の過小評価の程度は、200 MeV を超え

図 5.6 単-エネルギー中性子に対する実効線量(本報告書)と個人線量 当量(ICRP, 1996)の比 AP:前方-後方, PA:後方-前方, LLAT:左側方, RLAT:右側方, ROT:回転, ISO:等方

図 5.7 単-エネルギー中性子に対する実効線量(本報告書)と周辺線量 当量(Ferrari と Pelliccioni, 1998)の比 AP:前方-後方, PA:後方-前方, LLAT:左側方, RLAT:右側方, ROT:回転, ISO: 等方

ると低下し、その後1GeVを上回ると増加し続け、10GeVにおいて、ISO照射ジオメトリ ー、AP照射ジオメトリーにおいて、実用量に対して防護量は、それぞれ、2.5倍と1.8倍に なる。

5.5 眼の水晶体の線量と実用量との比較

(243) 眼の水晶体の等価線量と実用量との比較は,放射線感受性の高いこの特定の組織の 等価線量を評価するために,どの実用量が最適であるかを議論するのに必要である。しかし, この議論は,本報告書の範囲を超えるものである。本報告書の作成時点で,既存の実用量の適 合性,校正手順,並びに実用量の測定と評価に使用できる線量計のための適切な校正用ファン トムに関する研究が進行中である。

(244) 眼の水晶体は頭部前面にあるため、この臓器線量は放射線の入射方向に強く依存 し、特に低エネルギーまたは中間エネルギーの放射線の場合、その傾向が顕著である。これに 対し、エネルギーが非常に高い放射線は、水晶体に到達する前に通過する物質中でのビルドア ップと比べれば、頭部での吸収が重要でなくなる。低エネルギーの放射線では、正面からの入 射 (AP) に最も注意を要する。通常、エリアモニタリングと個人モニタリングの量は、AP 被ばくに対しては、 $H^*(3) \ge H_p(3)$ の値はほぼ同じになる。しかし、他の放射線の入射方向 については、これは当てはまらない。他のジオメトリーでは、 $H_p(3) \ge H_p(0.07)$ を検討する ほうが適切かもしれない。しかし、適切な校正用ファントムでの $H_p(3) \ge H_p(0.07)$ のデータ は、現在まだ得られていない。

(245) 図 5.8 では、10 MeV までの光子エネルギーについて、眼の水晶体の等価線量を ICRP *Publication 51* (ICRP, 1987) において報告されたデータに基づく H^* (3) と比較してい る。光子と電子に対して、等価線量 (Sv) は吸収線量 (Gy) と数値的に同じであることに注 意すべきである。 H^* (3) は、ICRP *Publication 51* (ICRP, 1987) において明確には報告され なかったが、主軸上の深さ 3 mm における平行照射の線量は、 H^* (3) と同等である。 H^* (3) のデータは、カーマ近似を使って計算されたことに注意すべきである。 H^* (3) は、頭部に入 射する放射線のすべての方向に対して、このエネルギー範囲における眼の水晶体の等価線量を 保守的に推定する近似値であることが分かる。

(246) 図 5.9 では、10 MeV までの電子エネルギーについて、眼の水晶体の等価線量を ICRP *Publication 74* (ICRP, 1996; ICRU, 1998) の H'(3) と比較している。しかし、ファン トムの AP 被ばくに対しては、H'(3) は $H^*(3)$ と常に等しい。さらに、眼の水晶体の線量を、 高いエネルギーまで計算されている Ferrari と Pelliccioni (1994b) の $H^*(3)$ のデータと比較 した。AP 照射に対し、約 0.7 MeV より上の電子エネルギーでは、 $H^*(3)$ は眼の水晶体の線 量を保守的に高めの評価をしていることが分かる。約 70 MeV を超えると、 $H^*(3)$ は、PA と ISO 照射ジオメトリーのいずれに対しても、眼の水晶体の等価線量を過小評価している。 これは、PA と ISO 被ばくにおける頭部の眼の位置に比べて、ICRU 球ファントムの表面近く

図 5.8 光子に対する眼の水晶体の等価線量(本報告書)と ICRP *Publication 51* (ICRP, 1987)からのデータに基づ く H*(3)の比 AP:前方-後方, PA:後方-前方, LLAT: 左側方, RLAT:右側方, ROT:回転, ISO:等方

での線量ビルドアップが小さいためである[†]。したがって,*H**(3)は,AP 被ばくに対しての み,眼の水晶体の等価線量を適切に評価することができる。しかし,頭部ファントムでの

(訳注) H(3)の計算では、ICRU 球での透過厚が3mm しかない。一方、PA と ISO 照射ジオメ トリーの眼の水晶体等価線量では、頭部での眼の水晶体までの透過距離が長く、その分、 線量ビルドアップが大きくなるという意味で記述されていると思われる。 H_p(3) に対する正確なデータは、まだ得られていない。

5.6 結 論

(247) この章では, ICRP *Publication 103* (ICRP, 2007) の勧告に従って計算した実効線 量の換算係数を,実用量の勧告された換算係数 (ICRP, 1996; ICRU, 1998) と比較した。こ れらの比較から,次のことを導き出せる。すなわち,光子,中性子および電子の実用量 (ICRP, 1996; ICRU, 1998) は,幅広い粒子エネルギーと方向分布に対して,引き続き実効線 量の良い近似を与えており,考慮された放射線場での粒子エネルギーの範囲 (ICRP, 1996; ICRU, 1998) で,ほとんどの放射線防護の実務に実際に適用できる (ICRP, 1996; ICRU, 1998)。しかし,本報告書において考慮した高いエネルギーでは適用できない。

(248) これらの高いエネルギーにおける実用量については、1996年以降発表されている 少ないデータサンプルとの比較から、実用量と防護量の関係について更なる検討が必要である ことが明らかである。2010年に ICRU は、実用量の定義を再評価する作業に着手した。

5.7 参考文献

Bartlett, D. T., Dietze, G., 2010. ICRU operational quantities. Radiat. Prot. Dosim. 139, 475-476.

- Dimbylow, P. J., Francis, T. M., 1979. A Calculation of the Photon Depth-Dose Distributions in the ICRU Sphere for a Broad Parallel Beam – a Point Source and an Isotropic Field. National Radialogical Protection Board-R92. NRPB, London.
- Dimbylow, P. J., Francis, T. M., 1983. The effect of photon scatter and consequent electron build-up in air on the calculation of dose equivalent quantities in the ICRU sphere for photon energies from 0.662 to 10 MeV. *Phys. Med. Biol.* 28, 817–828.
- Dimbylow, P. J., Francis, T. M., 1984. The calculation of dose equivalent quantities in the ICRU sphere for photon energies from 0.01 to 10 MeV. *Radiat. Prot. Dosim.* 9, 49–53.
- Ferrari, A., Pelliccioni, M., 1994a. On ambient dose equivalent. J. Radiol. Prot. 14, 331-335.
- Ferrari, A., Pelliccioni, M., 1994b. Dose equivalents for monoenergetic electrons incident on the ICRU sphere. *Radiat. Prot. Dosim.* 55, 207–210.
- Ferrari, A., Pelliccioni, M., 1998. Fluence to effective dose conversion data and effective quality factors of high energy neutrons. *Radiat. Prot. Dosim.* 76, 215–224.
- ICRP, 1987. Data for use in protection against external radiation. ICRP Publication 51. Ann. ICRP 17 (2/3).
- ICRP, 1996. Conversion coefficients for use in radiological protection against external radiation. ICRP Publication 74. Ann. ICRP 26 (3/4).
- ICRP, 2007. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 37 (2-4).
- ICRU, 1985. Determination of Dose Equivalents Resulting from External Radiation Sources. ICRU Report 39. International Commission on Radiation Units and Measurements, Bethesda, MD.
- ICRU, 1988. Measurement of Dose Equivalents from External Radiation Sources. Part 2. ICRU Report 43. International Commission on Radiation Units and Measurements, Bethesda, MD.

- ICRU, 1992. Measurement of Dose Equivalents from External Photon and Electron Radiations. ICRU Report 47. International Commission on Radiation Units and Measurements, Bethesda, MD.
- ICRU, 1993. Quantities and Units in Radiation Protection Dosimetry. ICRU Report 51. International Commission on Radiation Units and Measurements, Bethesda, MD.
- ICRU, 1998. Conversion Coefficients for use in Radiological Protection Against External Radiation. ICRU Report 57. International Commission on Radiation Units and Measurements, Bethesda, MD.
- ICRU, 2001. Determination of Operational Dose Equivalent Quantities for Neutrons. ICRU Report 66. International Commission on Radiation Units and Measurements, Bethesda, MD.
- Pelliccioni, M., 2000. Overview of fluence-to-effective dose and fluence-to-ambient dose equivalent conversion coefficients for high energy radiation calculated using the FLUKA code. *Radiat. Prot. Dosim.* 88, 279–297.
- Veinot, K., Hertel, N., 2010. Personal dose equivalent conversion coefficients for photons to 1 GeV. *Radiat. Prot. Dosim.* 145, 28–35.

付属書 A 実効線量換算係数

(A1) この付属書は、考慮した特定の照射ジオメトリーごとに、光子、電子、陽電子、中 性子、ミューマイナス粒子とミュープラス粒子、パイマイナス中間子とパイプラス中間子、並 びにヘリウムイオンに対する実効線量換算係数の基準値を表にしている。これらの表は、本報 告書に添付した CD-ROM にも収載されている。

(A2) 考慮した特定の照射ジオメトリーは,前方 - 後方 (AP),後方 - 前方 (PA),左右側 方軸に沿った1方向の幅広い平行ビーム (LLAT と RLAT),そして回転 (ROT) および完全 な等方 (ISO)入射方向 (3.2 節参照) である。

(A3) 実効線量は、入射粒子フルエンスで規格化され、pSv・cm²の単位で与えられている。10 MeV までのエネルギーの光子については、自由空気中の空気カーマ K_a あたりの実効線量の換算係数(単位:Sv/Gy)も表にまとめた。この変換には、粒子フルエンスあたりの空気カーマの換算係数(Seltzer, 1993)を用いた。

(A4) 以下に続く表の数字は基準値であり、様々なモンテカルロ放射線輸送コードと組み 合わせた ICRP/ICRU 標準コンピュータファントム(3.1 節と 3.3 節参照)を用いて計算され た臓器線量換算係数から導き出された。実効線量のすべての基準値は、2007 年勧告(ICRP, 2007)の定義に従って与えられている。

A.1 参考文献

ICRP, 2007. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 37 (2-4).

Seltzer, S. M., 1993. Calculation of photon mass energy-transfer and mass energy-absorption coefficients. *Radiat. Res.* 136, 147–170.

表 A.1	光子 いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンスあたりの
	実効線量(単位:pSv·cm ²)

エネルギー	AP	PA	LLAT	RLAT	ROT	ISO
(MeV)	(前方 - 後方)	(後方 - 前方)	(左側方)	(右側方)	(回転)	(等方)
$\begin{array}{c} 0.01 \\ 0.015 \\ 0.02 \\ 0.03 \\ 0.04 \end{array}$	$\begin{array}{c} 0.0685 \\ 0.156 \\ 0.225 \\ 0.312 \\ 0.350 \end{array}$	$\begin{array}{c} 0.0184 \\ 0.0155 \\ 0.0261 \\ 0.0946 \\ 0.163 \end{array}$	$\begin{array}{c} 0.0189 \\ 0.0416 \\ 0.0654 \\ 0.109 \\ 0.138 \end{array}$	0.0182 0.0390 0.0573 0.0886 0.113	0.0337 0.0665 0.0988 0.159 0.199	0.0288 0.0560 0.0813 0.127 0.158
$\begin{array}{c} 0.05 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.1 \end{array}$	$\begin{array}{c} 0.369 \\ 0.389 \\ 0.411 \\ 0.443 \\ 0.518 \end{array}$	0.209 0.243 0.273 0.302 0.363	0.158 0.174 0.191 0.211 0.255	0.132 0.149 0.165 0.183 0.224	0.226 0.248 0.273 0.297 0.356	0.180 0.198 0.218 0.238 0.286
$\begin{array}{c} 0.15 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \end{array}$	$\begin{array}{c} 0.747 \\ 1.00 \\ 1.51 \\ 2.00 \\ 2.47 \end{array}$	$\begin{array}{c} 0.543 \\ 0.745 \\ 1.16 \\ 1.58 \\ 1.99 \end{array}$	$\begin{array}{c} 0.391 \\ 0.546 \\ 0.880 \\ 1.23 \\ 1.57 \end{array}$	$\begin{array}{c} 0.346 \\ 0.489 \\ 0.797 \\ 1.12 \\ 1.45 \end{array}$	$\begin{array}{c} 0.529 \\ 0.722 \\ 1.12 \\ 1.53 \\ 1.92 \end{array}$	0.429 0.589 0.932 1.28 1.63
$\begin{array}{c} 0.511 \\ 0.6 \\ 0.662 \\ 0.8 \\ 1.0 \end{array}$	2.52 2.91 3.17 3.73 4.49	2.03 2.39 2.63 3.14 3.84	$ 1.61 \\ 1.91 \\ 2.12 \\ 2.57 \\ 3.21 $	$ \begin{array}{r} 1.48 \\ 1.77 \\ 1.97 \\ 2.40 \\ 3.02 \\ \end{array} $	1.97 2.31 2.54 3.04 3.73	$ 1.66 \\ 1.97 \\ 2.17 \\ 2.62 \\ 3.25 $
$ \begin{array}{r} 1.117 \\ 1.33 \\ 1.5 \\ 2.0 \\ 3.0 \\ \end{array} $	$\begin{array}{c} 4.90 \\ 5.60 \\ 6.12 \\ 7.48 \\ 9.75 \end{array}$	4.23 4.90 5.41 6.77 9.13	3.56 4.18 4.66 5.94 8.18	3.36 3.97 4.43 5.68 7.88	$\begin{array}{r} 4.10 \\ 4.75 \\ 5.24 \\ 6.56 \\ 8.85 \end{array}$	3.60 4.21 4.67 5.91 8.08
$\begin{array}{c} 4.0 \\ 5.0 \\ 6.0 \\ 6.129 \\ 8.0 \end{array}$	11.7 13.4 15.0 15.1 17.8	11.2 13.2 15.0 15.2 18.6	10.2 12.0 13.7 13.9 16.9	$9.84 \\ 11.6 \\ 13.3 \\ 13.5 \\ 16.6$	$ \begin{array}{c} 10.9 \\ 12.7 \\ 14.4 \\ 14.6 \\ 17.6 \end{array} $	$ \begin{array}{c} 10.0 \\ 11.8 \\ 13.5 \\ 13.7 \\ 16.6 \end{array} $
$ \begin{array}{r} 10.0 \\ 15.0 \\ 20.0 \\ 30.0 \\ 40.0 \\ \end{array} $	20.5 26.1 30.8 37.9 43.2	22.1 30.4 38.2 51.3 61.8	20.0 27.3 34.4 47.4 59.3	$ 19.7 \\ 27.1 \\ 34.3 \\ 48.0 \\ 60.9 $	$20.7 \\ 27.7 \\ 34.4 \\ 46.0 \\ 56.0$	$ 19.7 \\ 26.8 \\ 33.8 \\ 46.1 \\ 56.9 $
50.0 60.0 80.0 100 150	$\begin{array}{c} 47.1 \\ 50.1 \\ 54.5 \\ 57.8 \\ 63.2 \end{array}$	70.1 76.5 86.2 92.7 103	69.7 78.6 92.9 103 122	72.3 82.1 98.1 110 130	64.3 71.1 81.8 89.5 102	66.1 74.1 87.1 97.5 116
200 300 400 500 600	67.2 72.3 75.4 77.4 78.7	110 118 123 127 130	134 149 159 166 171	144 161 173 181 187	110 121 128 132 136	129 147 159 167 174
800 1,000 1,500 2,000 3,000	80.4 81.6 83.7 85.0 86.6	134 137 141 144 147	179 184 194 200 208	195 202 213 220 230	$ \begin{array}{c} 141 \\ 145 \\ 151 \\ 156 \\ 161 \end{array} $	185 193 208 218 232
4,000 5,000 6,000 8,000 10,000	87.8 88.6 89.1 89.9 90.4	149 151 152 153 154	213 217 221 226 230	236 241 245 251 256	164 167 169 172 174	242 251 258 268 276

表 A.2	光子	いろいろなジオメトリーで入射する単一エネルギー粒子に対する自由空気中の空気カーマ
	あたり)の実効線量(単位:Sv/Gy)

エネルギー	AP	PA	LLAT	RLAT	ROT	ISO
(MeV)	(前方 - 後方)	(後古 - 前古)	(左側方)	(右側右)	(回転)	(笑古)
0.01	0.0090	0.0024	0.0025	0.0024	0.0044	0.0038
0.015	0.0486	0.0048	0.0130	0.0122	0.0207	0.0175
0.02	0.131	0.0151	0.0379	0.0332	0.0572	0.0471
0.03	0.422	0.128	0.148	0.120	0.215	0.171
0.04	0.798	0.371	0.315	0.258	0.455	0.360
$\begin{array}{c} 0.05 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.1 \end{array}$	1.12 1.33 1.42 1.43 1.39	0.638 0.832 0.940 0.980 0.975	$\begin{array}{c} 0.480 \\ 0.595 \\ 0.659 \\ 0.684 \\ 0.685 \end{array}$	$\begin{array}{c} 0.402 \\ 0.508 \\ 0.569 \\ 0.594 \\ 0.601 \end{array}$	0.688 0.850 0.939 0.964 0.954	0.547 0.679 0.751 0.773 0.768
$\begin{array}{c} 0.15 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \end{array}$	1.25	0.906	0.651	0.577	0.882	0.715
	1.17	0.869	0.637	0.570	0.843	0.687
	1.09	0.840	0.637	0.577	0.814	0.674
	1.06	0.834	0.648	0.592	0.807	0.678
	1.04	0.836	0.660	0.608	0.808	0.684
$\begin{array}{c} 0.511 \\ 0.6 \\ 0.662 \\ 0.8 \\ 1.0 \end{array}$	1.03 1.02 1.02 1.01 1.00	0.836 0.839 0.841 0.848 0.857	0.661 0.673 0.680 0.695 0.716	$\begin{array}{c} 0.610 \\ 0.623 \\ 0.632 \\ 0.649 \\ 0.673 \end{array}$	0.808 0.811 0.814 0.822 0.831	0.685 0.692 0.697 0.708 0.725
$ \begin{array}{r} 1.117 \\ 1.33 \\ 1.5 \\ 2.0 \\ 3.0 \\ \end{array} $	0.999	0.863	0.726	0.686	0.837	0.734
	0.996	0.872	0.745	0.706	0.846	0.749
	0.996	0.880	0.758	0.721	0.853	0.760
	0.990	0.895	0.785	0.752	0.868	0.782
	0.977	0.915	0.820	0.790	0.887	0.810
$\begin{array}{c} 4.0 \\ 5.0 \\ 6.0 \\ 6.129 \\ 8.0 \end{array}$	$\begin{array}{c} 0.960 \\ 0.943 \\ 0.924 \\ 0.922 \\ 0.886 \end{array}$	0.924 0.928 0.928 0.928 0.928 0.923	0.837 0.844 0.846 0.845 0.841	0.810 0.821 0.824 0.824 0.824 0.823	0.894 0.894 0.890 0.889 0.889 0.875	0.824 0.832 0.832 0.832 0.832 0.826
$10.0 \\ 15.0 \\ 20.0$	0.848	0.914	0.830	0.815	0.856	0.814
	0.756	0.881	0.793	0.785	0.804	0.779
	0.679	0.843	0.758	0.757	0.759	0.745

102 付属書 A 実効線量換算係数

エネルギー	AP	PA	ISO
(MeV)	(前方 - 後方)	(後方 - 前方)	(等方)
$\begin{array}{c} 0.01 \\ 0.015 \\ 0.02 \\ 0.03 \\ 0.04 \end{array}$	$\begin{array}{c} 0.0269 \\ 0.0404 \\ 0.0539 \\ 0.0810 \\ 0.108 \end{array}$	$\begin{array}{c} 0.0268 \\ 0.0402 \\ 0.0535 \\ 0.0801 \\ 0.107 \end{array}$	0.0188 0.0283 0.0377 0.0567 0.0567
0.05	0.135	0.133	$\begin{array}{c} 0.0948\\ 0.114\\ 0.152\\ 0.191\\ 0.291 \end{array}$
0.06	0.163	0.160	
0.08	0.218	0.213	
0.1	0.275	0.267	
0.15	0.418	0.399	
$0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6$	$\begin{array}{c} 0.569 \\ 0.889 \\ 1.24 \\ 1.63 \\ 2.05 \end{array}$	$\begin{array}{c} 0.530 \\ 0.787 \\ 1.04 \\ 1.28 \\ 1.50 \end{array}$	$\begin{array}{c} 0.393 \\ 0.606 \\ 0.832 \\ 1.08 \\ 1.35 \end{array}$
0.8 1.0 1.5 2.0 3.0	$\begin{array}{r} 4.04 \\ 7.10 \\ 15.0 \\ 22.4 \\ 36.1 \end{array}$	1.68 1.68 1.62 1.62 1.95	$ 1.97 \\ 2.76 \\ 4.96 \\ 7.24 \\ 11.9 $
4.0	48.2	2.62	$ \begin{array}{r} 16.4 \\ 21.0 \\ 25.5 \\ 35.5 \\ 46.7 \\ \end{array} $
5.0	59.3	3.63	
6.0	70.6	5.04	
8.0	97.9	9.46	
10.0	125	18.3	
$ 15.0 \\ 20.0 \\ 30.0 \\ 40.0 \\ 50.0 $	188 236 302 329 337	53.1 104 220 297 331	$76.9 \\ 106 \\ 164 \\ 212 \\ 249$
60.0	341	344	275
80.0	346	358	309
100	349	366	331
150	355	379	363
200	359	388	383
300	365	399	410
400	369	408	430
500	372	414	445
600	375	419	457
800	379	428	478
1,000	382	434	495
1,500	387	446	525
2,000	391	455	549
3,000	397	468	583
4,000	401	477	608
5.000	405	484	628
6.000	407	490	646
8.000	411	499	675
10.000	414	507	699

表 A.3 電子 いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンスあたりの 実効線量(単位:pSv·cm²)

エネルギー	AP	PA	ISO
(MeV)	(前方 - 後方)	(後方 - 前方)	(等方)
0.01 0.015 0.02 0.03 0.04	3.28 3.29 3.30 3.33 2.26	$ \begin{array}{r} 1.62 \\ 1.64 \\ 1.65 \\ 1.68 \\ 1.71 \\ \end{array} $	1.39 1.40 1.41 1.43
0.04 0.05 0.06 0.08 0.1 0.15	3.39 3.42 3.47 3.53 3.67	$ \begin{array}{c} 1.71 \\ 1.73 \\ 1.76 \\ 1.82 \\ 1.87 \\ 2.01 \end{array} $	$ \begin{array}{c} 1.43\\ 1.47\\ 1.49\\ 1.53\\ 1.57\\ 1.67 \end{array} $
0.2	3.84	2.14	$ \begin{array}{r} 1.77 \\ 1.98 \\ 2.21 \\ 2.45 \\ 2.72 \\ \end{array} $
0.3	4.16	2.40	
0.4	4.52	2.65	
0.5	4.90	2.90	
0.6	5.36	3.12	
0.8 1.0 1.5 2.0 3.0	7.41 10.5 18.3 25.7 39.1	3.32 3.37 3.44 3.59 4 19	3.38 4.20 6.42 8.70
4.0 5.0 6.0 8.0 10.0	51.0 61.7 72.9 99.0	5.11 6.31 8.03 14.0 23.6	18.0 22.4 26.9 36.7 47.6
15.0 20.0 30.0 40.0 50.0	183 184 229 294 320 327	59.0 111 221 291 321	75.5 104 162 209 243
60.0	333	334	268
80.0	339	349	302
100	342	357	323
150	349	371	356
200	354	381	377
300	362	393	405
400	366	402	425
500	369	409	440
600	372	415	453
800	376	424	474
1,000	379	430	491
1,500	385	443	522
2,000	389	451	545
3,000	395	465	580
4,000	399	473	605
5,000	402	480	627
6,000	404	486	645
8,000	408	495	674
10,000	411	503	699

表 A.4 陽電子 いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンスあたりの 実効線量(単位:pSv·cm²)

104 付属書 A 実効線量換算係数

表 A.5 中性子 いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンスあたりの 実効線量(単位:pSv·cm²)

エネルギー	AP	PA	LLAT	RLAT	ROT	ISO
(MeV)	(前方 - 後方)	(後方 - 前方)	(左側方)	(右側方)	(回転)	(等方)
1.0E-9	3.09	1.85	1.04	0.893	1.70	1.29
1.0E-8	3.55	2.11	1.15	0.978	2.03	1.56
2.5E-8	4.00	2.44	1.32	1.12	2.31	1.76
1.0E-7	5.20	3.25	1.70	1.42	2.98	2.26
2.0E-7	5.87	3.72	1.94	1.63	3.36	2.54
5.0E-7 1.0E-6 2.0E-6 5.0E-6 1.0E-5	6.59 7.03 7.39 7.71 7.82	$\begin{array}{r} 4.33 \\ 4.73 \\ 5.02 \\ 5.30 \\ 5.44 \end{array}$	$2.21 \\ 2.40 \\ 2.52 \\ 2.64 \\ 2.65$	1.86 2.02 2.11 2.21 2.24	3.86 4.17 4.40 4.59 4.68	2.92 3.15 3.32 3.47 3.52
2.0E-5 5.0E-5 1.0E-4 2.0E-4 5.0E-4	7.84 7.82 7.79 7.73 7.54	$5.51 \\ 5.55 \\ 5.57 \\ 5.59 \\ 5.60$	2.68 2.66 2.65 2.66 2.62	2.26 2.24 2.23 2.24 2.21	$\begin{array}{r} 4.72 \\ 4.73 \\ 4.72 \\ 4.67 \\ 4.60 \end{array}$	3.54 3.55 3.54 3.52 3.47
$\begin{array}{c} 0.001 \\ 0.002 \\ 0.005 \\ 0.01 \\ 0.02 \end{array}$	7.54 7.61 7.97 9.11 12.2	5.60 5.62 5.95 6.81 8.93	$2.61 \\ 2.60 \\ 2.74 \\ 3.13 \\ 4.21$	2.21 2.20 2.33 2.67 3.60	$\begin{array}{c} 4.58 \\ 4.61 \\ 4.86 \\ 5.57 \\ 7.41 \end{array}$	3.46 3.48 3.66 4.19 5.61
$\begin{array}{c} 0.03 \\ 0.05 \\ 0.07 \\ 0.1 \\ 0.15 \end{array}$	$ 15.7 \\ 23.0 \\ 30.6 \\ 41.9 \\ 60.6 $	11.2 15.7 20.0 25.9 34.9	5.40 7.91 10.5 14.4 20.8	$\begin{array}{r} 4.62 \\ 6.78 \\ 8.95 \\ 12.3 \\ 17.9 \end{array}$	$9.46 \\13.7 \\18.0 \\24.3 \\34.7$	$7.18 \\10.4 \\13.7 \\18.6 \\26.6$
$0.2 \\ 0.3 \\ 0.5 \\ 0.7 \\ 0.9$	78.8	43.1	27.2	23.4	44.7	34.4
	114	58.1	39.7	34.2	63.8	49.4
	177	85.9	63.7	54.4	99.1	77.1
	232	112	85.5	72.6	131	102
	279	136	105	89.3	160	126
$ \begin{array}{r} 1.0 \\ 1.2 \\ 1.5 \\ 2.0 \\ 3.0 \\ \end{array} $	301	148	115	97.4	174	137
	330	167	130	110	193	153
	365	195	150	128	219	174
	407	235	179	153	254	203
	458	292	221	192	301	244
$4.0 \\ 5.0 \\ 6.0 \\ 7.0 \\ 8.0$	483	330	249	220	331	271
	494	354	269	240	351	290
	498	371	284	255	365	303
	499	383	295	267	374	313
	499	392	303	276	381	321
9.0	500	398	310	284	386	327
10.0	500	404	316	290	390	332
12.0	499	412	325	301	395	339
14.0	495	417	333	310	398	344
15.0	493	419	336	313	398	346
16.0 18.0 20.0 21.0 30.0	490 484 477 474 453	420 422 423 423 422	338 343 347 348 360	317 323 328 330 345	399 399 398 398 398 395	347 350 352 353 358
50.0	433	428	380	370	395	371
75.0	420	439	399	392	402	387
100	402	444	409	404	406	397
130	382	446	416	413	411	407
150	373	446	420	418	414	412

エネルギー	AP	PA	LLAT	RLAT	ROT	ISO
(MeV)	(前方 - 後方)	(後方 - 前方)	(左側方)	(右側方)	(回転)	(等方)
180	363	447	425	425	418	421
200	359	448	427	429	422	426
300	363	464	441	451	443	455
400	389	496	472	483	472	488
500	422	533	510	523	503	521
600	457	569	547	563	532	553
700	486	599	579	597	558	580
800	508	623	603	620	580	604
900	524	640	621	638	598	624
1,000	537	654	635	651	614	642
2,000	612	740	730	747	718	767
5,000	716	924	963	979	906	1.01E+3
10,000	933	1.17E+3	1.23E+3	1.26E+3	1.14E+3	1.32E+3

* 1.01E+3は1.01×10³を示す。

表 A.6	陽子 いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンスあたりの
	実効線量(単位:pSv·cm ²)

エネルギー	AP	PA	LLAT	RLAT	ROT	ISO
(MeV)	(前方 - 後方)	(後方 - 前方)	(左側方)	(右側方)	(回転)	(等方)
$ \begin{array}{r} 1.0 \\ 1.5 \\ 2.0 \\ 3.0 \\ 4.0 \\ \end{array} $	5.46 8.20 10.9 16.4 21.9	5.47 8.21 10.9 16.4 21.9	2.814.215.618.4311.2	2.81 4.20 5.62 8.41 11.2	4.50 6.75 8.98 13.4 17.8	3.52 5.28 7.02 10.5 13.9
5.0	27.3	27.3	14.0	14.0	22.1	17.3
6.0	32.8	32.8	16.8	16.8	26.3	20.5
8.0	43.7	43.7	22.4	22.4	34.5	26.8
10.0	54.9	54.6	28.1	28.1	50.1	45.8
15.0	189	56.1	50.7	48.9	93.7	80.1
$20.0 \\ 30.0 \\ 40.0 \\ 50.0 \\ 60.0$	428 750 1.02E+3 1.18E+3 1.48E+3	$\begin{array}{r} 43.6\\ 36.1\\ 45.5\\ 71.5\\ 156\end{array}$	82.8 180 290 379 500	78.8 172 278 372 447	165 296 422 532 687	136 249 358 451 551
80.0	2.16E+3	560	799	602	1.09E+3	837
100	2.51E+3	1.19E+3	994	818	1.44E+3	1.13E+3
150	2.38E+3	2.82E+3	1.64E+3	1.46E+3	2.16E+3	1.79E+3
200	1.77E+3	1.93E+3	2.15E+3	2.18E+3	1.96E+3	1.84E+3
300	1.38E+3	1.45E+3	1.44E+3	1.45E+3	1.44E+3	1.42E+3
400 500 600 800 1,000	1.23E+3 1.15E+3 1.16E+3 1.11E+3 1.09E+3	1.30E+3 1.24E+3 1.23E+3 1.23E+3 1.23E+3 1.23E+3	1.27E+3 1.21E+3 1.20E+3 1.19E+3 1.18E+3	1.28E+3 1.21E+3 1.20E+3 1.20E+3 1.20E+3 1.20E+3	1.28E+3 1.22E+3 1.22E+3 1.20E+3 1.19E+3	1.25E+3 1.18E+3 1.17E+3 1.17E+3 1.17E+3 1.15E+3
1,500	1.15E+3	1.25E+3	1.21E+3	$\begin{array}{c} 1.23E+3\\ 1.25E+3\\ 1.32E+3\\ 1.33E+3\\ 1.41E+3 \end{array}$	1.23E+3	1.21E+3
2,000	1.12E+3	1.28E+3	1.25E+3		1.23E+3	1.22E+3
3,000	1.23E+3	1.34E+3	1.32E+3		1.30E+3	1.31E+3
4,000	1.27E+3	1.40E+3	1.31E+3		1.29E+3	1.40E+3
5,000	1.23E+3	1.45E+3	1.39E+3		1.35E+3	1.43E+3
6,000	1.37E+3	1.53E+3	1.44E+3	1.45E+3	1.41E+3	1.57E+3
8,000	1.45E+3	1.65E+3	1.56E+3	1.59E+3	1.49E+3	1.71E+3
10,000	1.41E+3	1.74E+3	1.63E+3	1.67E+3	1.56E+3	1.78E+3

* 1.02E+3は1.02×10³を示す。

エネルギー	AP (****)	PA (後本	ISO (禁士)
(MeV)	(則力一夜力)	(夜方一則方)	(守力)
1.0	180	75.2	79.5
2.0	184	78.3	80.9
3.0	188	81.4	83.7
4.0	193	84.8	87.1
5.0	205	87.7	91.5
6.0	242	86.7	98.1
8.0	293	86.8	113
10.0	332	88.6	127
15.0	414	100	161
20.0	465	122	191
30.0	657	251	275
40.0	735	457	363
50.0	755	703	446
60.0	628	115	496
80.0	431	485	498
100	382	402	432
150	340	343	222
300	319	325	321
400	220	321	221
500	320	324	321
600	325	326	326
800	327	332	331
1,000	333	337	337
1.500	331	338	338
2,000	333	341	341
3,000	336	344	344
4,000	337	345	346
5,000	337	346	347
6,000	337	346	347
8,000	337	347	348
10,000	338	347	348

表 A.7 ミューマイナス粒子 いろいろなジオメトリーで入射する単一エネルギー粒子に対する フルエンスあたりの実効線量(単位:pSv·cm²)
エネルギー	AP	PA	ISO
(MeV)	(前方 - 後方)	(後方 - 前方)	(等方)
$ \begin{array}{r} 1.0 \\ 1.5 \\ 2.0 \\ 3.0 \\ 4.0 \\ \end{array} $	194	82.6	85.2
	196	84.1	86.2
	198	85.7	87.5
	202	88.9	90.3
	207	92.1	93.6
5.0	216	94.3	97.7
6.0	251	92.5	103
8.0	300	92.8	117
10.0	340	94.8	132
15.0	425	108	167
20.0	481	133	199
30.0	674	265	284
40.0	751	473	373
50.0	768	721	456
60.0	635	787	506
80.0	431	483	502
100	381	399	432
150	339	345	354
200	326	328	332
300	318	320	320
400	319	321	320
500	320	323	322
600	322	325	324
800	325	330	329
1,000	327	333	333
1,500	331	339	338
2,000	333	341	341
3,000	336	344	344
4,000	337	345	346
5,000	337	346	347
6,000	337	346	347
8,000	337	347	348
10,000	339	347	348

表 A.8 ミュープラス粒子 いろいろなジオメトリーで入射する単一エネルギー粒子に対する フルエンスあたりの実効線量(単位:pSv·cm²)

エネルギー (MeV)	AP (前方 - 後方)	PA (後方 - 前方)	ISO (等方)
1.0 1.5 2.0 3.0 4.0	406 422 433 458 401	194 201 210 225 232	176 189 198 215 222
$ \begin{array}{c} 4.0 \\ 5.0 \\ 6.0 \\ 8.0 \\ 10.0 \\ 15.0 \\ \end{array} $	528 673 965 1.09E + 3 1.25E + 2	233 237 208 181 178	252 251 271 317 361 420
20.0 30.0 40.0 50.0	1.23E + 3 $1.28E + 3$ $1.77E + 3$ $1.92E + 3$ $1.93E + 3$ $1.93E + 2$	$ \begin{array}{c} 197 \\ 244 \\ 547 \\ 1.02E + 3 \\ 1.70E + 3 \\ 1.00E + 2 \end{array} $	508 676 868 1.02E+3 1.15E+2
80.0 100 150 200	1.14E + 3 995 927 902 848	1.31E+3 991 889 871 843	1.15E + 3 $1.15E + 3$ $1.03E + 3$ 857 815 704
400 500 600 800	844 869 901 947 977	850 880 917 976 1 02E+3	807 838 875 935 979
1,500 2,000 3,000 4,000 5,000	1.03E + 3 1.05E + 3 1.03E + 3 1.03E + 3 1.06E + 3	1.08E+3 1.12E+3 1.11E+3 1.13E+3 1.18E+3	1.05E+3 1.09E+3 1.11E+3 1.15E+3 1.20E+3
6,000 8,000 10,000 15,000 20,000	$1.09E + 3 \\ 1.14E + 3 \\ 1.17E + 3 \\ 1.21E + 3 \\ 1.24E + 3 \\ 1.24$	1.22E+31.29E+31.34E+31.41E+31.47E+3	1.26E+31.36E+31.43E+31.55E+31.64E+3
$\begin{array}{c} 30,000\\ 40,000\\ 50,000\\ 60,000\\ 80,000\end{array}$	$\begin{array}{c} 1.30\mathrm{E}+3\\ 1.35\mathrm{E}+3\\ 1.39\mathrm{E}+3\\ 1.42\mathrm{E}+3\\ 1.48\mathrm{E}+3\end{array}$	1.56E+31.63E+31.70E+31.75E+31.86E+3	1.79E+3 1.91E+3 2.02E+3 2.11E+3 2.29E+3
100,000 150,000 200,000	1.54E+3 1.67E+3 1.78E+3	1.95E+3 2.15E+3 2.33E+3	2.46E+3 2.80E+3 3.04E+3

表 A.9 パイマイナス中間子 いろいろなジオメトリーで入射する単一エネルギー粒子に対する フルエンスあたりの実効線量(単位:pSv·cm²)

* 1.09E+3は1.09×10³を示す。

エネルギー	AP	PA	ISO
(MeV)	(前方 - 後方)	(後方 – 前方)	(等方)
(1010 V)		(12)3 114/3/	(3)3)
1.0	314	121	151
1.5	324	125	160
2.0	340	133	168
3.0	379	151	183
4.0	429	170	198
5.0	489	183	216
6.0	540	185	233
8.0	717	177	265
10.0	810	170	205
15.0	1 000	201	367
15.0	1,000	201	307
20.0	1.10E + 3	247	439
30.0	1.52E + 3	494	602
40.0	1.75E + 3	906	787
50.0	1.83E+3	1.48E + 3	953
60.0	1.66E + 3	1.82E + 3	1.09E + 3
80.0	1.22E + 3	$1.38E \pm 3$	$1.16E \pm 3$
100	1 13E + 3	1.12E+3	1 10E + 3
150	1.22E+3	1.15E+3	1.05E + 3
200	1.25E+3	1.23F + 3	1.08E + 3
300	1.202 + 0 1.07F + 3	1.10F + 3	1.02F + 3
400	1.012+0	1.101 + 0	1.021 + 5
400	969	998	953
500	943	970	930
600	952	980	938
800	999	1.04E + 3	993
1,000	1.04E + 3	1.09E + 3	1.05E + 3
1.500	1.10E + 3	1.16E + 3	1.13E + 3
2,000	1.10E + 3	1.19E + 3	1.16E + 3
3 000	$1.06E \pm 3$	$1.16E \pm 3$	$1.16E \pm 3$
4 000	$1.06E \pm 3$	1.16E + 3	1.18E + 3
5,000	1.00E+0 1.07E+3	1.20E+3	1.23E+3
6,000	1 105 + 2	1.945 + 2	1, 2017 + 0
6,000	1.10E+3	1.24E+3	1.28E+3
8,000	1.14E+3	1.31E+3	1.3/E+3
10,000	1.17E+3	1.35E+3	1.43E + 3
15,000	1.22E + 3	1.42E + 3	1.55E + 3
20,000	1.25E+3	1.48E + 3	1.64E + 3
30,000	1.30E + 3	1.57E + 3	1.79E + 3
40,000	1.34E + 3	1.64E + 3	1.90E + 3
50,000	1.38E + 3	1.70E + 3	2.01E + 3
60,000	1.42E + 3	1.75E + 3	2.10E + 3
80,000	1.48E + 3	1.84E + 3	2.27E + 3
100,000	1.54F+3	$1.04F \pm 3$	$2.42E \pm 3$
150,000	1.54E+5 1.67E±2	1.74E + 3 $2.14E \pm 3$	2.42E + 3 $2.76E \pm 3$
200,000	1.0/ET3 1 79E+3	2.14E⊤3 2.22E⊥2	$2.70E \pm 3$ $2.07E \pm 3$
200,000	1.7012+0	4.0010 0	0.0110 1 0

表 A.10 パイプラス中間子 いろいろなジオメトリーで入射する単一エネルギー粒子に対する フルエンスあたりの実効線量(単位:pSv·cm²)

* 1.10E+3は1.10×10³を示す。

 エネルギー (MeV/u)	AP (前方 - 後方)	PA (後方 - 前方)	ISO (等方)
1.0	219	219	141
2.0	438	438	281
3.0	656	657	419
5.0	1.09E+3	1.09E+3	689
10.0	2.19E+3	2.19E+3	1.82E + 3
14.0	4.61E+3	2.56E+3	2.81E+3
20.0	1.72E+4	1.74E+3	5.46E + 3
30.0	3.01E+4	1.44E+3	9.86E + 3
50.0	4.75E+4	2.88E+3	1.78E + 4
75.0	8.05E+4	1.75E+4	3.00 ± 4
100	1.01E+5	4.84E+4	4.55E + 4
150	9.25E+4	1.10E+5	6.95E + 4
200	6.74E+4	7.29E+4	7.01E + 4
300	5.14E+4	5.33E+4	5.25E + 4
500	4.27E + 4	4.49E+4	4.27E + 4
700	4.11E+4	4.60E+4	4.19E + 4
1,000	4.00E+4	4.47E+4	4.09 E + 4
2,000	4.02E+4	4.80E+4	4.31E + 4
3,000	4.08E+4	5.01E+4	4.50 E + 4
5,000	4.12E+4	5.17E+4	4.76E+4
10,000	4.56E+4	6.26E+4	5.73E + 4
20,000	5.12E+4	6.10E+4	7.10E + 4
50,000	6.12E+4	8.14E+4	9.67E + 4
100,000	7.14E+4	1.01E+5	1.24E + 5

表A.11 ヘリウムイオン いろいろなジオメトリーで入射する単一エネルギー粒子に対する フルエンスあたりの実効線量(単位:pSv·cm²)

* 1.09E+3は1.09×10³を示す。

付属書 B 光子に対する臓器吸収線量換算係数

(B1) この付属書は、以下の臓器について、考慮した特定の照射ジオメトリーにおける光 子に対する臓器吸収線量換算係数の基準値を表にしている。それらは、赤色(活性)骨髄、結 腸、肺、胃、乳房、卵巣、精巣、膀胱壁(UB-wall)、食道、肝臓、甲状腺、骨表面(骨内膜)、 脳、唾液腺、皮膚および残りの組織である。データは、男性ファントムと女性ファントムそれ ぞれについて与えられている。眼の水晶体のデータは、付属書 F にある。本報告書に添付し ている CD-ROM には、これらの線量換算係数が、個々の残りの組織の線量換算係数とともに ASCII フォーマットの表で収載されている。個々の残りの組織には、副腎、胸郭外領域、胆 嚢、心臓、腎臓、リンパ節、筋肉、口腔粘膜、膵臓、前立腺、小腸、脾臓、胸腺、子宮/子宮 頸部が含まれる。

(**B2**) 考慮した特定の照射ジオメトリーは,前方 - 後方 (AP),後方 - 前方 (PA),左右側 方軸に沿った幅広い平行ビーム (LLAT と RLAT),そして回転 (ROT) および等方 (ISO) 方 向 (3.2 節参照) である。

(B3) 臓器吸収線量は、粒子フルエンスで規格化され、pGy・cm²の単位で与えられてい る。以下に続く表の数字は基準値であり、ICRP/ICRU標準ファントムと様々なモンテカルロ 放射線輸送コード(3.1節と3.3節参照)を使って計算された線量換算係数に、平均化および 平滑化手法(付属書 I 参照)を適用して導き出された。

エネルギー (MeV)	AP (前方 - 後方)	PA (後方 - 前方)	LLAT (左側方)	RLAT (右側方)	ROT (回転)	ISO (等方)
$\begin{array}{c} 0.01 \\ 0.015 \\ 0.02 \\ 0.03 \\ 0.04 \end{array}$			9.0E-5 0.0060 0.0901 0.180	2.8E-8 9.0E-5 0.0061 0.0919 0.183		$\begin{array}{c} 9.8 \mathrm{E} - 7 \\ 2.5 \mathrm{E} - 4 \\ 0.0063 \\ 0.0714 \\ 0.143 \end{array}$
$\begin{array}{c} 0.05 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.1 \end{array}$	$\begin{array}{c} 0.152 \\ 0.185 \\ 0.199 \\ 0.229 \\ 0.284 \end{array}$	$\begin{array}{c} 0.191 \\ 0.219 \\ 0.243 \\ 0.268 \\ 0.329 \end{array}$	0.226 0.257 0.288 0.311 0.376	$\begin{array}{c} 0.231 \\ 0.261 \\ 0.291 \\ 0.315 \\ 0.381 \end{array}$	$\begin{array}{c} 0.207 \\ 0.235 \\ 0.262 \\ 0.287 \\ 0.347 \end{array}$	0.183 0.209 0.236 0.257 0.311
$\begin{array}{c} 0.15 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \end{array}$	$\begin{array}{c} 0.444 \\ 0.628 \\ 1.01 \\ 1.41 \\ 1.81 \end{array}$	$\begin{array}{c} 0.506 \\ 0.702 \\ 1.12 \\ 1.54 \\ 1.95 \end{array}$	$\begin{array}{c} 0.574 \\ 0.796 \\ 1.25 \\ 1.71 \\ 2.16 \end{array}$	$\begin{array}{c} 0.580 \\ 0.803 \\ 1.26 \\ 1.72 \\ 2.16 \end{array}$	$\begin{array}{c} 0.538 \\ 0.745 \\ 1.18 \\ 1.62 \\ 2.06 \end{array}$	$\begin{array}{c} 0.481 \\ 0.671 \\ 1.07 \\ 1.48 \\ 1.88 \end{array}$
$\begin{array}{c} 0.511 \\ 0.6 \\ 0.662 \\ 0.8 \\ 1.0 \end{array}$	$ \begin{array}{r} 1.85 \\ 2.19 \\ 2.42 \\ 2.92 \\ 3.62 \\ \end{array} $	$2.00 \\ 2.36 \\ 2.60 \\ 3.12 \\ 3.84$	$2.20 \\ 2.58 \\ 2.84 \\ 3.38 \\ 4.13$	$2.21 \\ 2.59 \\ 2.85 \\ 3.39 \\ 4.13$	$2.10 \\ 2.47 \\ 2.72 \\ 3.25 \\ 3.98$	1.93 2.28 2.51 3.01 3.71
$ \begin{array}{r} 1.117 \\ 1.33 \\ 1.5 \\ 2.0 \\ 3.0 \\ \end{array} $	$\begin{array}{c} 4.01 \\ 4.69 \\ 5.21 \\ 6.58 \\ 8.98 \end{array}$	$\begin{array}{c} 4.23 \\ 4.92 \\ 5.44 \\ 6.82 \\ 9.26 \end{array}$	$\begin{array}{c} 4.54 \\ 5.24 \\ 5.79 \\ 7.21 \\ 9.66 \end{array}$	$\begin{array}{c} 4.55 \\ 5.25 \\ 5.81 \\ 7.23 \\ 9.68 \end{array}$	$\begin{array}{c} 4.38 \\ 5.07 \\ 5.61 \\ 7.01 \\ 9.43 \end{array}$	$\begin{array}{c} 4.10 \\ 4.78 \\ 5.29 \\ 6.64 \\ 8.99 \end{array}$
$\begin{array}{c} 4.0 \\ 5.0 \\ 6.0 \\ 6.129 \\ 8.0 \end{array}$	11.1 13.1 15.0 15.3 18.7	11.5 13.5 15.5 15.7 19.0	$ \begin{array}{r} 11.9 \\ 13.9 \\ 15.8 \\ 16.1 \\ 19.5 \\ \end{array} $	$ \begin{array}{r} 11.9 \\ 13.9 \\ 15.8 \\ 16.1 \\ 19.4 \end{array} $	$ \begin{array}{r} 11.6 \\ 13.6 \\ 15.6 \\ 15.8 \\ 19.2 \\ \end{array} $	$ \begin{array}{c} 11.1\\ 13.1\\ 15.0\\ 15.3\\ 18.6 \end{array} $
$ \begin{array}{c} 10.0 \\ 15.0 \\ 20.0 \\ 30.0 \\ 40.0 \end{array} $	22.2 30.4 37.8 50.2 59.7	$22.4 \\ 30.1 \\ 36.7 \\ 47.4 \\ 55.6$	$22.9 \\ 30.4 \\ 36.6 \\ 45.9 \\ 52.6$	$22.8 \\ 30.1 \\ 36.4 \\ 45.7 \\ 52.1$	$22.6 \\ 30.0 \\ 36.5 \\ 46.4 \\ 53.9$	$21.9 \\ 29.6 \\ 36.5 \\ 47.6 \\ 55.6$
50.0 60.0 80.0 100 150	67.2 73.1 82.2 88.6 99.8	61.8 66.8 74.5 79.7 88.3	57.7 61.6 67.5 71.8 78.9	57.0 60.7 66.4 70.6 77.6	59.6 64.0 70.8 75.5 83.0	$\begin{array}{c} 62.1 \\ 67.4 \\ 75.6 \\ 82.1 \\ 94.0 \end{array}$
200 300 400 500 600	107 116 120 124 127	93.7 101 105 108 111	83.7 89.6 93.0 95.2 96.9	82.3 88.1 91.4 93.5 95.2	88.0 94.3 98.3 101 103	102 113 120 126 130
800 1,000 1,500 2,000 3,000	131 134 140 142 145	115 117 121 122 125	99.4 101 104 106 107	97.6 99.5 103 104 106	106 108 110 112 114	$136 \\ 141 \\ 150 \\ 156 \\ 166$
4,000 5,000 6,000 8,000 10,000	147 148 149 151 152	127 128 129 131 132	108 109 110 111 112	107 107 107 108 109	117 118 119 121 122	174 180 185 192 198

表 B.1 光子(女性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの脳の吸収線量(単位: pGy・cm²)

* 2.8E-8は2.8×10⁻⁸を示す。

エネルギー (MeV)	AP (前方 - 後方)	PA (後方 - 前方)	LLAT (左側方)	RLAT (右側方)	ROT (回転)	ISO (等方)
$\begin{array}{c} 0.01 \\ 0.015 \\ 0.02 \\ 0.03 \\ 0.04 \end{array}$	$\begin{array}{c} 0.323 \\ 0.720 \\ 0.751 \\ 0.569 \\ 0.457 \end{array}$	1.1E-5 4.7E-4 0.0187 0.0502	0.0617 0.175 0.228 0.222 0.197	$\begin{array}{c} 0.0575 \\ 0.167 \\ 0.220 \\ 0.216 \\ 0.191 \end{array}$	0.120 0.282 0.322 0.272 0.231	0.100 0.233 0.279 0.246 0.213
$\begin{array}{c} 0.05 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.1 \end{array}$	$\begin{array}{c} 0.416 \\ 0.416 \\ 0.444 \\ 0.479 \\ 0.577 \end{array}$	$\begin{array}{c} 0.0753 \\ 0.0956 \\ 0.118 \\ 0.139 \\ 0.186 \end{array}$	0.188 0.195 0.212 0.235 0.294	0.183 0.190 0.206 0.229 0.288	0.221 0.229 0.249 0.276 0.343	0.201 0.206 0.221 0.247 0.305
$\begin{array}{c} 0.15 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \end{array}$	0.878 1.19 1.81 2.38 2.91	$\begin{array}{c} 0.328 \\ 0.489 \\ 0.849 \\ 1.23 \\ 1.62 \end{array}$	0.477 0.683 1.11 1.55 1.97	$\begin{array}{c} 0.470 \\ 0.674 \\ 1.10 \\ 1.53 \\ 1.96 \end{array}$	$\begin{array}{c} 0.546 \\ 0.769 \\ 1.22 \\ 1.67 \\ 2.10 \end{array}$	$\begin{array}{c} 0.490 \\ 0.686 \\ 1.10 \\ 1.51 \\ 1.92 \end{array}$
0.511 0.6 0.662 0.8 1.0	2.98 3.42 3.72 4.35 5.17	$ \begin{array}{c} 1.66\\ 2.00\\ 2.23\\ 2.74\\ 3.44\\ 2.62\\ \end{array} $	2.02 2.39 2.64 3.16 3.91	2.01 2.38 2.63 3.16 3.90	$2.15 \\ 2.52 \\ 2.77 \\ 3.31 \\ 4.04 \\ 4.42 \\$	1.96 2.30 2.53 3.03 3.73
1.117 1.33 1.5 2.0 3.0	5.59 6.30 6.79 7.96 9.43	$\begin{array}{c} 3.83 \\ 4.50 \\ 5.02 \\ 6.40 \\ 8.75 \end{array}$	4.31 5.02 5.53 6.85 8.95	4.31 5.00 5.51 6.85 8.97	$\begin{array}{c} 4.43 \\ 5.10 \\ 5.61 \\ 6.89 \\ 8.91 \end{array}$	$ \begin{array}{r} 4.11 \\ 4.74 \\ 5.21 \\ 6.43 \\ 8.37 \\ \end{array} $
$\begin{array}{c} 4.0 \\ 5.0 \\ 6.0 \\ 6.129 \\ 8.0 \end{array}$	$ \begin{array}{r} 10.2 \\ 10.7 \\ 10.9 \\ 1$	$ \begin{array}{c} 10.8 \\ 12.7 \\ 14.5 \\ 14.7 \\ 17.8 \\ \end{array} $	$ \begin{array}{c} 10.7 \\ 12.2 \\ 13.5 \\ 13.7 \\ 15.8 \\ \end{array} $	$ \begin{array}{c} 10.7 \\ 12.3 \\ 13.6 \\ 13.8 \\ 15.9 \\ \end{array} $	$ \begin{array}{c} 10.5 \\ 11.8 \\ 12.9 \\ 13.1 \\ 14.9 \\ \end{array} $	$\begin{array}{c} 9.92 \\ 11.3 \\ 12.4 \\ 12.6 \\ 14.5 \end{array}$
$ \begin{array}{c} 10.0 \\ 15.0 \\ 20.0 \\ 30.0 \\ 40.0 \end{array} $	$ \begin{array}{r} 10.7 \\ 10.6 \\ 10.7 \\ 10.9 \\ 11.3 \end{array} $	21.0 29.4 38.2 54.7 68.3	$ \begin{array}{r} 17.8 \\ 22.4 \\ 26.7 \\ 34.4 \\ 41.4 \\ \end{array} $	18.0 22.7 27.0 34.8 41.9	$ \begin{array}{r} 16.7 \\ 20.9 \\ 24.9 \\ 32.5 \\ 39.9 \end{array} $	16.3 20.6 24.7 32.4 39.7
50.0 60.0 80.0 100 150	$ \begin{array}{c} 11.7 \\ 12.0 \\ 12.4 \\ 12.7 \\ 13.4 \end{array} $	79.0 87.1 98.9 107 119	47.4 52.2 60.2 65.8 75.5	48.1 53.2 61.2 66.9 76.8	$\begin{array}{c} 46.4 \\ 51.8 \\ 60.5 \\ 66.7 \\ 76.4 \end{array}$	46.4 52.2 61.6 69.0 81.9
200 300 400 500 600	$ \begin{array}{r} 14.2 \\ 15.2 \\ 15.8 \\ 16.1 \\ 16.2 \end{array} $	127 137 143 147 151	82.2 90.7 95.7 99.0 101	83.4 91.9 97.3 101 103	82.9 91.2 96.4 99.9 103	91.0 104 113 119 124
800 1,000 1,500 2,000 3,000	$ \begin{array}{r} 16.2 \\ 16.3 \\ 16.5 \\ 16.6 \\ 16.7 \\ \end{array} $	156 159 164 167 171	105 107 112 114 117	107 109 114 116 119	107 109 114 118 122	132 138 149 157 168
4,000 5,000 6,000 8,000 10,000	$ \begin{array}{c} 16.8\\ 16.9\\ 16.9\\ 17.1\\ 17.1 \end{array} $	174 176 178 179 180	119 121 122 125 127	121 123 124 127 128	125 127 129 131 133	175 183 188 197 203

表 B.2 光子 (女性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの乳房の吸収線量(単位:pGy·cm²)

* 1.1E-5は1.1×10⁻⁵を示す。

エネルギー (MeV)	AP (前方 - 後方)	PA (後方 - 前方)	LLAT (左側方)	RLAT (右側方)	ROT (回転)	ISO (等方)
$\begin{array}{c} 0.01 \\ 0.015 \\ 0.02 \\ 0.03 \\ 0.04 \end{array}$	$\begin{array}{r} 3.3\mathrm{E}{-4} \\ 0.0407 \\ 0.178 \\ 0.369 \\ 0.412 \end{array}$	9.8E-4 0.0115 0.0757 0.139	9.9E-8 0.0012 0.0177 0.0800 0.120	2.0E-7 0.0010 0.0180 0.0832 0.123	5.1E-5 0.0092 0.0542 0.153 0.203	2.0E-5 0.0057 0.0352 0.111 0.152
$\begin{array}{c} 0.05 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.1 \end{array}$	$\begin{array}{c} 0.423 \\ 0.441 \\ 0.468 \\ 0.496 \\ 0.575 \end{array}$	$\begin{array}{c} 0.183 \\ 0.215 \\ 0.242 \\ 0.274 \\ 0.332 \end{array}$	0.144 0.163 0.180 0.198 0.242	$\begin{array}{c} 0.144 \\ 0.161 \\ 0.178 \\ 0.195 \\ 0.236 \end{array}$	$\begin{array}{c} 0.228 \\ 0.249 \\ 0.272 \\ 0.295 \\ 0.349 \end{array}$	0.173 0.192 0.209 0.229 0.275
$\begin{array}{c} 0.15 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.511 \end{array}$	0.818 1.09 1.63 2.14 2.63 2.68	0.502 0.689 1.09 1.48 1.88	$\begin{array}{c} 0.372 \\ 0.524 \\ 0.849 \\ 1.19 \\ 1.53 \\ 1.57 \end{array}$	$\begin{array}{c} 0.365 \\ 0.515 \\ 0.838 \\ 1.17 \\ 1.51 \\ 1.55 \end{array}$	0.524 0.715 1.11 1.50 1.89	0.407 0.559 0.888 1.23 1.56 1.59
0.6 0.662 0.8 1.0	3.08 3.35 3.92 4.70 5.11	2.26 2.50 2.99 3.68 4.06	1.87 2.08 2.53 3.16 3.52	1.84 2.05 2.50 3.12 3.47	2.27 2.50 3.00 3.68 4.05	1.89 2.09 2.53 3.13 3.48
1.33 1.5 2.0 3.0 4.0	5.82 6.37 7.80 10.3	4.71 5.20 6.54 8.94	$ \begin{array}{r} 4.14\\ 4.62\\ 5.91\\ 8.19\\ 10.2 \end{array} $	4.10 4.57 5.88 8.17	4.68 5.17 6.52 8.88	4.06 4.51 5.79 8.07
5.0 6.0 6.129 8.0	$ \begin{array}{c} 12.1\\ 14.4\\ 16.4\\ 16.6\\ 19.8\\ 22.7\\ \end{array} $	$ \begin{array}{c} 12.9\\ 14.7\\ 14.9\\ 18.2\\ 21.7 \end{array} $	$ \begin{array}{c} 10.2 \\ 12.1 \\ 13.9 \\ 14.1 \\ 17.4 \\ 20.8 \\ \end{array} $	$ \begin{array}{c} 10.2 \\ 12.0 \\ 13.9 \\ 14.1 \\ 17.3 \\ 20.7 \\ \end{array} $	12.9 14.8 15.0 18.2 21.4	12.0 13.7 13.9 17.0 20.2
$ 10.0 \\ 15.0 \\ 20.0 \\ 30.0 \\ 40.0 \\ 50.0 $	22.7 27.6 31.4 36.5 40.3	21.7 30.6 39.0 53.6 65.6	20.8 28.7 36.4 50.1 62.4	20.7 28.5 35.9 49.5 62.0	28.5 35.6 47.3 57.4	20.2 27.6 34.8 47.5 58.8
50.0 60.0 80.0 100 150	43.2 45.3 48.7 51.1 55.2	75.2 82.5 93.8 101 113	73.3 82.6 97.7 109 127	73.1 82.6 97.7 109 128	66.0 73.0 84.2 92.2 104	68.5 77.0 90.9 102 123
200 300 400 500 600	58.4 62.3 65.0 66.6 67.6	120 130 136 140 143	139 154 164 171 176	140 156 166 173 179	112 123 130 135 139	137 157 169 179 187
800 1,000 1,500 2,000 3,000	68.8 69.8 71.3 72.5 73.9	148 151 157 161 164	184 189 199 204 212	187 192 202 209 216	145 148 154 159 165	199 207 222 232 248
4,000 5,000 6,000 8,000 10,000	74.6 75.2 75.6 76.2 76.6	167 168 169 171 173	217 220 223 228 233	221 225 228 233 237	168 171 173 175 177	259 268 275 286 294

表 B.3 光子(女性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの結腸の吸収線量(単位:pGy・cm²)

* 3.3E-4は3.3×10⁻⁴を示す。

エネルギー	AP	PA	LLAT	RLAT	ROT	ISO
(MeV)	(前方 - 後方)	(後方 - 前方)	(左側方)	(右側方)	(回転)	(等方)
$\begin{array}{c} 0.01 \\ 0.015 \\ 0.02 \\ 0.03 \\ 0.04 \end{array}$	2.0E-4 0.0107 0.0717 0.277 0.392	6.1E-5 0.0067 0.0566 0.243 0.363	1.2E-4 0.0072 0.0495 0.179 0.251	$\begin{array}{c} 1.1\mathrm{E}{-4} \\ 0.0070 \\ 0.0506 \\ 0.182 \\ 0.254 \end{array}$	2.0E-4 0.0102 0.0617 0.233 0.335	$\begin{array}{c} 0.0012 \\ 0.0156 \\ 0.0601 \\ 0.192 \\ 0.274 \end{array}$
$\begin{array}{c} 0.05 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.1 \end{array}$	$\begin{array}{c} 0.434 \\ 0.451 \\ 0.464 \\ 0.479 \\ 0.524 \end{array}$	$\begin{array}{c} 0.412 \\ 0.432 \\ 0.447 \\ 0.463 \\ 0.509 \end{array}$	0.279 0.290 0.298 0.308 0.338	0.282 0.293 0.300 0.310 0.340	$\begin{array}{c} 0.374 \\ 0.391 \\ 0.401 \\ 0.415 \\ 0.455 \end{array}$	$\begin{array}{c} 0.307 \\ 0.322 \\ 0.332 \\ 0.342 \\ 0.375 \end{array}$
$\begin{array}{c} 0.15 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.511 \end{array}$	0.699 0.914 1.36 1.83 2.27 2.31	0.682 0.894 1.35 1.80 2.24 2.29	$\begin{array}{c} 0.459 \\ 0.612 \\ 0.952 \\ 1.30 \\ 1.66 \\ 1.70 \end{array}$	$\begin{array}{c} 0.461 \\ 0.615 \\ 0.956 \\ 1.31 \\ 1.66 \\ 1.70 \end{array}$	0.612 0.805 1.22 1.65 2.07 2.11	$\begin{array}{c} 0.507 \\ 0.671 \\ 1.04 \\ 1.41 \\ 1.78 \\ 1.82 \end{array}$
0.6	2.69	2.67	2.00	2.00	2.47	2.15
0.662	2.96	2.92	2.22	2.22	2.71	2.36
0.8	3.50	3.47	2.67	2.67	3.22	2.84
1.0	4.24	4.20	3.31	3.31	3.93	3.50
$ \begin{array}{r} 1.117 \\ 1.33 \\ 1.5 \\ 2.0 \\ 3.0 \\ \end{array} $	4.64 5.33 5.85 7.30 9.74	4.60 5.30 5.82 7.24 9.71	3.67 4.30 4.77 6.07 8.37	$ \begin{array}{r} 3.67 \\ 4.30 \\ 4.78 \\ 6.08 \\ 8.37 \end{array} $	$\begin{array}{c} 4.32 \\ 5.01 \\ 5.52 \\ 6.91 \\ 9.35 \end{array}$	3.86 4.51 4.99 6.32 8.66
$\begin{array}{c} 4.0 \\ 5.0 \\ 6.0 \\ 6.129 \\ 8.0 \end{array}$	11.9 13.9 15.7 16.0 19.1	11.9 13.8 15.7 15.9 19.2	$ \begin{array}{c} 10.4 \\ 12.3 \\ 14.1 \\ 14.3 \\ 17.3 \end{array} $	$ \begin{array}{c} 10.4 \\ 12.3 \\ 14.1 \\ 14.3 \\ 17.3 \end{array} $	$ \begin{array}{c} 11.5 \\ 13.5 \\ 15.3 \\ 15.5 \\ 18.7 \end{array} $	$10.7 \\ 12.6 \\ 14.4 \\ 14.6 \\ 17.8$
$ \begin{array}{r} 10.0 \\ 15.0 \\ 20.0 \\ 30.0 \\ 40.0 \end{array} $	22.2 28.7 34.0 41.9 47.8	22.5 29.5 35.3 43.8 50.0	20.3 27.1 33.5 44.6 54.4	20.3 27.2 33.4 44.4 54.1	21.8 28.7 34.4 43.6 51.0	20.9 28.0 34.3 45.0 53.8
50.0	$52.2 \\ 55.6 \\ 60.9 \\ 64.7 \\ 71.1$	54.6	62.9	62.5	57.2	61.1
60.0		58.3	70.1	69.8	62.1	67.3
80.0		64.0	82.1	81.8	69.9	77.3
100		67.9	91.3	91.1	75.3	85.2
150		74.4	108	107	84.4	99.8
200	75.6	78.5	119	119	90.3	110
300	81.2	83.5	133	133	97.9	124
400	84.5	86.7	143	143	103	133
500	86.7	88.9	150	149	106	139
600	88.2	90.5	155	155	109	145
800	90.4	93.0	162	162	113	153
1,000	91.9	94.5	168	168	115	159
1,500	94.5	97.1	178	178	120	171
2,000	95.9	98.6	184	184	122	178
3,000	97.7	100	193	193	126	189
4,000	98.8	102	200	199	129	197
5,000	99.7	102	204	204	131	204
6,000	100	103	208	208	132	210
8,000	101	104	213	214	134	219
10,000	102	104	217	218	135	227

表 B.4 光子(女性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの骨表面(骨内膜)の吸収線量(単位:pGy・cm²)

* 2.0E-4は2.0×10⁻⁴を示す。

エネルギー (MeV)	AP (前方 - 後方)	PA (後方 - 前方)	LLAT (左側方)	RLAT (右側方)	ROT (回転)	ISO (等方)
$\begin{array}{c} 0.01 \\ 0.015 \\ 0.02 \\ 0.03 \\ 0.04 \end{array}$	2.9E-5 0.0131 0.0859 0.257 0.335	1.1E-6 0.0022 0.0235 0.110 0.182	$\begin{array}{c} 2.4E-7\\ 3.9E-4\\ 0.0046\\ 0.0308\\ 0.0614\end{array}$	8.4E-6 0.0068 0.0488 0.164 0.227	1.3E-5 0.0055 0.0388 0.138 0.201	6.6E-6 0.0031 0.0248 0.0984 0.149
$\begin{array}{c} 0.05 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.1 \end{array}$	$\begin{array}{c} 0.367 \\ 0.391 \\ 0.420 \\ 0.445 \\ 0.516 \end{array}$	0.230 0.264 0.295 0.325 0.389	0.0839 0.102 0.117 0.132 0.165	0.255 0.275 0.297 0.318 0.375	0.235 0.259 0.283 0.309 0.367	0.177 0.198 0.217 0.236 0.283
$0.15 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5$	$\begin{array}{c} 0.736 \\ 0.977 \\ 1.47 \\ 1.95 \\ 2.41 \end{array}$	0.575 0.779 1.20 1.63 2.04	$\begin{array}{c} 0.264 \\ 0.379 \\ 0.641 \\ 0.924 \\ 1.22 \end{array}$	$\begin{array}{c} 0.554 \\ 0.759 \\ 1.19 \\ 1.62 \\ 2.05 \end{array}$	0.538 0.730 1.14 1.54 1.93	$\begin{array}{c} 0.420 \\ 0.573 \\ 0.905 \\ 1.25 \\ 1.59 \end{array}$
$\begin{array}{c} 0.511 \\ 0.6 \\ 0.662 \\ 0.8 \\ 1.0 \end{array}$	2.46 2.85 3.11 3.67 4.42	2.08 2.44 2.68 3.19 3.89	$ \begin{array}{r} 1.25 \\ 1.52 \\ 1.71 \\ 2.11 \\ 2.69 \\ \end{array} $	2.09 2.46 2.70 3.22 3.95	1.97 2.32 2.55 3.04 3.73	$ \begin{array}{r} 1.62 \\ 1.92 \\ 2.12 \\ 2.56 \\ 3.17 \\ \end{array} $
$ \begin{array}{r} 1.117 \\ 1.33 \\ 1.5 \\ 2.0 \\ 3.0 \\ \end{array} $	4.82 5.52 6.04 7.44 9.89	$\begin{array}{c} 4.27 \\ 4.93 \\ 5.43 \\ 6.80 \\ 9.18 \end{array}$	3.01 3.60 4.05 5.29 7.49	$\begin{array}{c} 4.35 \\ 5.05 \\ 5.58 \\ 6.97 \\ 9.39 \end{array}$	$\begin{array}{c} 4.11 \\ 4.77 \\ 5.26 \\ 6.59 \\ 8.95 \end{array}$	3.52 4.12 4.58 5.84 8.07
$\begin{array}{c} 4.0 \\ 5.0 \\ 6.0 \\ 6.129 \\ 8.0 \end{array}$	$ \begin{array}{r} 12.1 \\ 14.1 \\ 16.0 \\ 16.2 \\ 19.6 \\ \end{array} $	$ \begin{array}{c} 11.3\\ 13.2\\ 15.1\\ 15.4\\ 18.8 \end{array} $	$9.49 \\11.3 \\13.1 \\13.3 \\16.5$	$ \begin{array}{r} 11.5 \\ 13.5 \\ 15.4 \\ 15.7 \\ 19.1 \\ \end{array} $	$ \begin{array}{c} 11.1\\ 13.1\\ 14.9\\ 15.2\\ 18.4 \end{array} $	10.1 12.0 13.8 14.0 17.2
$ \begin{array}{r} 10.0 \\ 15.0 \\ 20.0 \\ 30.0 \\ 40.0 \\ \end{array} $	22.9 29.8 35.2 43.0 48.7	22.2 30.4 38.3 51.0 61.2	19.9 28.2 36.5 52.6 68.0	22.5 30.3 37.1 48.4 57.2	21.8 29.6 36.7 48.7 58.8	$20.6 \\ 28.4 \\ 35.6 \\ 48.6 \\ 60.1$
50.0 60.0 80.0 100 150	52.8 55.9 60.5 63.9 69.6	69.4 75.6 85.3 91.7 102	82.0 94.1 114 129 153	64.2 69.6 77.9 83.6 93.4	67.1 73.8 84.5 92.0 105	70.0 78.3 92.0 103 122
200 300 400 500 600	74.0 79.6 83.1 85.1 86.7	108 117 122 125 128	170 190 204 213 221	100.0 108 113 116 118	113 123 129 134 137	135 153 165 174 181
800 1,000 1,500 2,000 3,000	88.1 89.4 91.6 93.6 95.6	133 136 140 142 144	231 239 252 261 273	121 124 128 130 133	142 147 153 157 162	191 199 213 224 237
4,000 5,000 6,000 8,000 10,000	96.7 97.3 97.7 98.1 98.3	147 149 150 152 154	282 288 293 300 305	135 137 138 140 142	165 167 168 171 173	246 254 260 271 279

表 B.5 光子(女性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの肝臓の吸収線量(単位:pGy・cm²)

* 2.9E-5は2.9×10⁻⁵を示す。

エネルギー	AP	PA	LLAT	RLAT	ROT	ISO
(MeV)	(前方 - 後方)	(後方 - 前方)	(左側方)	(右側方)	(回転)	(等方)
$\begin{array}{c} 0.01 \\ 0.015 \\ 0.02 \\ 0.03 \\ 0.04 \end{array}$	$\begin{array}{c} 2.4\mathrm{E}{-5} \\ 0.0065 \\ 0.0593 \\ 0.219 \\ 0.291 \end{array}$	4.9E-6 0.0069 0.0568 0.208 0.291	4.4E-6 0.0030 0.0172 0.0554 0.0884	3.5E-6 0.0030 0.0201 0.0657 0.0972	6.7E-6 0.0045 0.0376 0.142 0.205	7.7E-6 0.0026 0.0248 0.106 0.158
$\begin{array}{c} 0.05 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.1 \end{array}$	$\begin{array}{c} 0.319 \\ 0.340 \\ 0.363 \\ 0.390 \\ 0.457 \end{array}$	0.331 0.360 0.387 0.423 0.500	$\begin{array}{c} 0.111 \\ 0.127 \\ 0.144 \\ 0.159 \\ 0.195 \end{array}$	$\begin{array}{c} 0.117 \\ 0.133 \\ 0.150 \\ 0.164 \\ 0.200 \end{array}$	0.236 0.259 0.281 0.307 0.365	$\begin{array}{c} 0.185 \\ 0.206 \\ 0.226 \\ 0.247 \\ 0.296 \end{array}$
$\begin{array}{c} 0.15 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \end{array}$	0.665 0.897 1.37 1.84 2.29	0.734 0.993 1.51 2.01 2.50	$\begin{array}{c} 0.304 \\ 0.433 \\ 0.722 \\ 1.03 \\ 1.34 \end{array}$	$\begin{array}{c} 0.311 \\ 0.440 \\ 0.730 \\ 1.03 \\ 1.34 \end{array}$	0.542 0.744 1.17 1.59 2.00	$0.445 \\ 0.614 \\ 0.979 \\ 1.35 \\ 1.71$
$\begin{array}{c} 0.511 \\ 0.6 \\ 0.662 \\ 0.8 \\ 1.0 \end{array}$	2.34 2.72 2.98 3.53 4.27	2.55 2.95 3.23 3.80 4.56	1.38 1.66 1.85 2.28 2.88	1.38 1.65 1.84 2.26 2.86	2.052.402.643.163.87	$ \begin{array}{r} 1.75 \\ 2.06 \\ 2.28 \\ 2.75 \\ 3.41 \\ \end{array} $
$ \begin{array}{r} 1.117\\ 1.33\\ 1.5\\ 2.0\\ 3.0 \end{array} $	4.68	4.98	3.23	3.20	4.26	3.78
	5.39	5.71	3.84	3.80	4.95	4.41
	5.92	6.26	4.32	4.26	5.45	4.90
	7.36	7.70	5.61	5.52	6.84	6.22
	9.85	10.2	7.88	7.80	9.31	8.55
$\begin{array}{c} 4.0 \\ 5.0 \\ 6.0 \\ 6.129 \\ 8.0 \end{array}$	$ \begin{array}{c} 12.1 \\ 14.2 \\ 16.2 \\ 16.5 \\ 20.1 \end{array} $	$12.4 \\ 14.5 \\ 16.6 \\ 16.8 \\ 20.5$	9.95 11.9 13.8 14.0 17.4	9.90 11.8 13.6 13.9 17.3	$ \begin{array}{c} 11.5 \\ 13.6 \\ 15.5 \\ 15.8 \\ 19.3 \end{array} $	$ \begin{array}{c} 10.7 \\ 12.6 \\ 14.5 \\ 14.8 \\ 18.2 \end{array} $
$ \begin{array}{c} 10.0 \\ 15.0 \\ 20.0 \\ 30.0 \\ 40.0 \end{array} $	23.7	24.2	20.9	20.8	23.0	21.8
	31.4	31.3	29.5	29.2	31.2	30.0
	37.6	36.6	38.0	37.5	38.3	37.6
	46.2	43.4	54.2	53.1	49.9	50.5
	52.1	48.1	68.9	67.3	59.1	60.8
50.0	56.459.764.968.574.9	51.5	81.4	79.5	66.5	69.3
60.0		54.3	91.9	89.9	72.5	76.4
80.0		58.6	108	107	81.9	87.8
100		61.4	120	119	88.6	96.4
150		65.9	140	140	99.1	112
200	79.4	69.0	154	154	106	123
300	85.0	73.0	171	172	114	138
400	88.3	75.3	181	183	119	147
500	90.3	76.9	188	191	123	155
600	91.6	78.1	193	197	126	160
800	93.5	79.8	201	206	130	169
1,000	94.9	80.9	208	212	133	175
1,500	97.0	82.6	218	223	137	187
2,000	98.6	83.4	224	230	140	194
3,000	100	84.6	232	239	143	206
4,000	101	85.5	237	246	146	214
5,000	102	86.1	241	251	147	220
6,000	103	86.6	245	255	149	225
8,000	104	86.7	250	261	151	233
10,000	104	86.8	253	265	152	240

表 B.6 光子(女性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの肺の吸収線量(単位:pGy·cm²)

* 2.4E-5は2.4×10⁻⁵を示す。

エネルギー (MeV)	AP (前方 - 後方)	PA (後方 - 前方)	LLAT (左側方)	RLAT (右側方)	ROT (回転)	ISO (等方)
$\begin{array}{c} 0.01 \\ 0.015 \\ 0.02 \\ 0.03 \\ 0.04 \end{array}$	$\begin{array}{r} 4.6\mathrm{E}{-5} \\ 0.0141 \\ 0.0754 \\ 0.201 \\ 0.261 \end{array}$	4.7E-8 4.1E-6 0.0021 0.0510 0.140	1.4E-6 1.1E-4 0.0025 0.0257 0.0602	$\begin{array}{c} 1.7E-6\\ 1.2E-4\\ 0.0040\\ 0.0297\\ 0.0570\end{array}$	2.7E-6 0.0025 0.0204 0.0865 0.149	4.0E-5 0.0013 0.0129 0.0545 0.102
$\begin{array}{c} 0.05 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.1 \end{array}$	$\begin{array}{c} 0.300 \\ 0.331 \\ 0.360 \\ 0.393 \\ 0.470 \end{array}$	0.211 0.260 0.289 0.330 0.410	$\begin{array}{c} 0.0890 \\ 0.110 \\ 0.130 \\ 0.149 \\ 0.189 \end{array}$	0.0827 0.101 0.120 0.139 0.178	0.189 0.222 0.249 0.283 0.347	$\begin{array}{c} 0.136 \\ 0.164 \\ 0.199 \\ 0.217 \\ 0.268 \end{array}$
$\begin{array}{c} 0.15 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \end{array}$	$\begin{array}{c} 0.702 \\ 0.948 \\ 1.44 \\ 1.94 \\ 2.41 \end{array}$	0.621 0.844 1.30 1.75 2.19	$\begin{array}{c} 0.302 \\ 0.437 \\ 0.731 \\ 1.03 \\ 1.35 \end{array}$	0.288 0.411 0.690 0.987 1.28	0.530 0.725 1.15 1.57 1.98	$\begin{array}{c} 0.408 \\ 0.565 \\ 0.898 \\ 1.23 \\ 1.58 \end{array}$
$\begin{array}{c} 0.511 \\ 0.6 \\ 0.662 \\ 0.8 \\ 1.0 \end{array}$	$2.44 \\ 2.82 \\ 3.07 \\ 3.66 \\ 4.41$	$2.23 \\ 2.61 \\ 2.84 \\ 3.35 \\ 4.09$	1.38 1.67 1.89 2.33 2.95	$ \begin{array}{r} 1.32\\ 1.59\\ 1.78\\ 2.21\\ 2.78 \end{array} $	$2.03 \\ 2.41 \\ 2.64 \\ 3.16 \\ 3.84$	1.60 1.91 2.12 2.60 3.27
$ \begin{array}{r} 1.117 \\ 1.33 \\ 1.5 \\ 2.0 \\ 3.0 \\ \end{array} $	$\begin{array}{c} 4.84 \\ 5.54 \\ 6.05 \\ 7.46 \\ 9.95 \end{array}$	$\begin{array}{c} 4.51 \\ 5.23 \\ 5.75 \\ 7.08 \\ 9.34 \end{array}$	3.28 3.85 4.28 5.53 7.73	$\begin{array}{c} 3.11 \\ 3.67 \\ 4.14 \\ 5.40 \\ 7.68 \end{array}$	$\begin{array}{c} 4.24 \\ 4.90 \\ 5.40 \\ 6.84 \\ 9.35 \end{array}$	3.67 4.26 4.72 5.99 8.13
$\begin{array}{c} 4.0 \\ 5.0 \\ 6.0 \\ 6.129 \\ 8.0 \end{array}$	$ \begin{array}{c} 12.1 \\ 14.2 \\ 16.1 \\ 16.4 \\ 19.9 \end{array} $	$ \begin{array}{c} 11.4\\ 13.4\\ 15.4\\ 15.7\\ 19.4 \end{array} $	$9.79 \\ 11.6 \\ 13.5 \\ 13.6 \\ 17.3$	$9.63 \\ 11.6 \\ 13.5 \\ 13.8 \\ 17.0$	$ \begin{array}{c} 11.5\\ 13.3\\ 15.1\\ 15.4\\ 18.9 \end{array} $	10.2 12.1 13.9 14.1 17.5
$ \begin{array}{c} 10.0 \\ 15.0 \\ 20.0 \\ 30.0 \\ 40.0 \end{array} $	$23.3 \\ 30.6 \\ 36.5 \\ 45.5 \\ 51.5 \\ $	23.1 32.3 41.0 53.4 61.7	20.8 28.8 37.1 54.3 69.2	20.3 28.5 37.2 53.5 68.5	22.5 31.0 38.9 52.1 62.2	20.9 29.7 38.1 51.8 63.7
50.0 60.0 80.0 100 150	55.6 58.6 63.1 66.4 71.8	67.9 72.4 80.4 84.7 93.2	81.2 91.2 107 119 139	81.6 92.6 110 121 141	70.3 76.6 86.3 93.3 105	73.1 81.6 94.9 105 123
200 300 400 500 600	76.3 82.2 85.2 86.9 87.8	97.6 103 108 111 114	151 166 175 183 188	155 173 184 192 198	112 120 126 129 132	135 150 160 167 174
800 1,000 1,500 2,000 3,000	89.4 90.7 93.1 94.2 95.7	116 118 120 122 124	196 201 211 218 226	206 211 220 226 235	136 138 143 147 149	184 192 204 213 225
4,000 5,000 6,000 8,000 10,000	97.5 98.7 99.4 100 100	126 127 128 129 129	229 232 235 241 247	241 245 247 248 248	152 154 155 158 159	234 243 250 262 272

表 B.7 光子(女性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの食道の吸収線量(単位:pGy・cm²)

* 4.6E-5は4.6×10⁻⁵を示す。

エネルギー	AP	PA	LLAT	RLAT	ROT	ISO
(MeV)	(前方 - 後方)	(後方 - 前方)	(左側方)	(右側方)	(回転)	(等方)
$\begin{array}{c} 0.01 \\ 0.015 \\ 0.02 \\ 0.03 \\ 0.04 \end{array}$	6.4E-6	1.1E-4				7.8E-5
	0.0034	0.0126	2.9E-5	5.8E-5	0.0037	0.0018
	0.0843	0.145	0.0042	0.0055	0.0535	0.0366
	0.180	0.241	0.0242	0.0300	0.121	0.0857
$\begin{array}{c} 0.05 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.1 \end{array}$	$\begin{array}{c} 0.247 \\ 0.295 \\ 0.331 \\ 0.370 \\ 0.439 \end{array}$	$\begin{array}{c} 0.311 \\ 0.359 \\ 0.392 \\ 0.425 \\ 0.490 \end{array}$	$\begin{array}{c} 0.0493 \\ 0.0717 \\ 0.0828 \\ 0.105 \\ 0.142 \end{array}$	0.0586 0.0832 0.106 0.125 0.159	0.161 0.199 0.246 0.267 0.322	0.128 0.154 0.183 0.204 0.246
$\begin{array}{c} 0.15 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.5 \end{array}$	0.652 0.892 1.36 1.79 2.21	$\begin{array}{c} 0.700 \\ 0.942 \\ 1.40 \\ 1.85 \\ 2.30 \end{array}$	$\begin{array}{c} 0.230 \\ 0.333 \\ 0.564 \\ 0.807 \\ 1.06 \end{array}$	$\begin{array}{c} 0.254 \\ 0.368 \\ 0.611 \\ 0.883 \\ 1.17 \\ \end{array}$	0.468 0.634 1.000 1.37 1.73	$\begin{array}{c} 0.366 \\ 0.502 \\ 0.807 \\ 1.13 \\ 1.45 \\ 1.62 \\ \end{array}$
0.511 0.6 0.662 0.8 1.0	2.27 2.62 2.87 3.42 4.18	2.34 2.71 2.97 3.55 4.32	$ \begin{array}{c} 1.10\\ 1.35\\ 1.54\\ 1.93\\ 2.49\\ 2.70\\ \end{array} $	$ \begin{array}{c} 1.20\\ 1.46\\ 1.64\\ 2.03\\ 2.63\\ 2.07\\ \end{array} $	1.77 2.09 2.32 2.80 3.45	$ \begin{array}{c} 1.48 \\ 1.77 \\ 1.96 \\ 2.41 \\ 3.02 \\ 2.25 \\ \end{array} $
1.117	4.60	$\begin{array}{c} 4.75 \\ 5.41 \\ 5.94 \\ 7.28 \\ 9.66 \\ 11.0 \\ \end{array}$	2.79	2.97	3.82	3.35
1.33	5.31		3.36	3.54	4.46	3.93
1.5	5.89		3.77	3.95	4.95	4.38
2.0	7.23		4.95	5.17	6.22	5.58
3.0	9.52		7.10	7.36	8.56	7.72
$ \begin{array}{r} 4.0 \\ 5.0 \\ 6.0 \\ 6.129 \\ 8.0 \\ 10.0 \\ \end{array} $	11.5 13.4 15.2 15.4 18.8	11.8 13.8 15.9 16.1 19.7	9.09 10.9 12.7 13.0 16.0	9.34 11.2 13.0 13.2 16.4	$ \begin{array}{c} 10.7 \\ 12.6 \\ 14.5 \\ 14.7 \\ 18.0 \\ 01.5 \\ \end{array} $	9.72 11.6 13.4 13.7 17.0
$ \begin{array}{r} 10.0 \\ 15.0 \\ 20.0 \\ 30.0 \\ 40.0 \end{array} $	$22.5 \\ 31.8 \\ 39.8 \\ 53.9 \\ 63.4$	23.5 32.4 40.6 50.9 57.5	19.3 27.9 36.8 54.2 71.7	$ 19.7 \\ 28.0 \\ 36.5 \\ 54.7 \\ 72.4 $	$21.5 \\ 29.8 \\ 38.5 \\ 54.3 \\ 66.7$	$20.5 \\ 28.8 \\ 37.4 \\ 52.7 \\ 66.5$
50.0	70.4	63.0	88.1	87.4	76.7	78.5
60.0	75.4	67.0	102	100	85.6	89.0
80.0	82.0	74.1	127	121	98.4	104
100	87.2	79.4	144	136	109	117
150	94.9	87.1	171	163	127	139
200	100	91.4	189	182	137	153
300	108	96.3	212	205	150	174
400	112	98.8	229	217	158	191
500	115	100	241	228	163	201
600	118	102	250	235	166	207
800	120	104	264	245	173	221
1,000	122	105	272	254	178	230
1,500	124	108	290	268	185	246
2,000	124	110	300	277	190	258
3,000	124	112	310	289	198	272
4,000 5,000 6,000 8,000 10,000	125 127 128 129 131	113 114 114 114 114 114	316 322 328 335 341	298 305 310 320 326	203 206 209 213 216	283 292 299 310 320

表 B.8 光子(女性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの卵巣の吸収線量(単位:pGy・cm²)

* 6.4E-6は 6.4×10^{-6} を示す。

エネルギー	AP	PA	LLAT	RLAT	ROT	ISO
(MeV)	(前方 - 後方)	(後方 - 前方)	(左側方)	(右側方)	(回転)	(等方)
$\begin{array}{c} 0.01 \\ 0.015 \\ 0.02 \\ 0.03 \\ 0.04 \end{array}$	$\begin{array}{r} 3.5\mathrm{E}-4\\ 0.0169\\ 0.0669\\ 0.202\\ 0.305\end{array}$	2.8E-5 0.0080 0.0542 0.211 0.333	2.0E-4 0.0092 0.0344 0.0972 0.148	$\begin{array}{c} 1.5\mathrm{E-4}\\ 0.0082\\ 0.0342\\ 0.100\\ 0.154\end{array}$	$\begin{array}{c} 2.2E-4\\ 0.0106\\ 0.0469\\ 0.156\\ 0.243\end{array}$	$\begin{array}{c} 6.9\mathrm{E-4} \\ 0.0114 \\ 0.0414 \\ 0.125 \\ 0.191 \end{array}$
$\begin{array}{c} 0.05 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.1 \end{array}$	$\begin{array}{c} 0.362 \\ 0.395 \\ 0.423 \\ 0.447 \\ 0.502 \end{array}$	$\begin{array}{c} 0.398 \\ 0.437 \\ 0.465 \\ 0.492 \\ 0.552 \end{array}$	0.180 0.200 0.217 0.232 0.265	$\begin{array}{c} 0.187 \\ 0.207 \\ 0.224 \\ 0.239 \\ 0.272 \end{array}$	$\begin{array}{c} 0.295 \\ 0.326 \\ 0.350 \\ 0.371 \\ 0.419 \end{array}$	$\begin{array}{c} 0.231 \\ 0.257 \\ 0.278 \\ 0.294 \\ 0.333 \end{array}$
$\begin{array}{c} 0.15 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \end{array}$	$\begin{array}{c} 0.678 \\ 0.882 \\ 1.32 \\ 1.75 \\ 2.17 \end{array}$	$\begin{array}{c} 0.743 \\ 0.963 \\ 1.43 \\ 1.88 \\ 2.32 \end{array}$	$\begin{array}{c} 0.372 \\ 0.501 \\ 0.792 \\ 1.10 \\ 1.41 \end{array}$	$\begin{array}{c} 0.381 \\ 0.512 \\ 0.807 \\ 1.12 \\ 1.43 \end{array}$	$\begin{array}{c} 0.574 \\ 0.754 \\ 1.14 \\ 1.54 \\ 1.93 \end{array}$	$\begin{array}{c} 0.460 \\ 0.609 \\ 0.936 \\ 1.28 \\ 1.61 \end{array}$
$\begin{array}{c} 0.511 \\ 0.6 \\ 0.662 \\ 0.8 \\ 1.0 \end{array}$	2.22 2.58 2.83 3.35 4.07	2.37 2.75 3.01 3.55 4.28	$ \begin{array}{c} 1.45\\ 1.72\\ 1.92\\ 2.34\\ 2.93 \end{array} $	$1.47 \\ 1.74 \\ 1.94 \\ 2.36 \\ 2.96$	$ \begin{array}{r} 1.97\\ 2.31\\ 2.54\\ 3.03\\ 3.70\end{array} $	$ \begin{array}{r} 1.65 \\ 1.95 \\ 2.15 \\ 2.59 \\ 3.21 \\ \end{array} $
$ \begin{array}{r} 1.117 \\ 1.33 \\ 1.5 \\ 2.0 \\ 3.0 \\ \end{array} $	$\begin{array}{c} 4.47 \\ 5.14 \\ 5.65 \\ 7.02 \\ 9.44 \end{array}$	4.68 5.37 5.89 7.29 9.73	3.27 3.87 4.32 5.57 7.80	3.30 3.89 4.36 5.61 7.84	$ \begin{array}{r} 4.08 \\ 4.74 \\ 5.23 \\ 6.58 \\ 8.97 \end{array} $	3.56 4.17 4.63 5.90 8.17
$\begin{array}{c} 4.0 \\ 5.0 \\ 6.0 \\ 6.129 \\ 8.0 \end{array}$	$ \begin{array}{c} 11.6\\ 13.6\\ 15.4\\ 15.6\\ 18.9 \end{array} $	11.9 13.9 15.8 16.1 19.5	$9.81 \\ 11.7 \\ 13.5 \\ 13.7 \\ 16.9$	$9.85 \\ 11.7 \\ 13.5 \\ 13.8 \\ 16.9$	$ \begin{array}{c} 11.1 \\ 13.1 \\ 14.9 \\ 15.1 \\ 18.4 \end{array} $	$ \begin{array}{r} 10.2 \\ 12.1 \\ 13.9 \\ 14.1 \\ 17.3 \\ \end{array} $
$ \begin{array}{c} 10.0 \\ 15.0 \\ 20.0 \\ 30.0 \\ 40.0 \end{array} $	22.2	22.9	20.1	20.1	21.8	20.6
	30.0	30.4	28.0	27.9	29.8	28.5
	37.1	36.8	35.6	35.7	37.0	35.9
	48.4	46.3	50.1	49.9	49.1	49.1
	56.8	53.1	63.3	62.9	59.0	60.3
50.0	63.1	58.2	74.8	74.3	67.3	69.8
60.0	67.9	62.1	84.6	83.9	73.8	77.9
80.0	75.1	68.2	101	99.8	84.1	91.0
100	80.3	72.4	113	112	91.4	101
150	89.1	79.2	134	132	103	120
200	95.0	83.5	148	146	111	133
300	102	89.0	166	164	121	150
400	107	92.6	177	175	127	161
500	110	95.1	185	183	132	170
600	112	96.9	192	189	135	176
800	115	99.5	201	198	140	187
1,000	117	101	208	205	143	194
1,500	120	104	220	217	149	208
2,000	122	105	227	224	152	218
3,000	125	107	238	234	158	231
4,000	127	108	245	241	161	240
5,000	128	109	250	247	163	248
6,000	128	110	254	251	165	254
8,000	130	111	261	258	168	264
10,000	131	111	267	263	169	271

表 B.9 光子(女性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの赤色 (活性) 骨髄の吸収線量(単位:pGy·cm²)

* 3.5E-4は3.5×10⁻⁴を示す。

エネルギー	AP	PA	LLAT	RLAT	ROT	ISO
(MeV)	(前方 - 後方)	(後方 - 前方)	(左側方)	(右側方)	(回転)	(等方)
$\begin{array}{c} 0.01 \\ 0.015 \\ 0.02 \\ 0.03 \\ 0.04 \end{array}$	0.0023 0.0370 0.0966 0.210 0.273	8.0E-4 0.0114 0.0361 0.120 0.187	0.0011 0.0130 0.0347 0.0888 0.129	0.0012 0.0119 0.0271 0.0676 0.105	0.0014 0.0177 0.0469 0.122 0.178	$\begin{array}{c} 0.0017 \\ 0.0135 \\ 0.0346 \\ 0.0883 \\ 0.131 \end{array}$
$\begin{array}{c} 0.05 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.1 \end{array}$	$\begin{array}{c} 0.308 \\ 0.335 \\ 0.368 \\ 0.395 \\ 0.470 \end{array}$	$\begin{array}{c} 0.231 \\ 0.265 \\ 0.296 \\ 0.328 \\ 0.399 \end{array}$	$\begin{array}{c} 0.156 \\ 0.176 \\ 0.197 \\ 0.219 \\ 0.267 \end{array}$	$\begin{array}{c} 0.130 \\ 0.150 \\ 0.171 \\ 0.191 \\ 0.235 \end{array}$	$\begin{array}{c} 0.215 \\ 0.239 \\ 0.266 \\ 0.292 \\ 0.355 \end{array}$	$\begin{array}{c} 0.159 \\ 0.182 \\ 0.203 \\ 0.225 \\ 0.273 \end{array}$
$\begin{array}{c} 0.15 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \end{array}$	$\begin{array}{c} 0.687 \\ 0.925 \\ 1.41 \\ 1.88 \\ 2.33 \end{array}$	$\begin{array}{c} 0.596 \\ 0.813 \\ 1.26 \\ 1.70 \\ 2.12 \end{array}$	$\begin{array}{c} 0.414 \\ 0.580 \\ 0.939 \\ 1.31 \\ 1.68 \end{array}$	$\begin{array}{c} 0.370 \\ 0.524 \\ 0.855 \\ 1.20 \\ 1.54 \end{array}$	$\begin{array}{c} 0.533 \\ 0.733 \\ 1.15 \\ 1.56 \\ 1.96 \end{array}$	$\begin{array}{c} 0.414 \\ 0.572 \\ 0.910 \\ 1.25 \\ 1.60 \end{array}$
0.511	2.38	2.17 2.53 2.78 3.31 4.03 (2) (2) (2) (2) (2) (2) (2) (2)	1.72	1.57	2.00	1.63
0.6	2.76		2.04	1.87	2.35	1.93
0.662	3.01		2.26	2.08	2.59	2.14
0.8	3.56		2.73	2.53	3.10	2.59
1.0	4.30		3.39	3.17	3.80	3.21
$ \begin{array}{c} 1.117\\ 1.33\\ 1.5\\ 2.0\\ 3.0\\ \end{array} $	$\begin{array}{c} 4.71 \\ 5.40 \\ 5.93 \\ 7.33 \\ 9.75 \\ \end{array}$	$\begin{array}{c} 4.42 \\ 5.11 \\ 5.63 \\ 7.02 \\ 9.40 \\ \end{array}$	3.76 4.40 4.90 6.23 8.56	3.53 4.16 4.63 5.92 8.20	$ \begin{array}{r} 4.19 \\ 4.86 \\ 5.36 \\ 6.72 \\ 9.09 \\ \end{array} $	3.57 4.19 4.65 5.93 8.22
$\begin{array}{c} 4.0 \\ 5.0 \\ 6.0 \\ 6.129 \\ 8.0 \end{array}$	11.9 13.8 15.7 15.9 19.1	11.5 13.5 15.3 15.6 18.9	$ \begin{array}{c} 10.6 \\ 12.6 \\ 14.4 \\ 14.6 \\ 17.9 \\ \end{array} $	$ \begin{array}{c} 10.2 \\ 12.1 \\ 13.9 \\ 14.1 \\ 17.4 \\ \end{array} $	11.2 13.1 15.0 15.2 18.5	$ \begin{array}{c} 10.3 \\ 12.1 \\ 13.9 \\ 14.1 \\ 17.2 \\ \end{array} $
$ \begin{array}{c} 10.0 \\ 15.0 \\ 20.0 \\ 30.0 \\ 40.0 \end{array} $	22.4 29.4 35.6 44.7 51.0	22.4 30.6 38.6 50.7 59.8	21.3 29.2 36.8 50.2 62.0	$20.7 \\ 28.7 \\ 36.4 \\ 50.6 \\ 63.4$	21.9 29.9 37.2 49.2 59.0	20.5 28.2 35.9 49.4 60.6
50.0	55.6	66.7	72.0	74.3	67.0	70.1
60.0	59.3	71.8	80.3	83.5	73.3	78.2
80.0	64.6	79.8	92.9	98.2	83.3	91.5
100	68.5	85.2	102	109	90.3	102
150	75.2	94.1	117	128	102	120
200	79.8	100	128	140	109	133
300	85.8	107	141	155	118	150
400	89.6	111	149	166	124	161
500	92.0	114	154	173	128	169
600	93.6	117	159	178	132	175
800	95.4	120	165	186	136	185
1,000	97.1	123	169	192	139	193
1,500	99.6	126	177	201	144	206
2,000	101	129	182	208	148	216
3,000	103	131	188	216	152	230
4,000	105	133	192	222	155	240
5,000	106	134	195	226	157	247
6,000	106	135	197	230	159	254
8,000	107	136	201	235	161	263
10,000	107	136	204	239	162	270

表 B.10 光子(女性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの残りの組織の吸収線量(単位:pGy·cm²)

* 8.0E-4は8.0×10⁻⁴を示す。

エネルギー (MeV)	AP (前方 - 後方)	PA (後方 - 前方)	LLAT (左側方)	RLAT (右側方)	ROT (回転)	ISO (等方)
$\begin{array}{c} 0.01 \\ 0.015 \\ 0.02 \\ 0.03 \\ 0.04 \end{array}$	7.9E-5 0.0094 0.0583 0.161 0.209	$\begin{array}{c} 5.3\mathrm{E-4} \\ 0.0255 \\ 0.101 \\ 0.207 \\ 0.234 \end{array}$	0.0302 0.220 0.330 0.324 0.293	0.0224 0.202 0.326 0.329 0.296	$\begin{array}{c} 0.0121 \\ 0.120 \\ 0.214 \\ 0.260 \\ 0.256 \end{array}$	0.0075 0.0787 0.154 0.192 0.190
$\begin{array}{c} 0.05 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.1 \end{array}$	0.228 0.249 0.275 0.305 0.372	0.241 0.261 0.284 0.308 0.387	0.282 0.290 0.307 0.336 0.408	$\begin{array}{c} 0.287 \\ 0.291 \\ 0.305 \\ 0.338 \\ 0.407 \end{array}$	$\begin{array}{c} 0.260 \\ 0.274 \\ 0.297 \\ 0.325 \\ 0.396 \end{array}$	$\begin{array}{c} 0.194 \\ 0.206 \\ 0.219 \\ 0.248 \\ 0.299 \end{array}$
$\begin{array}{c} 0.15 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \end{array}$	0.578 0.814 1.30 1.77 2.24	0.612 0.858 1.37 1.87 2.34	0.632 0.878 1.36 1.86 2.33	0.628 0.871 1.37 1.85 2.32	$\begin{array}{c} 0.614 \\ 0.851 \\ 1.32 \\ 1.81 \\ 2.28 \end{array}$	$\begin{array}{c} 0.475 \\ 0.672 \\ 1.07 \\ 1.47 \\ 1.86 \end{array}$
$\begin{array}{c} 0.511 \\ 0.6 \\ 0.662 \\ 0.8 \\ 1.0 \end{array}$	2.29 2.69 2.95 3.52 4.28	$2.39 \\ 2.78 \\ 3.05 \\ 3.62 \\ 4.44$	$2.38 \\ 2.76 \\ 3.03 \\ 3.60 \\ 4.39$	2.37 2.77 3.02 3.59 4.34	2.33 2.73 3.01 3.58 4.33	$ \begin{array}{r} 1.90 \\ 2.23 \\ 2.45 \\ 2.95 \\ 3.62 \\ \end{array} $
$ \begin{array}{r} 1.117 \\ 1.33 \\ 1.5 \\ 2.0 \\ 3.0 \\ \end{array} $	4.69 5.40 5.92 7.34 9.82	$\begin{array}{c} 4.90 \\ 5.67 \\ 6.28 \\ 7.74 \\ 10.2 \end{array}$	4.83 5.56 6.12 7.50 9.82	$\begin{array}{c} 4.76 \\ 5.47 \\ 6.00 \\ 7.46 \\ 9.88 \end{array}$	$\begin{array}{c} 4.76 \\ 5.47 \\ 6.05 \\ 7.49 \\ 10.0 \end{array}$	4.02 4.66 5.18 6.52 8.79
$\begin{array}{c} 4.0 \\ 5.0 \\ 6.0 \\ 6.129 \\ 8.0 \end{array}$	$ \begin{array}{r} 12.0 \\ 14.0 \\ 15.9 \\ 16.1 \\ 19.3 \\ \end{array} $	$12.4 \\ 14.3 \\ 16.2 \\ 16.4 \\ 19.5$	11.8 13.3 14.8 14.9 17.0	$ \begin{array}{r} 11.9 \\ 13.5 \\ 14.8 \\ 15.0 \\ 17.1 \\ \end{array} $	$12.0 \\ 13.7 \\ 15.4 \\ 15.5 \\ 18.2$	$10.8 \\ 12.5 \\ 14.1 \\ 14.2 \\ 16.9$
$ \begin{array}{c} 10.0 \\ 15.0 \\ 20.0 \\ 30.0 \\ 40.0 \end{array} $	$22.4 \\29.1 \\35.0 \\42.6 \\47.8$	22.6 29.2 34.5 41.2 45.2	$ 19.1 \\ 24.3 \\ 28.7 \\ 36.4 \\ 42.4 $	19.1 23.9 28.4 36.2 41.9	20.9 26.3 31.7 38.8 44.4	19.6 26.0 31.7 42.2 50.8
50.0 60.0 80.0 100 150	51.5 54.0 58.1 61.0 65.3	48.0 50.9 55.7 59.9 63.9	$\begin{array}{c} 46.7 \\ 50.2 \\ 55.5 \\ 58.8 \\ 65.1 \end{array}$	$\begin{array}{c} 46.5 \\ 49.8 \\ 55.1 \\ 59.1 \\ 65.1 \end{array}$	$\begin{array}{c} 49.5 \\ 52.7 \\ 57.2 \\ 60.1 \\ 66.4 \end{array}$	57.7 63.2 72.5 79.1 92.6
200 300 400 500 600	69.1 74.0 76.6 78.6 79.5	65.8 69.3 71.7 73.5 74.7	69.0 74.4 77.9 79.9 81.5	69.2 74.9 78.4 80.1 81.9	70.3 75.0 77.2 79.1 80.7	102 115 123 128 132
800 1,000 1,500 2,000 3,000	81.3 81.9 84.2 85.6 85.6	76.1 77.2 78.1 78.7 80.2	83.0 84.1 86.0 87.4 90.1	84.1 85.6 86.1 87.1 88.0	82.8 84.0 86.5 88.1 89.1	$ 140 \\ 145 \\ 156 \\ 162 \\ 171 $
4,000 5,000 6,000 8,000 10,000	85.6 85.7 86.0 86.9 87.3	80.8 81.1 81.2 81.4 81.4	91.8 92.6 93.2 93.7 93.5	89.3 90.4 91.4 93.0 94.3	90.2 91.2 92.0 93.6 95.2	174 179 184 193 199

表 B.11 光子(女性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの唾液腺の吸収線量(単位:pGy・cm²)

* 7.9E−5は7.9×10⁻⁵を示す。

エネルギー (MeV)	AP (前方 - 後方)	PA (後方 - 前方)	LLAT (左側方)	RLAT (右側方)	ROT (回転)	ISO (等方)
$\begin{array}{c} 0.01 \\ 0.015 \\ 0.02 \\ 0.03 \\ 0.04 \end{array}$	1.95 1.30 0.894 0.531 0.392	1.92 1.27 0.874 0.529 0.397	0.998 0.688 0.494 0.312 0.237	$\begin{array}{c} 1.00 \\ 0.692 \\ 0.497 \\ 0.314 \\ 0.238 \end{array}$	$ \begin{array}{r} 1.59\\ 1.10\\ 0.768\\ 0.460\\ 0.342 \end{array} $	$ \begin{array}{r} 1.31\\ 0.971\\ 0.696\\ 0.419\\ 0.308 \end{array} $
$\begin{array}{c} 0.05 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.1 \end{array}$	$\begin{array}{c} 0.340 \\ 0.328 \\ 0.339 \\ 0.360 \\ 0.429 \end{array}$	$\begin{array}{c} 0.343 \\ 0.331 \\ 0.339 \\ 0.362 \\ 0.429 \end{array}$	0.208 0.203 0.212 0.228 0.277	0.209 0.204 0.212 0.229 0.279	$\begin{array}{c} 0.296 \\ 0.286 \\ 0.294 \\ 0.315 \\ 0.375 \end{array}$	0.266 0.256 0.264 0.282 0.338
$0.15 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.511$	0.658 0.910 1.41 1.88 2.30 2.34	0.652 0.902 1.39 1.85 2.26 2.30	$\begin{array}{c} 0.439 \\ 0.623 \\ 1.00 \\ 1.37 \\ 1.71 \\ 1.74 \end{array}$	$\begin{array}{c} 0.442 \\ 0.627 \\ 1.01 \\ 1.38 \\ 1.72 \\ 1.76 \end{array}$	$\begin{array}{c} 0.581 \\ 0.809 \\ 1.27 \\ 1.70 \\ 2.09 \\ 2.13 \end{array}$	$0.526 \\ 0.734 \\ 1.16 \\ 1.56 \\ 1.93 \\ 1.97$
$0.6 \\ 0.662 \\ 0.8 \\ 1.0$	2.66 2.87 3.27 3.72	2.63 2.83 3.22 3.66	2.02 2.20 2.56 3.00	2.03 2.22 2.57 3.02	$2.43 \\ 2.63 \\ 3.01 \\ 3.46$	2.26 2.45 2.83 3.28
$ \begin{array}{r} 1.117 \\ 1.33 \\ 1.5 \\ 2.0 \\ 3.0 \\ \end{array} $	$3.94 \\ 4.27 \\ 4.51 \\ 5.10 \\ 6.09$	3.87 4.22 4.47 5.06 6.03	3.23 3.61 3.87 4.53 5.73	3.25 3.62 3.88 4.56 5.74	3.70 4.04 4.30 4.97 6.03	3.52 3.88 4.13 4.75 5.84
$\begin{array}{c} 4.0\\ 5.0\\ 6.0\\ 6.129\\ 8.0 \end{array}$	$6.92 \\ 7.70 \\ 8.45 \\ 8.54 \\ 9.85$	$ \begin{array}{r} 6.91 \\ 7.75 \\ 8.56 \\ 8.66 \\ 10.1 \\ \end{array} $	6.76 7.73 8.67 8.79 10.5	$6.79 \\ 7.75 \\ 8.66 \\ 8.78 \\ 10.4$	6.97 7.83 8.67 8.77 10.3	6.78 7.67 8.51 8.60 10.1
$ \begin{array}{r} 10.0 \\ 15.0 \\ 20.0 \\ 30.0 \\ 40.0 \end{array} $	11.2 14.4 17.3 22.5 26.8	11.4 14.7 17.7 22.9 27.2	$12.2 \\ 16.4 \\ 20.5 \\ 28.1 \\ 34.8$	12.2 16.4 20.5 28.1 34.7	11.8 15.5 18.9 25.1 30.4	11.6 15.3 18.9 25.5 31.4
50.0 60.0 80.0 100 150	29.8 33.4 36.6 39.4 44.5	30.8 34.2 38.1 41.1 46.0	$\begin{array}{c} 40.9 \\ 46.5 \\ 55.5 \\ 62.8 \\ 76.1 \end{array}$	$\begin{array}{c} 40.7 \\ 46.4 \\ 55.3 \\ 62.5 \\ 75.6 \end{array}$	35.0 39.5 45.4 49.8 57.7	36.3 40.9 48.3 54.3 65.2
200 300 400 500 600	47.5 52.0 54.9 56.7 57.6	49.2 53.1 55.6 57.4 58.8	85.3 97.7 106 112 116	84.8 97.0 105 111 115	$\begin{array}{c} 62.8\\ 69.1\\ 73.4\\ 76.5\\ 78.9\end{array}$	73.2 84.3 91.5 96.8 101
800 1,000 1,500 2,000 3,000	59.6 60.2 62.2 63.7 66.4	$\begin{array}{c} 60.7 \\ 61.9 \\ 64.1 \\ 65.6 \\ 67.2 \end{array}$	123 128 137 143 151	122 127 136 141 149	82.4 84.9 89.0 91.6 95.4	108 113 122 129 138
4,000 5,000 6,000 8,000 10,000	66.9 67.9 68.9 69.6 69.8	68.3 68.9 69.5 70.6 71.0	156 160 164 169 172	154 158 162 167 172	97.7 99.6 101 103 105	$144 \\ 149 \\ 154 \\ 161 \\ 168$

表 B.12 光子(女性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの皮膚の吸収線量(単位:pGy・cm²)

エネルギー	AP	PA	LLAT	RLAT	ROT	ISO
(MeV)	(前方 - 後方)	(後方 - 前方)	(左側方)	(右側方)	(回転)	(等方)
$\begin{array}{c} 0.01 \\ 0.015 \\ 0.02 \\ 0.03 \\ 0.04 \end{array}$	$\begin{array}{c} 1.9\mathrm{E}{-5} \\ 0.0243 \\ 0.137 \\ 0.321 \\ 0.381 \end{array}$	2.0E-5 0.0049 0.0701 0.140	8.9E-6 0.0109 0.0829 0.246 0.309	1.3E-5 7.3E-4 0.0153 0.0408	3.7E-6 0.0079 0.0516 0.155 0.209	0.0046 0.0331 0.111 0.156
$\begin{array}{c} 0.05 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.1 \end{array}$	$\begin{array}{c} 0.402 \\ 0.420 \\ 0.450 \\ 0.473 \\ 0.547 \end{array}$	0.188 0.220 0.254 0.283 0.335	$\begin{array}{c} 0.331 \\ 0.344 \\ 0.365 \\ 0.391 \\ 0.458 \end{array}$	$\begin{array}{c} 0.0613 \\ 0.0784 \\ 0.0945 \\ 0.109 \\ 0.140 \end{array}$	0.240 0.262 0.286 0.309 0.372	0.181 0.201 0.218 0.237 0.285
$\begin{array}{c} 0.15 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \end{array}$	$\begin{array}{c} 0.780 \\ 1.04 \\ 1.55 \\ 2.06 \\ 2.53 \end{array}$	0.517 0.708 1.11 1.52 1.91	0.672 0.916 1.42 1.91 2.38	0.228 0.336 0.588 0.859 1.15	0.542 0.737 1.15 1.55 1.95	$\begin{array}{c} 0.420 \\ 0.574 \\ 0.909 \\ 1.25 \\ 1.59 \end{array}$
$\begin{array}{c} 0.511 \\ 0.6 \\ 0.662 \\ 0.8 \\ 1.0 \end{array}$	2.58 2.97 3.24 3.80 4.57	1.96 2.30 2.52 3.02 3.70	$2.43 \\ 2.83 \\ 3.10 \\ 3.67 \\ 4.44$	$ \begin{array}{r} 1.18 \\ 1.45 \\ 1.64 \\ 2.05 \\ 2.63 \\ \end{array} $	2.00 2.34 2.57 3.09 3.77	1.63 1.92 2.13 2.56 3.18
$ \begin{array}{r} 1.117\\ 1.33\\ 1.5\\ 2.0\\ 3.0 \end{array} $	4.99 5.72 6.25 7.69 10.2	$\begin{array}{c} 4.09 \\ 4.75 \\ 5.27 \\ 6.61 \\ 8.90 \end{array}$	$\begin{array}{c} 4.86 \\ 5.58 \\ 6.13 \\ 7.58 \\ 10.1 \end{array}$	$2.96 \\ 3.56 \\ 4.01 \\ 5.25 \\ 7.43$	$\begin{array}{c} 4.14 \\ 4.78 \\ 5.24 \\ 6.51 \\ 8.99 \end{array}$	3.53 4.18 4.69 5.96 8.15
$\begin{array}{c} 4.0\\ 5.0\\ 6.0\\ 6.129\\ 8.0 \end{array}$	$12.3 \\ 14.3 \\ 16.2 \\ 16.4 \\ 19.7$	$ \begin{array}{c} 10.9 \\ 12.9 \\ 14.7 \\ 15.0 \\ 18.4 \end{array} $	$ \begin{array}{r} 12.2 \\ 14.3 \\ 16.3 \\ 16.5 \\ 19.9 \\ \end{array} $	$9.40 \\11.3 \\13.1 \\13.2 \\16.6$	11.2 13.2 15.0 15.2 18.3	10.2 12.0 13.8 14.0 17.1
$ \begin{array}{c} 10.0 \\ 15.0 \\ 20.0 \\ 30.0 \\ 40.0 \end{array} $	22.7	21.9	23.2	19.9	21.5	20.2
	28.5	30.4	30.2	28.1	28.6	27.5
	32.9	38.9	36.0	36.7	35.7	35.0
	38.8	53.0	44.2	53.6	47.0	48.1
	43.1	64.6	49.8	70.0	56.6	59.0
50.0	46.2	73.9	$53.8 \\ 56.9 \\ 61.6 \\ 65.0 \\ 70.9$	84.9	65.0	68.3
60.0	48.4	80.6		97.7	71.9	76.2
80.0	52.2	91.2		119	82.6	89.8
100	54.8	98.4		134	90.4	100
150	59.4	109		158	102	120
200	63.0	116	75.0	174	109	134
300	67.5	125	80.2	195	120	152
400	70.4	130	82.8	208	126	163
500	72.1	135	84.8	217	131	171
600	73.3	138	86.1	224	134	178
800	74.5	143	88.0	234	140	188
1,000	75.5	147	89.7	242	144	197
1,500	77.1	150	92.1	255	150	212
2,000	77.7	152	93.1	264	154	222
3,000	79.2	155	94.6	276	159	238
4,000	79.9	158	95.2	284	161	249
5,000	80.4	160	96.1	290	163	258
6,000	80.7	161	96.7	294	165	264
8,000	81.3	164	98.0	300	167	273
10,000	81.8	165	99.2	304	167	278

表 B.13 光子(女性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの胃壁の吸収線量(単位:pGy·cm²)

* 1.9E-5は1.9×10⁻⁵を示す。

エネルギー	AP	PA	LLAT	RLAT	ROT	ISO
(MeV)	(前方 - 後方)	(後方 - 前方)	(左側方)	(右側方)	(回転)	(等方)
0.01 0.015 0.02 0.03 0.04	$\begin{array}{c} 0.0129\\ 0.308\\ 0.644\\ 0.698\\ 0.684\end{array}$	6.4E-4 0.0279 0.0972	$\begin{array}{c} 2.0E-6\\ 2.7E-4\\ 0.0029\\ 0.0250\\ 0.0512 \end{array}$	0.0015 0.0173 0.0674 0.107	0.0019 0.0773 0.205 0.287 0.300	9.8E-4 0.0414 0.119 0.186 0.206
$\begin{array}{c} 0.05 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.1 \end{array}$	$\begin{array}{c} 0.624 \\ 0.592 \\ 0.597 \\ 0.619 \\ 0.699 \end{array}$	$\begin{array}{c} 0.157 \\ 0.201 \\ 0.226 \\ 0.254 \\ 0.310 \end{array}$	0.0737 0.0930 0.111 0.126 0.154	0.129 0.147 0.167 0.183 0.217	$\begin{array}{c} 0.301 \\ 0.312 \\ 0.330 \\ 0.353 \\ 0.413 \end{array}$	0.223 0.239 0.250 0.274 0.318
$\begin{array}{c} 0.15 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.511 \\ 0.6 \\ 0.662 \end{array}$	0.962 1.28 1.88 2.47 3.02 3.08 3.52 2.80	$\begin{array}{c} 0.483 \\ 0.662 \\ 1.05 \\ 1.44 \\ 1.82 \\ 1.86 \\ 2.19 \\ 2.41 \end{array}$	0.233 0.333 0.560 0.792 1.05 1.07 1.30	$\begin{array}{c} 0.324 \\ 0.452 \\ 0.746 \\ 1.05 \\ 1.35 \\ 1.39 \\ 1.67 \\ 1.85 \end{array}$	$\begin{array}{c} 0.607 \\ 0.825 \\ 1.26 \\ 1.69 \\ 2.13 \\ 2.16 \\ 2.53 \\ 2.70 \end{array}$	$\begin{array}{c} 0.471 \\ 0.645 \\ 1.04 \\ 1.41 \\ 1.78 \\ 1.82 \\ 2.15 \\ 2.20 \end{array}$
0.002	5.80	2.41	1.43	1.85	2.79	2.39
0.8	4.39	2.88	1.81	2.26	3.32	2.88
1.0	5.25	3.52	2.33	2.88	4.02	3.55
1.117	5.70	3.88	2.65	3.21	4.40	3.95
1.23	6.50	4.55	3.10	2.85	5.06	4.63
1.33	6.50	4.55	3.19	5.85	5.06	4.65
1.5	7.08	5.05	3.58	4.36	5.52	5.15
2.0	8.58	6.42	4.77	5.64	6.89	6.53
3.0	11.1	8.80	7.05	7.91	9.45	8.86
4.0 5.0 6.0 6.129 8.0	$ \begin{array}{c} 13.1 \\ 14.9 \\ 16.1 \\ 16.2 \\ 16.9 \end{array} $	$ \begin{array}{c} 10.9 \\ 12.9 \\ 14.8 \\ 15.1 \\ 18.6 \end{array} $	$ \begin{array}{c} 9.11\\ 11.0\\ 12.7\\ 12.9\\ 16.0 \end{array} $	9.98 11.9 13.8 14.1 17.3	$ 11.3 \\ 13.4 \\ 15.1 \\ 15.4 \\ 18.0 $	10.8 12.5 14.2 14.5 17.6
$ \begin{array}{c} 10.0 \\ 15.0 \\ 20.0 \\ 30.0 \\ 40.0 \end{array} $	17.0 17.0 17.4 18.0 18.9	22.2 31.2 40.5 56.3 67.8	19.1 26.4 34.3 49.3 63.6	20.6 27.7 34.2 45.8 57.0	$20.6 \\ 26.0 \\ 31.1 \\ 40.5 \\ 48.7$	20.9 27.6 33.5 45.2 55.0
50.0	$ 19.5 \\ 19.9 \\ 20.5 \\ 21.3 \\ 22.5 $	76.9	76.3	66.4	55.8	62.8
60.0		83.2	87.3	75.2	61.0	69.7
80.0		93.6	106	90.5	69.5	80.3
100		101	120	102	75.7	89.0
150		112	145	120	85.9	104
200	24.0	120	163	132	93.2	115
300	25.3	130	186	146	102	128
400	26.2	136	200	156	108	135
500	26.3	140	211	162	110	143
600	26.6	142	219	168	113	150
800	26.8	147	232	177	117	160
1,000	27.2	149	239	183	120	169
1,500	27.5	154	252	193	125	183
2,000	27.6	157	260	197	129	190
3,000	28.3	160	275	202	132	197
4,000	28.3	162	285	208	134	203
5,000	28.3	164	290	211	136	209
6,000	28.2	165	290	214	137	214
8,000	28.4	167	282	218	139	226
10,000	28.5	170	268	222	141	237

表 B.14 光子(女性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの甲状腺の吸収線量(単位:pGy·cm²)

* 2.0E-6は2.0×10⁻⁶を示す。

	エネルギー (MeV)	AP (前方 - 後方)	PA (後方 - 前方)	LLAT (左側方)	RLAT (右側方)	ROT (回転)	ISO (等方)
-	$\begin{array}{c} 0.01 \\ 0.015 \\ 0.02 \\ 0.03 \\ 0.04 \end{array}$	$\begin{array}{c} 0.0154 \\ 0.234 \\ 0.415 \\ 0.501 \\ 0.498 \end{array}$	 5.4E-4 0.0306 0.0797	8.8E-7 2.3E-5 8.0E-4 0.0161 0.0399	9.3E-6 6.1E-4 0.0144 0.0411	$\begin{array}{c} 0.0025\\ 0.0574\\ 0.120\\ 0.166\\ 0.195\end{array}$	0.0015 0.0388 0.0866 0.132 0.154
	$\begin{array}{c} 0.05 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.1 \end{array}$	$\begin{array}{c} 0.496 \\ 0.505 \\ 0.532 \\ 0.555 \\ 0.645 \end{array}$	0.128 0.166 0.187 0.217 0.273	$\begin{array}{c} 0.0646 \\ 0.0840 \\ 0.104 \\ 0.120 \\ 0.154 \end{array}$	0.0638 0.0857 0.0993 0.118 0.154	0.212 0.236 0.252 0.281 0.327	$\begin{array}{c} 0.171 \\ 0.190 \\ 0.207 \\ 0.226 \\ 0.273 \end{array}$
	$\begin{array}{c} 0.15 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.511 \\ 0.6 \\ 0.662 \\ 0.8 \end{array}$	$\begin{array}{c} 0.915 \\ 1.20 \\ 1.77 \\ 2.30 \\ 2.80 \\ 2.88 \\ 3.31 \\ 3.62 \\ 4.19 \end{array}$	$\begin{array}{c} 0.425 \\ 0.590 \\ 0.951 \\ 1.33 \\ 1.69 \\ 1.72 \\ 2.04 \\ 2.25 \\ 2.71 \end{array}$	$\begin{array}{c} 0.253 \\ 0.371 \\ 0.636 \\ 0.921 \\ 1.22 \\ 1.24 \\ 1.50 \\ 1.68 \\ 2.09 \end{array}$	$\begin{array}{c} 0.255 \\ 0.370 \\ 0.639 \\ 0.920 \\ 1.21 \\ 1.24 \\ 1.50 \\ 1.67 \\ 2.07 \end{array}$	$\begin{array}{c} 0.501 \\ 0.675 \\ 1.05 \\ 1.44 \\ 1.82 \\ 1.85 \\ 2.18 \\ 2.39 \\ 2.86 \end{array}$	$\begin{array}{c} 0.404\\ 0.554\\ 0.875\\ 1.20\\ 1.53\\ 1.57\\ 1.87\\ 2.09\\ 2.52\end{array}$
	$ \begin{array}{r} 1.0 \\ 1.117 \\ 1.33 \\ 1.5 \\ 2.0 \\ 3.0 \\ \end{array} $	4.97 5.39 6.16 6.71 8.21 10.7	3.36 3.73 4.37 4.85 6.15 8.47	2.71 3.06 3.64 4.12 5.38 7.57	2.66 3.01 3.61 4.10 5.35 7.53	3.51 3.88 4.54 5.06 6.38 8.65	3.15 3.49 4.11 4.56 5.80 7.95
	$\begin{array}{c} 4.0 \\ 5.0 \\ 6.0 \\ 6.129 \\ 8.0 \end{array}$	$12.6 \\ 14.4 \\ 15.8 \\ 15.9 \\ 18.1$	$ \begin{array}{c} 10.4 \\ 12.4 \\ 14.2 \\ 14.4 \\ 17.7 \end{array} $	9.56 11.4 13.2 13.4 16.6	$9.49 \\11.3 \\13.1 \\13.3 \\16.5$	$10.7 \\ 12.7 \\ 14.5 \\ 14.8 \\ 17.6$	$9.82 \\ 11.6 \\ 13.2 \\ 13.4 \\ 16.4$
	$ \begin{array}{r} 10.0 \\ 15.0 \\ 20.0 \\ 30.0 \\ 40.0 \\ \end{array} $	20.0 23.9 26.8 30.5 32.7	21.0 29.6 38.6 55.3 70.6	19.9 28.1 36.4 53.2 68.6	19.9 28.1 36.1 52.7 68.8	20.6 27.9 34.5 46.5 57.3	$ 19.4 \\ 26.6 \\ 33.5 \\ 46.6 \\ 58.6 $
	50.0 60.0 80.0 100 150	34.5 35.8 38.3 39.8 42.7	82.6 92.2 105 114 127	82.1 93.8 112 125 147	82.6 94.5 112 125 147	67.3 75.4 88.6 98.5 114	68.6 77.9 92.4 104 126
	200 300 400 500 600	$\begin{array}{c} 44.7\\ 47.8\\ 49.4\\ 50.1\\ 51.0 \end{array}$	137 149 156 160 164	161 178 188 196 202	162 180 191 199 204	124 136 141 145 150	141 160 173 183 190
	800 1,000 1,500 2,000 3,000	51.7 51.9 53.3 54.3 55.0	172 176 182 185 189	212 220 229 233 240	213 220 228 234 245	157 163 174 179 184	201 208 224 236 249
	4,000 5,000 6,000 8,000 10,000	56.2 56.3 56.1 56.3 56.0	193 196 199 203 208	246 248 252 259 267	253 258 263 269 271	189 191 193 197 202	257 267 273 283 291

表 B.15 光子(女性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの膀胱壁 (UB-wall)の吸収線量(単位:pGy・cm²)

* 8.8E-7は8.8×10⁻⁷を示す。

エネルギー (MeV)	AP (前方 - 後方)	PA (後方 - 前方)	LLAT (左側方)	RLAT (右側方)	ROT (回転)	ISO (等方)
$\begin{array}{c} 0.01 \\ 0.015 \\ 0.02 \\ 0.03 \\ 0.04 \end{array}$	3.6E-7 9.7E-5 0.0022 0.0400 0.0988	3.1E-5 0.0023 0.0580 0.135	6.0E-5 0.0046 0.0805 0.169	2.5E-8 7.2E-5 0.0048 0.0834 0.173	2.8E-8 1.1E-4 0.0040 0.0661 0.144	7.9E-7 2.8E-4 0.0060 0.0662 0.136
$\begin{array}{c} 0.05 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.1 \end{array}$	$\begin{array}{c} 0.141 \\ 0.170 \\ 0.188 \\ 0.219 \\ 0.274 \end{array}$	0.181 0.210 0.236 0.262 0.321	0.218 0.250 0.276 0.306 0.371	0.224 0.255 0.282 0.313 0.377	0.193 0.224 0.249 0.279 0.337	0.177 0.204 0.228 0.253 0.308
$\begin{array}{c} 0.15 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \end{array}$	0.432 0.612 0.990 1.38 1.77	$\begin{array}{c} 0.496 \\ 0.691 \\ 1.10 \\ 1.52 \\ 1.93 \end{array}$	$\begin{array}{c} 0.566 \\ 0.784 \\ 1.24 \\ 1.69 \\ 2.12 \end{array}$	$\begin{array}{c} 0.574 \\ 0.795 \\ 1.25 \\ 1.70 \\ 2.13 \end{array}$	$\begin{array}{c} 0.522 \\ 0.726 \\ 1.15 \\ 1.59 \\ 2.01 \end{array}$	$0.476 \\ 0.661 \\ 1.06 \\ 1.46 \\ 1.85$
0.511 0.6 0.662 0.8 1.0	1.81 2.15 2.38 2.87 3.56	1.97 2.32 2.57 3.09 3.79	2.17 2.54 2.79 3.33 4.07 (1)	2.18 2.56 2.81 $3.36 4.10 $	$2.05 \\ 2.41 \\ 2.65 \\ 3.18 \\ 3.91 \\ 0.02 \\ $	1.89 2.23 2.45 2.95 3.65
$ \begin{array}{r} 1.117 \\ 1.33 \\ 1.5 \\ 2.0 \\ 3.0 \\ \end{array} $	$3.94 \\ 4.61 \\ 5.12 \\ 6.50 \\ 8.89$	$\begin{array}{r} 4.18 \\ 4.85 \\ 5.37 \\ 6.76 \\ 9.18 \end{array}$	$\begin{array}{c} 4.48 \\ 5.18 \\ 5.70 \\ 7.14 \\ 9.62 \end{array}$	$\begin{array}{c} 4.50 \\ 5.20 \\ 5.73 \\ 7.15 \\ 9.63 \end{array}$	$\begin{array}{c} 4.30 \\ 5.00 \\ 5.53 \\ 6.93 \\ 9.37 \end{array}$	$\begin{array}{c} 4.04 \\ 4.70 \\ 5.21 \\ 6.56 \\ 8.92 \end{array}$
$\begin{array}{c} 4.0 \\ 5.0 \\ 6.0 \\ 6.129 \\ 8.0 \end{array}$	11.0 13.0 14.9 15.1 18.5	$ \begin{array}{r} 11.4 \\ 13.4 \\ 15.4 \\ 15.6 \\ 19.1 \\ \end{array} $	$ \begin{array}{c} 11.8\\ 13.8\\ 15.8\\ 16.0\\ 19.5\\ \end{array} $	$ \begin{array}{c} 11.8\\ 13.8\\ 15.8\\ 16.0\\ 19.4 \end{array} $	$ \begin{array}{r} 11.5 \\ 13.6 \\ 15.5 \\ 15.8 \\ 19.1 \\ \end{array} $	11.1 13.0 14.9 15.2 18.6
$ \begin{array}{r} 10.0 \\ 15.0 \\ 20.0 \\ 30.0 \\ 40.0 \end{array} $	22.0 30.3 38.1 51.6 61.8	22.5 30.3 37.5 48.7 57.3	$22.9 \\ 30.2 \\ 37.1 \\ 47.1 \\ 54.2$	22.930.336.846.553.2	22.530.637.448.356.5	$22.0 \\ 29.9 \\ 36.9 \\ 48.1 \\ 56.6$
50.0 60.0 80.0 100 150	70.4 76.8 86.3 92.2 104	64.1 69.5 78.1 84.0 93.2	59.563.770.174.782.6	58.5 62.3 68.4 72.8 80.2	62.9 67.8 75.0 80.3 88.7	63.4 69.0 77.9 84.8 96.9
200 300 400 500 600	111 121 128 132 135	98.7 105 110 114 116	87.7 93.8 97.2 99.7 101	85.2 91.5 95.0 97.3 99.2	94.5 102 106 109 111	105 116 124 130 134
800 1,000 1,500 2,000 3,000	138 141 146 149 153	120 122 126 128 131	104 106 109 111 113	102 103 107 108 110	114 116 119 122 124	141 147 156 163 174
4,000 5,000 6,000 8,000 10,000	156 158 159 161 163	134 135 136 137 138	114 115 116 117 117	111 112 112 113 114	126 128 128 129 130	182 189 194 203 210

表 B.16 光子(男性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの脳の吸収線量(単位:pGy·cm²)

* 3.6E-7は3.6×10⁻⁷を示す。

エネルギー (MeV)	AP (前方 - 後方)	PA (後方 - 前方)	LLAT (左側方)	RLAT (右側方)	ROT (回転)	ISO (等方)
$\begin{array}{c} 0.01 \\ 0.015 \\ 0.02 \\ 0.03 \\ 0.04 \end{array}$	$\begin{array}{c} 0.449 \\ 0.987 \\ 0.922 \\ 0.613 \\ 0.463 \end{array}$	3.8E-6 0.0048 0.0211	0.0802 0.283 0.346 0.277 0.215	$\begin{array}{c} 0.0747 \\ 0.268 \\ 0.331 \\ 0.267 \\ 0.206 \end{array}$	0.160 0.378 0.390 0.296 0.230	0.131 0.328 0.366 0.289 0.224
$\begin{array}{c} 0.05 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.1 \end{array}$	$\begin{array}{c} 0.417 \\ 0.423 \\ 0.428 \\ 0.475 \\ 0.571 \end{array}$	0.0356 0.0525 0.0692 0.0861 0.120	$\begin{array}{c} 0.197 \\ 0.197 \\ 0.209 \\ 0.233 \\ 0.290 \end{array}$	$\begin{array}{c} 0.190 \\ 0.190 \\ 0.198 \\ 0.225 \\ 0.279 \end{array}$	$\begin{array}{c} 0.215 \\ 0.217 \\ 0.241 \\ 0.265 \\ 0.332 \end{array}$	$\begin{array}{c} 0.207 \\ 0.207 \\ 0.220 \\ 0.245 \\ 0.305 \end{array}$
$\begin{array}{c} 0.15 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \end{array}$	0.886 1.21 1.82 2.40 2.95	0.228 0.365 0.667 0.997 1.34	$\begin{array}{c} 0.462 \\ 0.656 \\ 1.04 \\ 1.44 \\ 1.83 \end{array}$	0.448 0.639 1.01 1.39 1.78	$\begin{array}{c} 0.533 \\ 0.754 \\ 1.18 \\ 1.62 \\ 2.05 \end{array}$	$\begin{array}{c} 0.494 \\ 0.687 \\ 1.10 \\ 1.50 \\ 1.89 \end{array}$
$\begin{array}{c} 0.511 \\ 0.6 \\ 0.662 \\ 0.8 \\ 1.0 \end{array}$	3.00 3.45 3.76 4.39 5.23	$ \begin{array}{r} 1.39 \\ 1.72 \\ 1.94 \\ 2.45 \\ 3.11 \\ \end{array} $	$ 1.88 \\ 2.23 \\ 2.46 \\ 2.93 \\ 3.59 $	1.83 2.16 2.38 2.85 3.50	2.09 2.45 2.71 3.25 3.98	$ \begin{array}{r} 1.93 \\ 2.28 \\ 2.50 \\ 2.99 \\ 3.64 \\ \end{array} $
$ \begin{array}{r} 1.117 \\ 1.33 \\ 1.5 \\ 2.0 \\ 3.0 \\ \end{array} $	5.67 6.36 6.81 7.80 8.72	$\begin{array}{c} 3.47 \\ 4.14 \\ 4.65 \\ 6.04 \\ 8.41 \end{array}$	3.93 4.56 5.03 6.26 8.20	3.86 4.49 4.95 6.12 8.02	$\begin{array}{c} 4.37 \\ 5.06 \\ 5.58 \\ 6.75 \\ 8.45 \end{array}$	3.99 4.59 5.03 6.07 7.73
$\begin{array}{c} 4.0 \\ 5.0 \\ 6.0 \\ 6.129 \\ 8.0 \end{array}$	8.80 8.56 8.21 8.17 7.68	$ \begin{array}{r} 10.4 \\ 12.1 \\ 13.8 \\ 14.0 \\ 17.1 \end{array} $	9.66 10.8 11.8 11.9 13.5	9.50 10.8 11.7 11.8 13.4	$9.69 \\10.7 \\11.6 \\11.7 \\13.2$	$9.03 \\ 10.3 \\ 11.3 \\ 11.4 \\ 12.7$
$ \begin{array}{c} 10.0 \\ 15.0 \\ 20.0 \\ 30.0 \\ 40.0 \end{array} $	$7.28 \\ 6.93 \\ 6.79 \\ 6.75 \\ 6.91$	20.3 28.6 37.2 54.8 71.5	15.0 18.5 21.9 28.7 35.6	14.9 18.5 22.1 29.3 37.0	$14.5 \\ 17.7 \\ 20.7 \\ 28.1 \\ 35.6$	$14.1 \\ 17.7 \\ 21.6 \\ 28.4 \\ 34.4$
50.0 60.0 80.0 100 150	7.12 7.30 7.53 7.87 8.29	85.6 97.8 114 125 144	42.2 48.1 58.2 66.2 80.9	44.1 50.3 61.2 69.3 84.4	$\begin{array}{c} 42.3 \\ 48.0 \\ 57.5 \\ 63.7 \\ 76.3 \end{array}$	$\begin{array}{c} 40.4 \\ 45.8 \\ 55.4 \\ 63.5 \\ 77.9 \end{array}$
200 300 400 500 600	8.81 9.59 10.1 10.3 10.4	154 166 174 179 184	91.1 104 112 118 122	95.5 111 121 128 133	84.7 96.2 103 108 112	88.3 103 113 120 127
800 1,000 1,500 2,000 3,000	$10.4 \\ 10.6 \\ 10.6 \\ 10.6 \\ 10.6 \\ 10.6$	189 194 201 206 211	129 133 143 148 155	142 147 158 164 169	118 122 129 134 140	$ 137 \\ 145 \\ 158 \\ 166 \\ 177 $
4,000 5,000 6,000 8,000 10,000	10.6 10.6 10.7 10.7 10.8	214 218 220 222 223	157 160 162 167 172	174 178 182 188 195	143 147 150 155 158	186 195 202 212 218

表 B.17 光子(男性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの乳房の吸収線量(単位:pGy·cm²)

* 3.8E-6は3.8×10⁻⁶を示す。

エネルギー	AP	PA	LLAT	RLAT	ROT	ISO
(MeV)	(前方 - 後方)	(後方 - 前方)	(左側方)	(右側方)	(回転)	(等方)
$\begin{array}{c} 0.01 \\ 0.015 \\ 0.02 \\ 0.03 \\ 0.04 \end{array}$	3.2E-4 0.0168 0.0926 0.269 0.340	6.6E-5 0.0044 0.0634 0.130	2.1E-6 0.0051 0.0499 0.151 0.190	$\begin{array}{c} 1.1 \mathrm{E}{-7} \\ 9.5 \mathrm{E}{-4} \\ 0.0197 \\ 0.0951 \\ 0.138 \end{array}$	$\begin{array}{r} 3.3\mathrm{E}\!-\!5\\ 0.0050\\ 0.0386\\ 0.136\\ 0.194 \end{array}$	3.3E-5 0.0030 0.0259 0.101 0.146
$\begin{array}{c} 0.05 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.1 \end{array}$	$\begin{array}{c} 0.372 \\ 0.396 \\ 0.412 \\ 0.447 \\ 0.521 \end{array}$	$\begin{array}{c} 0.178 \\ 0.210 \\ 0.245 \\ 0.270 \\ 0.333 \end{array}$	0.204 0.218 0.233 0.253 0.298	$\begin{array}{c} 0.159 \\ 0.175 \\ 0.190 \\ 0.208 \\ 0.251 \end{array}$	0.225 0.245 0.267 0.292 0.350	0.170 0.188 0.209 0.226 0.269
$\begin{array}{c} 0.15 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \end{array}$	$\begin{array}{c} 0.749 \\ 0.997 \\ 1.50 \\ 1.99 \\ 2.46 \end{array}$	0.501 0.690 1.09 1.49 1.88	$\begin{array}{c} 0.445 \\ 0.610 \\ 0.964 \\ 1.33 \\ 1.68 \end{array}$	$\begin{array}{c} 0.377 \\ 0.525 \\ 0.841 \\ 1.17 \\ 1.49 \end{array}$	0.514 0.702 1.09 1.47 1.85	$0.404 \\ 0.550 \\ 0.868 \\ 1.19 \\ 1.52$
$\begin{array}{c} 0.511 \\ 0.6 \\ 0.662 \\ 0.8 \\ 1.0 \end{array}$	$2.50 \\ 2.90 \\ 3.16 \\ 3.71 \\ 4.44$	1.92 2.26 2.50 2.99 3.67	1.71 2.02 2.23 2.69 3.33	$ \begin{array}{r} 1.53\\ 1.82\\ 2.02\\ 2.45\\ 3.07 \end{array} $	$ \begin{array}{r} 1.89 \\ 2.22 \\ 2.46 \\ 2.95 \\ 3.61 \\ \end{array} $	$1.55 \\ 1.84 \\ 2.03 \\ 2.47 \\ 3.07$
$ \begin{array}{r} 1.117 \\ 1.33 \\ 1.5 \\ 2.0 \\ 3.0 \\ \end{array} $	$\begin{array}{c} 4.84 \\ 5.53 \\ 6.06 \\ 7.48 \\ 9.94 \end{array}$	$\begin{array}{c} 4.06 \\ 4.72 \\ 5.22 \\ 6.59 \\ 8.97 \end{array}$	$\begin{array}{c} 3.70 \\ 4.31 \\ 4.79 \\ 6.09 \\ 8.42 \end{array}$	$\begin{array}{c} 3.41 \\ 4.01 \\ 4.48 \\ 5.74 \\ 7.97 \end{array}$	3.98 4.61 5.07 6.39 8.72	3.41 4.00 4.44 5.67 7.89
$\begin{array}{c} 4.0 \\ 5.0 \\ 6.0 \\ 6.129 \\ 8.0 \end{array}$	$ \begin{array}{r} 12.1 \\ 14.1 \\ 16.0 \\ 16.3 \\ 19.6 \\ \end{array} $	$ \begin{array}{c} 11.0\\ 12.9\\ 14.7\\ 14.9\\ 18.2 \end{array} $	$ \begin{array}{c} 10.5 \\ 12.3 \\ 14.1 \\ 14.3 \\ 17.5 \end{array} $	9.99 11.8 13.6 13.8 17.0	$ \begin{array}{r} 10.8 \\ 12.7 \\ 14.5 \\ 14.7 \\ 18.0 \\ \end{array} $	9.88 11.7 13.5 13.7 16.7
$ \begin{array}{c} 10.0 \\ 15.0 \\ 20.0 \\ 30.0 \\ 40.0 \end{array} $	22.8	21.7	20.6	20.3	21.0	19.9
	29.5	29.8	27.4	27.9	28.1	27.5
	34.7	37.9	33.5	35.1	35.1	34.8
	42.2	52.3	45.0	47.8	47.6	47.5
	47.4	64.3	55.8	59.6	58.2	58.7
50.0	51.3	73.9	65.5	70.3	$ \begin{array}{r} 67.0 \\ 74.1 \\ 85.6 \\ 93.9 \\ 108 \end{array} $	68.6
60.0	54.3	81.3	74.1	79.8		77.3
80.0	58.7	92.5	88.2	96.4		92.2
100	62.0	100	99.0	109		104
150	67.5	112	117	131		126
200	71.6	120	129	145	118	142
300	76.8	131	145	164	130	163
400	79.9	138	156	175	138	175
500	82.0	143	163	184	143	185
600	83.4	146	169	191	147	193
800	85.1	150	177	201	154	206
1,000	86.3	153	183	208	158	217
1,500	88.4	157	193	219	165	235
2,000	89.7	161	199	227	169	247
3,000	91.2	166	207	237	176	263
4,000	92.8	170	214	243	181	275
5,000	93.7	172	219	247	184	285
6,000	94.2	173	223	251	186	292
8,000	94.6	174	228	258	190	305
10,000	94.4	174	231	265	193	316

表 B.18 光子(男性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの結腸の吸収線量(単位:pGy·cm²)

* 3.2E-4は3.2×10⁻⁴を示す。

エネルギー	AP	PA	LLAT	RLAT	ROT	ISO
(MeV)	(前方 - 後方)	(後方 - 前方)	(左側方)	(右側方)	(回転)	(等方)
$\begin{array}{c} 0.01 \\ 0.015 \\ 0.02 \\ 0.03 \\ 0.04 \end{array}$	$\begin{array}{r} 3.5\mathrm{E}{-4} \\ 0.0098 \\ 0.0586 \\ 0.238 \\ 0.346 \end{array}$	4.3E-5 0.0030 0.0356 0.196 0.313	1.1E-4 0.0051 0.0384 0.153 0.219	$\begin{array}{c} 1.4\mathrm{E}\!-\!4\\ 0.0056\\ 0.0410\\ 0.158\\ 0.223\end{array}$	2.3E-4 0.0082 0.0493 0.198 0.292	$\begin{array}{c} 0.0016 \\ 0.0152 \\ 0.0542 \\ 0.170 \\ 0.245 \end{array}$
$\begin{array}{c} 0.05 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.1 \end{array}$	$\begin{array}{c} 0.389 \\ 0.408 \\ 0.425 \\ 0.442 \\ 0.491 \end{array}$	$\begin{array}{c} 0.365 \\ 0.392 \\ 0.411 \\ 0.433 \\ 0.484 \end{array}$	$\begin{array}{c} 0.246 \\ 0.258 \\ 0.268 \\ 0.281 \\ 0.315 \end{array}$	$\begin{array}{c} 0.250 \\ 0.262 \\ 0.273 \\ 0.285 \\ 0.319 \end{array}$	0.333 0.351 0.367 0.384 0.428	0.277 0.293 0.307 0.320 0.358
$\begin{array}{c} 0.15 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \end{array}$	0.669 0.882 1.33 1.79 2.22	0.665 0.878 1.33 1.78 2.22	0.440 0.593 0.928 1.27 1.62	0.444 0.599 0.935 1.28 1.63	0.588 0.782 1.20 1.62 2.03	$\begin{array}{c} 0.494 \\ 0.659 \\ 1.02 \\ 1.40 \\ 1.76 \end{array}$
$\begin{array}{c} 0.511 \\ 0.6 \\ 0.662 \\ 0.8 \\ 1.0 \end{array}$	$2.27 \\ 2.64 \\ 2.89 \\ 3.43 \\ 4.16$	$2.26 \\ 2.64 \\ 2.89 \\ 3.43 \\ 4.16$	1.65 1.96 2.16 2.62 3.24	1.67 1.97 2.18 2.63 3.26	2.07 2.42 2.66 3.18 3.88	1.81 2.13 2.35 2.82 3.47
$ \begin{array}{r} 1.117 \\ 1.33 \\ 1.5 \\ 2.0 \\ 3.0 \\ \end{array} $	$\begin{array}{c} 4.56 \\ 5.25 \\ 5.77 \\ 7.19 \\ 9.66 \end{array}$	4.56 5.25 5.79 7.20 9.65	3.59 4.20 4.66 5.95 8.23	3.61 4.22 4.69 5.97 8.25	$\begin{array}{c} 4.27 \\ 4.95 \\ 5.46 \\ 6.83 \\ 9.22 \end{array}$	3.83 4.47 4.96 6.28 8.61
$\begin{array}{c} 4.0\\ 5.0\\ 6.0\\ 6.129\\ 8.0 \end{array}$	$ \begin{array}{c} 11.8\\ 13.7\\ 15.5\\ 15.8\\ 18.8 \end{array} $	$ \begin{array}{c} 11.8\\ 13.8\\ 15.7\\ 16.0\\ 19.3 \end{array} $	$ \begin{array}{r} 10.3 \\ 12.1 \\ 13.9 \\ 14.1 \\ 17.1 \end{array} $	$ \begin{array}{r} 10.3 \\ 12.1 \\ 13.9 \\ 14.1 \\ 17.1 \end{array} $	$ \begin{array}{c} 11.3 \\ 13.3 \\ 15.1 \\ 15.3 \\ 18.5 \end{array} $	$10.7 \\ 12.6 \\ 14.3 \\ 14.6 \\ 17.6$
$ \begin{array}{c} 10.0 \\ 15.0 \\ 20.0 \\ 30.0 \\ 40.0 \end{array} $	21.8	22.6	20.1	20.0	21.6	20.7
	28.3	29.7	26.9	26.8	28.4	27.7
	33.7	35.7	33.1	32.9	34.2	34.0
	42.2	44.6	44.0	43.8	43.8	44.7
	48.9	51.2	53.9	53.6	51.7	53.7
50.0	54.0	56.2	62.7	62.2	58.3	61.2
60.0	58.1	60.2	70.4	69.8	63.6	67.6
80.0	64.3	66.4	83.3	82.5	72.0	78.2
100	68.7	70.6	93.4	92.4	78.0	86.6
150	76.2	77.2	111	110	88.1	102
200	81.3	81.5	124	123	94.7	113
300	87.8	87.0	141	140	103	128
400	91.5	90.5	152	151	109	138
500	94.0	93.1	160	159	113	145
600	95.8	95.0	166	165	116	151
800	98.1	97.6	176	175	120	160
1,000	99.9	99.4	183	182	123	167
1,500	103	102	195	194	128	180
2,000	105	104	203	203	131	189
3,000	107	106	215	214	136	203
4,000	109	108	224	223	138	213
5,000	110	108	230	229	141	221
6,000	111	109	235	234	143	228
8,000	112	110	243	241	145	239
10,000	113	110	249	246	147	247

表 B.19 光子(男性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの骨表面(骨内膜)の吸収線量(単位:pGy·cm²)

* 3.5E-4は3.5×10⁻⁴を示す。

エネルギー (MeV)	AP (前方 - 後方)	PA (後方 - 前方)	LLAT (左側方)	RLAT (右側方)	ROT (回転)	ISO (等方)
$\begin{array}{c} 0.01 \\ 0.015 \\ 0.02 \\ 0.03 \\ 0.04 \end{array}$	$\begin{array}{c} 1.5 \text{E} - 6 \\ 0.0040 \\ 0.0406 \\ 0.169 \\ 0.255 \end{array}$	2.9E-4 0.0070 0.0618 0.127	4.7E-6 3.0E-4 0.0084 0.0270	1.8E-6 0.0037 0.0339 0.136 0.208	1.7E-6 0.0018 0.0188 0.0906 0.152	0.0010 0.0119 0.0660 0.115
$\begin{array}{c} 0.05 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.1 \end{array}$	0.304 0.337 0.359 0.396 0.466	0.178 0.219 0.253 0.285 0.350	$\begin{array}{c} 0.0454 \\ 0.0610 \\ 0.0743 \\ 0.0875 \\ 0.114 \end{array}$	0.246 0.272 0.298 0.323 0.383	0.192 0.223 0.249 0.275 0.330	0.148 0.173 0.195 0.217 0.263
$\begin{array}{c} 0.15 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \end{array}$	0.668 0.889 1.34 1.78 2.21	$\begin{array}{c} 0.526 \\ 0.719 \\ 1.12 \\ 1.52 \\ 1.91 \end{array}$	$\begin{array}{c} 0.188\\ 0.274\\ 0.477\\ 0.708\\ 0.952 \end{array}$	$\begin{array}{c} 0.566\\ 0.772\\ 1.20\\ 1.63\\ 2.05 \end{array}$	$\begin{array}{c} 0.491 \\ 0.669 \\ 1.04 \\ 1.40 \\ 1.77 \end{array}$	$\begin{array}{c} 0.392 \\ 0.538 \\ 0.850 \\ 1.17 \\ 1.49 \end{array}$
$\begin{array}{c} 0.511 \\ 0.6 \\ 0.662 \\ 0.8 \\ 1.0 \\ 1.17 \end{array}$	$2.26 \\ 2.62 \\ 2.87 \\ 3.39 \\ 4.10 \\ 4.40 $	1.95 2.29 2.52 3.01 3.69	0.979 1.20 1.36 1.71 2.23	2.09 2.45 2.69 3.21 3.93	$ \begin{array}{c} 1.81\\ 2.13\\ 2.35\\ 2.82\\ 3.47\\ 2.82\\ 3.47\\ 2.82\\ 3.47\\ 2.82\\ 3.47\\ 3.82\\ 3.47\\ 3.82$	1.52 1.81 2.00 2.42 3.01
$ \begin{array}{c} 1.117\\ 1.33\\ 1.5\\ 2.0\\ 3.0\\ 4.0\\ \end{array} $	$ \begin{array}{c} 4.49 \\ 5.16 \\ 5.67 \\ 7.04 \\ 9.44 \\ 11.6 \\ \end{array} $	$\begin{array}{c} 4.06 \\ 4.71 \\ 5.21 \\ 6.54 \\ 8.82 \\ 10.8 \\ \end{array}$	$2.52 \\ 3.05 \\ 3.47 \\ 4.63 \\ 6.75 \\ 8.67$	4.32 5.01 5.52 6.90 9.29	$ \begin{array}{c} 3.83 \\ 4.46 \\ 4.94 \\ 6.24 \\ 8.57 \\ 10.6 \\ \end{array} $	3.34 3.92 4.37 5.60 7.82
$ \begin{array}{r} 4.0 \\ 5.0 \\ 6.0 \\ 6.129 \\ 8.0 \\ 10.0 \\ \end{array} $	11.6 13.6 15.5 15.7 19.1	10.8 12.8 14.7 14.9 18.3	8.67 10.5 12.1 12.4 15.4	$ \begin{array}{c} 11.4 \\ 13.4 \\ 15.3 \\ 15.5 \\ 18.9 \\ 22.2 \\ \end{array} $	$ \begin{array}{c} 10.6 \\ 12.6 \\ 14.4 \\ 14.6 \\ 17.9 \\ 21.2 \\ \end{array} $	9.81 11.7 13.4 13.7 16.8
$ \begin{array}{c} 10.0 \\ 15.0 \\ 20.0 \\ 30.0 \\ 40.0 \\ \end{array} $	22.5 30.3 37.1 47.8 56.3	21.9 30.1 38.2 52.6 64.8	18.6 26.7 34.9 51.1 67.5	22.3 30.0 37.2 49.0 58.5	21.3 29.2 36.7 50.0 61.8	20.1 28.0 35.8 49.8 62.2
50.0 60.0 80.0 100 150	62.6 67.5 74.6 79.7 87.8	74.8 82.5 94.5 103 116	82.8 96.7 121 139 171	66.1 72.0 81.0 87.4 98.2	71.8 80.0 93.2 102 119	73.1 82.4 98.1 110 132
200 300 400 500 600	94.0 102 107 110 112	124 135 142 147 151	193 221 240 253 264	105 114 120 123 126	129 143 152 158 163	148 169 183 192 200
800 1,000 1,500 2,000 3,000	115 117 120 123 126	156 160 166 170 175	279 291 310 323 342 254	130 133 137 140 144	169 174 183 189 196	213 222 239 251 266
4,000 5,000 6,000 8,000 10,000	128 129 130 131 133	178 180 182 184 186	354 363 371 383 393	146 148 150 151 152	201 205 208 211 213	278 288 295 308 318

表 B.20 光子(男性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの肝臓の吸収線量(単位:pGy・cm²)

* 1.5E-6は1.5×10⁻⁶を示す。

エネルギー (MeV)	AP (前方 - 後方)	PA (後方 - 前方)	LLAT (左側方)	RLAT (右側方)	ROT (回転)	ISO (等方)
$\begin{array}{c} 0.01 \\ 0.015 \\ 0.02 \\ 0.03 \\ 0.04 \end{array}$	7.1E-6 0.0100 0.0761 0.230 0.290	3.5E-4 0.0094 0.0833 0.168	$\begin{array}{c} 1.3E-7\\ 6.8E-4\\ 0.0075\\ 0.0373\\ 0.0678\end{array}$	$\begin{array}{c} 1.8E-7\\ 2.6E-4\\ 0.0054\\ 0.0371\\ 0.0681\end{array}$	8.0E-7 0.0021 0.0222 0.0985 0.157	2.2E-6 0.0017 0.0165 0.0758 0.124
$\begin{array}{c} 0.05 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.1 \end{array}$	$\begin{array}{c} 0.319 \\ 0.342 \\ 0.361 \\ 0.396 \\ 0.468 \end{array}$	$\begin{array}{c} 0.226 \\ 0.268 \\ 0.305 \\ 0.340 \\ 0.415 \end{array}$	$\begin{array}{c} 0.0909 \\ 0.109 \\ 0.126 \\ 0.142 \\ 0.177 \end{array}$	$\begin{array}{c} 0.0906 \\ 0.109 \\ 0.125 \\ 0.141 \\ 0.176 \end{array}$	0.193 0.220 0.246 0.271 0.329	0.154 0.178 0.201 0.223 0.273
$\begin{array}{c} 0.15 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \end{array}$	$\begin{array}{c} 0.691 \\ 0.936 \\ 1.43 \\ 1.91 \\ 2.38 \end{array}$	0.629 0.859 1.32 1.78 2.23	0.279 0.397 0.662 0.941 1.23	$\begin{array}{c} 0.278 \\ 0.395 \\ 0.655 \\ 0.936 \\ 1.22 \end{array}$	0.500 0.688 1.08 1.48 1.87	0.417 0.577 0.919 1.27 1.62
$\begin{array}{c} 0.511 \\ 0.6 \\ 0.662 \\ 0.8 \\ 1.0 \end{array}$	$2.43 \\ 2.82 \\ 3.09 \\ 3.64 \\ 4.39$	$2.28 \\ 2.65 \\ 2.90 \\ 3.44 \\ 4.17$	$ \begin{array}{r} 1.26\\ 1.52\\ 1.70\\ 2.10\\ 2.67\end{array} $	$ \begin{array}{r} 1.25 \\ 1.51 \\ 1.69 \\ 2.08 \\ 2.64 \\ \end{array} $	$ \begin{array}{r} 1.91 \\ 2.25 \\ 2.48 \\ 2.98 \\ 3.67 \end{array} $	$ 1.66 \\ 1.97 \\ 2.18 \\ 2.62 \\ 3.26 $
$ \begin{array}{r} 1.117 \\ 1.33 \\ 1.5 \\ 2.0 \\ 3.0 \\ \end{array} $	$\begin{array}{c} 4.80 \\ 5.51 \\ 6.04 \\ 7.47 \\ 9.94 \end{array}$	4.58 5.28 5.82 7.24 9.67	2.993.574.015.247.45	$\begin{array}{c} 2.95 \\ 3.52 \\ 3.96 \\ 5.17 \\ 7.37 \end{array}$	$\begin{array}{r} 4.04 \\ 4.69 \\ 5.18 \\ 6.52 \\ 8.90 \end{array}$	3.61 4.24 4.72 5.99 8.24
$\begin{array}{c} 4.0 \\ 5.0 \\ 6.0 \\ 6.129 \\ 8.0 \end{array}$	$ \begin{array}{c} 12.1 \\ 14.3 \\ 16.2 \\ 16.5 \\ 20.0 \end{array} $	11.8 13.8 15.8 16.0 19.7	$9.46 \\ 11.4 \\ 13.2 \\ 13.5 \\ 16.8$	$9.38 \\ 11.3 \\ 13.1 \\ 13.3 \\ 16.7$	$ \begin{array}{c} 11.0\\ 13.0\\ 14.9\\ 15.1\\ 18.6 \end{array} $	10.3 12.3 14.2 14.4 17.8
$ \begin{array}{c} 10.0 \\ 15.0 \\ 20.0 \\ 30.0 \\ 40.0 \end{array} $	$23.4 \\ 30.6 \\ 36.5 \\ 44.4 \\ 50.2$	23.6 32.7 40.8 51.9 60.1	20.3 28.8 37.2 53.4 68.6	20.1 28.6 37.0 52.9 67.7	22.3 30.8 38.9 51.7 62.5	21.3 29.8 37.8 51.7 63.3
50.0 60.0 80.0 100 150	54.4 57.6 62.3 65.9 71.6	66.2 70.9 78.2 83.1 90.6	82.1 93.8 113 127 152	81.0 92.5 112 127 153	71.2 78.3 89.8 97.3 111	72.9 80.9 93.9 104 123
200 300 400 500 600	75.8 81.1 84.6 86.8 88.3	95.4 101 105 108 110	168 189 202 211 218	170 191 206 216 224	119 130 137 142 146	136 153 164 172 179
800 1,000 1,500 2,000 3,000	89.9 91.2 93.3 95.0 96.9	113 114 118 120 123	229 236 249 258 270	236 244 259 269 283	151 155 162 166 170	189 196 211 221 235
4,000 5,000 6,000 8,000 10,000	98.5 99.4 99.8 100 100	124 125 126 126 126	277 283 288 296 302	291 298 304 313 319	174 176 178 181 183	245 252 258 268 278

表 B.21 光子(男性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの肺の吸収線量(単位:pGy·cm²)

* 7.1E-6は7.1×10⁻⁶を示す。

エネルギー (MeV)	AP (前方 - 後方)	PA (後方 - 前方)	LLAT (左側方)	RLAT (右側方)	ROT (回転)	ISO (等方)
$\begin{array}{c} 0.01 \\ 0.015 \\ 0.02 \\ 0.03 \\ 0.04 \end{array}$	9.8E-5 0.0120 0.0626 0.166 0.229	4.8E-4 0.0237 0.0951	2.6E-4 0.0080 0.0403 0.0703	1.2E-4 0.0047 0.0312 0.0547	8.2E-6 0.0026 0.0193 0.0707 0.119	1.1E-5 0.0015 0.0115 0.0460 0.0838
$\begin{array}{c} 0.05 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.1 \end{array}$	$\begin{array}{c} 0.273 \\ 0.304 \\ 0.326 \\ 0.369 \\ 0.446 \end{array}$	0.157 0.209 0.257 0.294 0.364	$\begin{array}{c} 0.0949 \\ 0.116 \\ 0.134 \\ 0.157 \\ 0.197 \end{array}$	0.0781 0.0992 0.117 0.133 0.173	$\begin{array}{c} 0.156 \\ 0.193 \\ 0.227 \\ 0.254 \\ 0.317 \end{array}$	$\begin{array}{c} 0.116 \\ 0.146 \\ 0.170 \\ 0.191 \\ 0.244 \end{array}$
$\begin{array}{c} 0.15 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \end{array}$	0.665 0.897 1.35 1.83 2.27	0.579 0.789 1.22 1.64 2.05	0.313 0.452 0.737 1.05 1.37	0.277 0.402 0.679 0.957 1.24	$\begin{array}{c} 0.498 \\ 0.686 \\ 1.08 \\ 1.45 \\ 1.84 \end{array}$	$0.377 \\ 0.530 \\ 0.855 \\ 1.19 \\ 1.52$
$\begin{array}{c} 0.511 \\ 0.6 \\ 0.662 \\ 0.8 \\ 1.0 \end{array}$	$2.32 \\ 2.69 \\ 2.95 \\ 3.51 \\ 4.27$	2.08 2.44 2.67 3.18 3.88	$ \begin{array}{r} 1.41 \\ 1.68 \\ 1.87 \\ 2.28 \\ 2.90 \end{array} $	$ \begin{array}{c} 1.28\\ 1.54\\ 1.72\\ 2.11\\ 2.70\end{array} $	$ \begin{array}{r} 1.89\\ 2.23\\ 2.45\\ 2.96\\ 3.63\end{array} $	$1.56 \\ 1.85 \\ 2.05 \\ 2.47 \\ 3.04$
$ \begin{array}{r} 1.117\\ 1.33\\ 1.5\\ 2.0\\ 3.0 \end{array} $	4.68 5.38 5.92 7.38 9.86	$\begin{array}{c} 4.28 \\ 4.98 \\ 5.50 \\ 6.94 \\ 9.29 \end{array}$	3.24 3.86 4.31 5.57 7.86	$\begin{array}{c} 3.03 \\ 3.64 \\ 4.12 \\ 5.27 \\ 7.34 \end{array}$	$\begin{array}{c} 4.02 \\ 4.66 \\ 5.18 \\ 6.53 \\ 8.86 \end{array}$	3.34 3.88 4.34 5.64 8.03
$4.0 \\ 5.0 \\ 6.0 \\ 6.129 \\ 8.0$	$ \begin{array}{r} 12.0 \\ 13.9 \\ 15.8 \\ 16.0 \\ 19.2 \\ \end{array} $	$ \begin{array}{c} 11.5\\ 13.3\\ 15.1\\ 15.4\\ 18.7 \end{array} $	$9.83 \\ 11.7 \\ 13.5 \\ 13.7 \\ 16.9$	$9.30 \\ 11.1 \\ 13.0 \\ 13.2 \\ 16.6$	$ \begin{array}{c} 10.9 \\ 12.8 \\ 14.7 \\ 14.9 \\ 18.3 \end{array} $	$ \begin{array}{r} 10.0 \\ 11.8 \\ 13.5 \\ 13.7 \\ 16.9 \\ \end{array} $
$ \begin{array}{c} 10.0 \\ 15.0 \\ 20.0 \\ 30.0 \\ 40.0 \end{array} $	22.4 29.6 36.7 47.1 55.2	$22.4 \\ 31.8 \\ 41.1 \\ 56.4 \\ 67.6$	20.3 28.6 36.6 52.3 67.1	$20.0 \\ 28.1 \\ 35.8 \\ 50.9 \\ 66.3$	$21.7 \\30.1 \\38.4 \\52.7 \\64.0$	20.1 28.3 36.6 52.0 65.5
50.0 60.0 80.0 100 150	60.8 65.1 71.0 75.6 82.5	75.8 81.7 90.8 96.5 107	79.9 91.2 108 121 144	80.1 92.2 112 126 151	73.4 80.8 92.4 99.8 113	76.7 86.4 100 112 134
200 300 400 500 600	88.0 95.0 99.7 102 104	113 122 127 131 134	159 176 185 192 196	167 188 200 209 216	121 132 140 146 150	150 168 179 188 194
800 1,000 1,500 2,000 3,000	106 107 111 114 117	138 141 146 148 150	204 210 221 228 237	225 233 246 255 269	155 159 163 167 172	205 213 231 244 258
4,000 5,000 6,000 8,000 10,000	118 118 119 119 118	152 152 153 153 154	245 250 254 261 265	280 287 291 294 297	175 177 180 183 186	270 279 286 297 306

表 B.22 光子(男性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの食道の吸収線量(単位:pGy・cm²)

* 9.8E-5は9.8×10⁻⁵を示す。

エネルギー (MeV)	AP (前方 - 後方)	PA (後方 - 前方)	LLAT (左側方)	RLAT (右側方)	ROT (回転)	ISO (等方)
$\begin{array}{c} 0.01 \\ 0.015 \\ 0.02 \\ 0.03 \\ 0.04 \end{array}$	6.7E-4 0.0178 0.0597 0.175 0.267	$\begin{array}{c} 1.6\mathrm{E}\!-\!5\\ 0.0024\\ 0.0266\\ 0.155\\ 0.275\end{array}$	1.2E-4 0.0071 0.0295 0.0863 0.130	1.5E-4 0.0079 0.0323 0.0909 0.134	2.5E-4 0.0088 0.0371 0.128 0.207	6.8E-4 0.0099 0.0347 0.104 0.164
$\begin{array}{c} 0.05 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.1 \end{array}$	$\begin{array}{c} 0.321 \\ 0.355 \\ 0.384 \\ 0.409 \\ 0.465 \end{array}$	$\begin{array}{c} 0.347 \\ 0.394 \\ 0.427 \\ 0.462 \\ 0.529 \end{array}$	$\begin{array}{c} 0.158 \\ 0.177 \\ 0.193 \\ 0.208 \\ 0.241 \end{array}$	0.161 0.180 0.197 0.211 0.245	0.257 0.290 0.315 0.340 0.392	$\begin{array}{c} 0.203 \\ 0.229 \\ 0.251 \\ 0.269 \\ 0.311 \end{array}$
$\begin{array}{c} 0.15 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \end{array}$	0.639 0.839 1.26 1.68 2.09	0.729 0.953 1.41 1.87 2.31	$\begin{array}{c} 0.345 \\ 0.468 \\ 0.741 \\ 1.03 \\ 1.32 \end{array}$	$\begin{array}{c} 0.350 \\ 0.475 \\ 0.750 \\ 1.04 \\ 1.34 \end{array}$	0.545 0.723 1.10 1.49 1.87	0.436 0.581 0.897 1.22 1.55
$\begin{array}{c} 0.511 \\ 0.6 \\ 0.662 \\ 0.8 \\ 1.0 \end{array}$	2.14 2.49 2.72 3.24 3.94	2.36 2.73 2.98 3.52 4.24	1.35 1.62 1.80 2.20 2.77	1.37 1.64 1.82 2.22 2.79	$ \begin{array}{r} 1.91\\ 2.23\\ 2.45\\ 2.94\\ 3.61\end{array} $	1.59 1.88 2.07 2.50 3.10
$ \begin{array}{r} 1.117 \\ 1.33 \\ 1.5 \\ 2.0 \\ 3.0 \\ \end{array} $	4.33 4.99 5.50 6.87 9.25	4.64 5.32 5.85 7.24 9.65	3.09 3.66 4.10 5.31 7.49	3.11 3.68 4.11 5.33 7.54	3.98 4.63 5.11 6.44 8.76	$\begin{array}{c} 3.44 \\ 4.04 \\ 4.50 \\ 5.76 \\ 8.01 \end{array}$
$\begin{array}{c} 4.0 \\ 5.0 \\ 6.0 \\ 6.129 \\ 8.0 \end{array}$	$ \begin{array}{c} 11.4\\ 13.3\\ 15.2\\ 15.4\\ 18.6 \end{array} $	$ \begin{array}{c} 11.8\\ 13.9\\ 15.8\\ 16.1\\ 19.5 \end{array} $	$9.47 \\11.3 \\13.1 \\13.3 \\16.4$	$9.53 \\ 11.4 \\ 13.1 \\ 13.3 \\ 16.4$	$ \begin{array}{r} 10.9 \\ 12.8 \\ 14.7 \\ 14.9 \\ 18.2 \end{array} $	10.0 11.9 13.6 13.9 17.1
$ \begin{array}{c} 10.0 \\ 15.0 \\ 20.0 \\ 30.0 \\ 40.0 \end{array} $	21.8 29.6 36.8 48.9 58.5	23.1 31.2 37.7 47.8 55.1	$ 19.6 \\ 27.4 \\ 34.9 \\ 49.1 \\ 62.7 $	$ 19.7 \\ 27.4 \\ 35.0 \\ 49.2 \\ 62.5 $	21.529.436.849.660.4	20.3 28.2 35.7 49.2 60.9
50.0 60.0 80.0 100 150	66.0 71.8 80.6 86.7 97.3	60.8 65.2 72.2 76.8 84.0	74.985.7104118142	74.585.1103117141	69.4 76.8 88.4 96.6 111	71.0 79.8 94.2 106 127
200 300 400 500 600	104 113 119 122 125	88.9 95.0 98.9 102 104	159 181 195 206 214	158 180 194 205 213	120 131 138 143 148	142 162 175 184 192
800 1,000 1,500 2,000 3,000	128 131 135 138 142	107 109 111 113 116	226 235 250 260 275	224 233 249 259 274	153 158 165 170 176	204 214 230 242 258
$ \begin{array}{r} 4,000\\ 5,000\\ 6,000\\ 8,000\\ 10,000 \end{array} $	144 146 147 149 151	118 119 119 120 120	285 292 298 308 315	283 291 297 307 314	179 182 185 189 192	271 281 288 301 312

表 B.23 光子(男性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの赤色(活性)骨髄の吸収線量(単位:pGy·cm²)

* 6.7E-4は6.7×10⁻⁴を示す。

エネルギー (MeV)	AP (前方 - 後方)	PA (後方 - 前方)	LLAT (左側方)	RLAT (右側方)	ROT (回転)	ISO (等方)
$\begin{array}{c} 0.01 \\ 0.015 \\ 0.02 \\ 0.03 \\ 0.04 \end{array}$	$\begin{array}{c} 0.0076 \\ 0.0492 \\ 0.100 \\ 0.184 \\ 0.240 \end{array}$	0.0021 0.0134 0.0323 0.102 0.163	$\begin{array}{c} 0.0041 \\ 0.0199 \\ 0.0341 \\ 0.0679 \\ 0.103 \end{array}$	0.0039 0.0186 0.0317 0.0628 0.0958	$\begin{array}{c} 0.0044 \\ 0.0247 \\ 0.0493 \\ 0.106 \\ 0.155 \end{array}$	0.0051 0.0201 0.0378 0.0798 0.119
$\begin{array}{c} 0.05 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.1 \end{array}$	$\begin{array}{c} 0.279 \\ 0.309 \\ 0.331 \\ 0.368 \\ 0.441 \end{array}$	0.206 0.242 0.272 0.306 0.371	0.131 0.152 0.172 0.193 0.239	0.121 0.142 0.160 0.181 0.226	0.191 0.220 0.246 0.276 0.337	$\begin{array}{c} 0.148 \\ 0.170 \\ 0.192 \\ 0.215 \\ 0.263 \end{array}$
$\begin{array}{c} 0.15 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.511 \\ 0.6 \end{array}$	$\begin{array}{c} 0.647 \\ 0.870 \\ 1.33 \\ 1.77 \\ 2.20 \\ 2.25 \\ 2.62 \\ 2.61 \end{array}$	$\begin{array}{c} 0.560 \\ 0.769 \\ 1.19 \\ 1.61 \\ 2.02 \\ 2.07 \\ 2.43 \end{array}$	$\begin{array}{c} 0.371 \\ 0.520 \\ 0.843 \\ 1.18 \\ 1.52 \\ 1.55 \\ 1.85 \\ 0.85 \end{array}$	$\begin{array}{c} 0.355 \\ 0.499 \\ 0.808 \\ 1.13 \\ 1.46 \\ 1.49 \\ 1.78 \\ 0.808 \\ 0.8$	$\begin{array}{c} 0.507 \\ 0.697 \\ 1.09 \\ 1.48 \\ 1.87 \\ 1.91 \\ 2.25 \end{array}$	$\begin{array}{c} 0.403 \\ 0.556 \\ 0.881 \\ 1.21 \\ 1.55 \\ 1.58 \\ 1.88 \\ 1.88 \end{array}$
$0.662 \\ 0.8 \\ 1.0 \\ 1.117 \\ 1.22$	2.86 3.39 4.11 4.49 5.17	2.66 3.18 3.87 4.25	2.05 2.50 3.12 3.46	1.98 2.41 3.01 3.35 2.05	2.47 2.96 3.64 4.01	2.08 2.51 3.11 3.45
1.33 1.5 2.0 3.0 4.0	5.17 5.68 7.05 9.43	4.91 5.40 6.74 9.10	4.07 4.53 5.81 8.09	3.95 4.41 5.65 7.87 9.84	4.66 5.15 6.49 8.82 10.9	4.05 4.51 5.77 8.00
5.0 6.0 6.129 8.0	13.4 15.2 15.4 18.5	13.1 15.0 15.2 18.6	11.9 13.7 13.9 17.0	$ \begin{array}{c} 11.7\\ 13.4\\ 13.6\\ 16.7 \end{array} $	$ 12.8 \\ 14.5 \\ 14.7 \\ 17.9 $	11.9 13.6 13.8 16.9
$ \begin{array}{c} 10.0 \\ 15.0 \\ 20.0 \\ 30.0 \\ 40.0 \end{array} $	21.528.534.945.353.4	21.9 30.1 38.0 51.1 61.5	20.3 28.1 35.9 50.0 62.7	20.0 27.7 35.3 49.1 61.7	21.2 29.0 36.5 49.1 60.0	20.1 27.8 35.2 48.7 60.5
50.0 60.0 80.0 100 150	59.6 64.4 71.5 76.7 85.3	69.9 76.6 86.6 93.5 105	73.9 83.4 98.7 110 130	73.2 83.1 99.4 112 134	69.0 76.5 88.1 96.4 110	70.6 79.2 93.4 105 125
200 300 400 500 600	91.5 99.4 104 108 110	112 120 126 130 133	142 159 170 177 183	149 168 181 190 198	119 130 137 142 146	139 159 172 181 188
800 1,000 1,500 2,000 3,000	112 115 118 121 124	137 140 146 149 153	192 198 208 215 223	208 216 229 238 249	152 155 163 167 173	200 208 225 236 252
4,000 5,000 6,000 8,000 10,000	126 128 129 130 131	155 156 157 158 159	229 233 237 242 246	257 263 268 276 282	177 180 182 186 187	264 273 280 291 299

表 B.24 光子(男性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの残りの組織の吸収線量(単位:pGy·cm²)

エネルギー	AP	PA	LLAT	RLAT	ROT	ISO
(MeV)	(前方 - 後方)	(後方 - 前方)	(左側方)	(右側方)	(回転)	(等方)
$\begin{array}{c} 0.01 \\ 0.015 \\ 0.02 \\ 0.03 \\ 0.04 \end{array}$	7.0E-4 0.0325 0.136 0.251 0.262	$\begin{array}{c} 0.0058 \\ 0.0700 \\ 0.178 \\ 0.256 \\ 0.247 \end{array}$	$\begin{array}{c} 0.0775 \\ 0.328 \\ 0.420 \\ 0.360 \\ 0.303 \end{array}$	$\begin{array}{c} 0.0544 \\ 0.284 \\ 0.392 \\ 0.345 \\ 0.294 \end{array}$	0.0335 0.191 0.296 0.294 0.267	0.0231 0.138 0.225 0.238 0.214
$\begin{array}{c} 0.05 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.1 \end{array}$	$\begin{array}{c} 0.264 \\ 0.273 \\ 0.291 \\ 0.325 \\ 0.400 \end{array}$	$\begin{array}{c} 0.245 \\ 0.254 \\ 0.278 \\ 0.307 \\ 0.374 \end{array}$	0.283 0.283 0.295 0.323 0.390	0.278 0.280 0.292 0.318 0.384	0.258 0.266 0.289 0.313 0.377	$\begin{array}{c} 0.210 \\ 0.214 \\ 0.228 \\ 0.248 \\ 0.305 \end{array}$
$\begin{array}{c} 0.15 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \end{array}$	0.621 0.867 1.37 1.87 2.36	$\begin{array}{c} 0.602 \\ 0.859 \\ 1.38 \\ 1.88 \\ 2.38 \end{array}$	0.599 0.823 1.28 1.76 2.22	0.587 0.820 1.29 1.76 2.20	0.589 0.810 1.30 1.79 2.25	$\begin{array}{c} 0.482 \\ 0.674 \\ 1.07 \\ 1.47 \\ 1.87 \end{array}$
$\begin{array}{c} 0.511 \\ 0.6 \\ 0.662 \\ 0.8 \\ 1.0 \end{array}$	$2.41 \\ 2.82 \\ 3.10 \\ 3.68 \\ 4.48$	2.42 2.83 3.11 3.69 4.47	2.26 2.64 2.89 3.43 4.18	2.24 2.63 2.88 3.43 4.15	2.292.672.923.464.24	$ \begin{array}{r} 1.92 \\ 2.26 \\ 2.49 \\ 3.00 \\ 3.69 \\ \end{array} $
$ \begin{array}{r} 1.117 \\ 1.33 \\ 1.5 \\ 2.0 \\ 3.0 \\ \end{array} $	$\begin{array}{c} 4.92 \\ 5.65 \\ 6.22 \\ 7.69 \\ 10.1 \end{array}$	$\begin{array}{c} 4.91 \\ 5.62 \\ 6.17 \\ 7.62 \\ 10.3 \end{array}$	4.59 5.29 5.82 7.17 9.32	$\begin{array}{c} 4.54 \\ 5.24 \\ 5.79 \\ 7.24 \\ 9.46 \end{array}$	$\begin{array}{r} 4.66 \\ 5.40 \\ 5.94 \\ 7.33 \\ 9.50 \end{array}$	$\begin{array}{r} 4.06 \\ 4.72 \\ 5.23 \\ 6.62 \\ 8.67 \end{array}$
$\begin{array}{c} 4.0 \\ 5.0 \\ 6.0 \\ 6.129 \\ 8.0 \end{array}$	$12.1 \\ 14.0 \\ 15.9 \\ 16.1 \\ 19.0$	$12.6 \\ 14.4 \\ 16.1 \\ 16.4 \\ 19.1$	$10.9 \\ 12.2 \\ 13.4 \\ 13.5 \\ 15.3$	11.1 12.5 13.5 13.7 15.4	$11.3 \\ 13.0 \\ 14.4 \\ 14.6 \\ 16.5$	$10.4 \\ 12.1 \\ 13.6 \\ 13.8 \\ 16.5$
$ \begin{array}{c} 10.0 \\ 15.0 \\ 20.0 \\ 30.0 \\ 40.0 \end{array} $	21.6	21.8	17.2	17.3	18.5	19.0
	27.0	27.7	21.9	22.2	24.0	24.7
	31.1	32.4	26.5	26.8	29.0	30.0
	37.0	39.2	35.0	35.2	37.2	39.6
	40.7	43.6	42.2	42.6	44.0	48.0
50.0	43.3	47.0	48.0	$\begin{array}{c} 48.5 \\ 53.5 \\ 60.8 \\ 66.2 \\ 75.2 \end{array}$	49.4	55.0
60.0	45.3	48.8	52.6		53.4	60.9
80.0	47.7	52.3	59.7		59.6	70.4
100	49.7	53.9	64.6		63.5	77.7
150	53.3	59.0	73.7		70.3	91.9
200	56.0	62.6	79.6	81.5	75.7	102
300	59.2	65.9	86.5	88.7	81.4	114
400	61.4	68.2	91.4	93.1	84.8	123
500	62.6	69.6	94.6	96.1	87.3	130
600	63.5	70.6	96.9	98.4	89.4	135
800	65.0	71.9	100	102	91.8	142
1,000	66.1	72.9	103	104	93.6	148
1,500	66.7	74.2	107	109	96.5	158
2,000	67.6	75.3	109	112	98.7	165
3,000	69.3	77.3	113	114	101	177
4,000	70.1	78.5	115	117	102	184
5,000	70.7	79.4	116	118	103	190
6,000	71.3	80.1	117	120	104	194
8,000	72.1	81.3	117	122	105	201
10,000	72.8	82.4	117	124	106	205

表 B.25 光子(男性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの唾液腺の吸収線量(単位:pGy·cm²)

* 7.0E-4は7.0×10⁻⁴を示す。

エネルギー (MeV)	AP (前方 - 後方)	PA (後方 - 前方)	LLAT (左側方)	RLAT (右側方)	ROT (回転)	ISO (等方)
$\begin{array}{c} 0.01 \\ 0.015 \\ 0.02 \\ 0.03 \\ 0.04 \end{array}$	$ \begin{array}{r} 1.74 \\ 1.23 \\ 0.855 \\ 0.506 \\ 0.376 \end{array} $	1.72 1.20 0.839 0.506 0.378	$\begin{array}{c} 0.912 \\ 0.665 \\ 0.480 \\ 0.298 \\ 0.227 \end{array}$	$\begin{array}{c} 0.907 \\ 0.653 \\ 0.467 \\ 0.291 \\ 0.223 \end{array}$	$1.43 \\ 1.04 \\ 0.735 \\ 0.439 \\ 0.326$	$ \begin{array}{r} 1.17\\ 0.917\\ 0.667\\ 0.403\\ 0.298\end{array} $
$\begin{array}{c} 0.05 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.1 \end{array}$	0.328 0.320 0.326 0.353 0.421	0.329 0.319 0.328 0.351 0.418	$\begin{array}{c} 0.201 \\ 0.197 \\ 0.207 \\ 0.223 \\ 0.272 \end{array}$	$\begin{array}{c} 0.197 \\ 0.194 \\ 0.203 \\ 0.220 \\ 0.269 \end{array}$	$\begin{array}{c} 0.284 \\ 0.276 \\ 0.286 \\ 0.307 \\ 0.368 \end{array}$	0.258 0.249 0.258 0.276 0.333
$\begin{array}{c} 0.15 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \end{array}$	0.649 0.898 1.40 1.87 2.29	0.640 0.885 1.38 1.83 2.25	$\begin{array}{c} 0.433 \\ 0.615 \\ 0.987 \\ 1.35 \\ 1.69 \end{array}$	$\begin{array}{c} 0.428 \\ 0.607 \\ 0.978 \\ 1.34 \\ 1.68 \end{array}$	$\begin{array}{c} 0.569 \\ 0.792 \\ 1.24 \\ 1.67 \\ 2.07 \end{array}$	$\begin{array}{c} 0.518 \\ 0.725 \\ 1.14 \\ 1.55 \\ 1.92 \end{array}$
$\begin{array}{c} 0.511 \\ 0.6 \\ 0.662 \\ 0.8 \\ 1.0 \end{array}$	2.34 2.68 2.89 3.30 3.80	2.29 2.62 2.83 3.24 3.72	$ \begin{array}{r} 1.73 \\ 2.01 \\ 2.20 \\ 2.57 \\ 3.03 \\ \end{array} $	$ \begin{array}{r} 1.71 \\ 1.99 \\ 2.18 \\ 2.55 \\ 3.01 \\ \end{array} $	2.11 2.42 2.62 3.03 3.51	$ \begin{array}{r} 1.96 \\ 2.26 \\ 2.46 \\ 2.85 \\ 3.33 \\ \end{array} $
$ \begin{array}{r} 1.117 \\ 1.33 \\ 1.5 \\ 2.0 \\ 3.0 \\ \end{array} $	$\begin{array}{r} 4.03 \\ 4.40 \\ 4.65 \\ 5.28 \\ 6.26 \end{array}$	3.95 4.31 4.54 5.16 6.18	$\begin{array}{c} 3.27 \\ 3.65 \\ 3.92 \\ 4.62 \\ 5.78 \end{array}$	3.24 3.62 3.89 4.60 5.76	3.764.144.395.056.11	$\begin{array}{c} 3.57 \\ 3.95 \\ 4.21 \\ 4.89 \\ 6.00 \end{array}$
$\begin{array}{c} 4.0\\ 5.0\\ 6.0\\ 6.129\\ 8.0 \end{array}$	7.11 7.90 8.65 8.75 10.1	7.06 7.87 8.67 8.77 10.2	$ \begin{array}{r} 6.81 \\ 7.77 \\ 8.71 \\ 8.83 \\ 10.5 \\ \end{array} $	$ \begin{array}{r} 6.79 \\ 7.77 \\ 8.70 \\ 8.82 \\ 10.5 \\ \end{array} $	7.05 7.93 8.77 8.88 10.4	6.94 7.81 8.64 8.75 10.3
$ \begin{array}{c} 10.0 \\ 15.0 \\ 20.0 \\ 30.0 \\ 40.0 \end{array} $	11.5 14.8 17.9 23.2 27.9	11.7 15.2 18.3 23.8 28.6	12.3 16.6 20.7 28.3 35.2	$12.3 \\ 16.6 \\ 20.7 \\ 28.4 \\ 35.4$	11.9 15.7 19.2 25.6 31.4	11.8 15.6 19.3 26.0 32.0
50.0 60.0 80.0 100 150	31.6 34.6 39.1 42.4 47.9	32.6 35.9 41.1 44.7 50.5	$\begin{array}{c} 41.4 \\ 47.0 \\ 56.6 \\ 64.5 \\ 79.4 \end{array}$	41.7 47.4 57.2 65.3 80.4	$36.4 \\ 40.7 \\ 47.6 \\ 52.9 \\ 61.8$	37.3 42.0 50.0 56.5 68.8
200 300 400 500 600	51.8 56.8 60.1 62.2 63.7	54.3 59.0 62.0 64.1 65.8	90.2 105 115 122 128	91.2 106 116 124 129	67.8 75.6 80.7 84.4 87.2	77.7 90.0 98.3 105 109
800 1,000 1,500 2,000 3,000	65.4 67.0 69.4 71.5 73.8	68.0 69.7 72.4 74.2 76.5	137 143 155 163 174	$ 138 \\ 145 \\ 156 \\ 165 \\ 176 $	91.594.699.9 104108	117 123 134 142 154
4,000 5,000 6,000 8,000 10,000	75.3 76.5 77.3 78.4 79.1	77.9 78.9 79.6 80.6 81.4	182 188 193 202 208	184 189 194 203 210	111 114 116 119 121	$ 163 \\ 169 \\ 175 \\ 184 \\ 191 $

表 B.26 光子(男性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの皮膚の吸収線量(単位:pGy・cm²)

エネルギー (MeV)	AP (前方 - 後方)	PA (後方 - 前方)	LLAT (左側方)	RLAT (右側方)	ROT (回転)	ISO (等方)
$\begin{matrix} 0.01 \\ 0.015 \\ 0.02 \\ 0.03 \\ 0.04 \\ 0.05 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.1 \end{matrix}$	$\begin{array}{c} 3.3E-6\\ 0.0077\\ 0.0767\\ 0.256\\ 0.336\\ 0.375\\ 0.404\\ 0.422\\ 0.460\\ 0.536\end{array}$			$\begin{array}{c}$		$\begin{matrix}\\ 0.0011\\ 0.0149\\ 0.0738\\ 0.121\\ 0.153\\ 0.176\\ 0.199\\ 0.218\\ 0.261 \end{matrix}$
$0.15 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.511$	0.763 1.01 1.50 1.98 2.45 2.50	$\begin{array}{c} 0.436 \\ 0.615 \\ 0.965 \\ 1.33 \\ 1.69 \\ 1.73 \end{array}$	0.593 0.806 1.26 1.71 2.14 2.19	0.202 0.298 0.521 0.769 1.03	0.492 0.664 1.03 1.39 1.75	0.388 0.530 0.838 1.17 1.49
0.6 0.662 0.8 1.0	2.30 2.89 3.15 3.70 4.44	2.05 2.26 2.73 3.38	2.19 2.56 2.81 3.35 4.09	$ 1.30 \\ 1.47 \\ 1.84 \\ 2.38 $	$ \begin{array}{c} 1.80\\ 2.11\\ 2.33\\ 2.80\\ 3.46 \end{array} $	$ 1.32 \\ 1.80 \\ 1.98 \\ 2.42 \\ 3.03 $
$ \begin{array}{r} 1.117 \\ 1.33 \\ 1.5 \\ 2.0 \\ 3.0 \\ \end{array} $	$\begin{array}{c} 4.85 \\ 5.55 \\ 6.10 \\ 7.50 \\ 9.91 \end{array}$	$\begin{array}{c} 3.74 \\ 4.35 \\ 4.82 \\ 6.13 \\ 8.48 \end{array}$	4.49 5.18 5.71 7.14 9.61	2.68 3.24 3.67 4.87 7.03	3.83 4.48 4.95 6.25 8.52	3.37 3.97 4.42 5.62 7.78
$\begin{array}{c} 4.0\\ 5.0\\ 6.0\\ 6.129\\ 8.0 \end{array}$	$ \begin{array}{c} 12.1 \\ 14.1 \\ 16.0 \\ 16.2 \\ 19.6 \end{array} $	$ \begin{array}{c} 10.6 \\ 12.5 \\ 14.2 \\ 14.4 \\ 17.5 \end{array} $	11.8 13.7 15.5 15.8 19.2	8.96 10.7 12.4 12.7 15.8	$10.5 \\ 12.4 \\ 14.3 \\ 14.5 \\ 17.8$	9.74 11.7 13.4 13.6 16.7
$ \begin{array}{r} 10.0 \\ 15.0 \\ 20.0 \\ 30.0 \\ 40.0 \end{array} $	23.0 30.0 35.5 43.4 49.2	20.8 29.2 37.7 53.9 68.2	22.7 30.5 37.5 48.8 57.1	$ \begin{array}{r} 19.0 \\ 26.9 \\ 35.1 \\ 52.0 \\ 68.7 \end{array} $	21.1 28.8 36.2 49.3 61.1	20.0 27.8 35.4 48.7 61.0
50.0 60.0 80.0 100 150	53.5 56.8 61.3 64.8 70.4	80.2 90.0 104 115 131	63.5 68.4 75.9 81.1 90.9	84.3 98.0 121 138 167	71.0 79.5 92.6 102 118	71.7 80.9 96.2 108 130
200 300 400 500 600	74.8 80.2 83.4 85.2 86.8	141 154 162 168 172	97.3 105 109 112 114	185 210 226 238 247	128 142 150 155 160	146 167 180 190 197
800 1,000 1,500 2,000 3,000	88.6 89.6 92.2 93.5 95.1	178 183 191 196 202	117 118 122 124 126	259 269 284 294 310	165 170 180 186 194	209 217 234 246 263
4,000 5,000 6,000 8,000 10,000	96.7 97.3 97.7 97.9 98.2	206 208 210 212 213	128 130 132 134 137	320 328 335 345 352	199 203 205 210 213	276 286 295 309 320

表 B.27 光子(男性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの胃壁の吸収線量(単位:pGy・cm²)

* 3.3E-6は3.3×10⁻⁶を示す。

エネルギー (MeV)	AP (前方 - 後方)	PA (後方 - 前方)	LLAT (左側方)	RLAT (右側方)	ROT (回転)	ISO (等方)
$\begin{array}{c} 0.01 \\ 0.015 \\ 0.02 \\ 0.03 \\ 0.04 \end{array}$	0.0569 0.268 0.487 0.620 0.585	6.1E-5 0.0050 0.0676 0.127	$\begin{array}{c} 2.2E-5\\ 5.0E-4\\ 0.0036\\ 0.0269\\ 0.0559\end{array}$	9.1E-6 8.0E-5 0.0010 0.0145 0.0379	0.0278 0.118 0.205 0.258 0.264	0.0439 0.120 0.188 0.231 0.229
$\begin{array}{c} 0.05 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.1 \end{array}$	$\begin{array}{c} 0.547 \\ 0.535 \\ 0.543 \\ 0.571 \\ 0.650 \end{array}$	0.166 0.189 0.211 0.236 0.287	$\begin{array}{c} 0.0767 \\ 0.0940 \\ 0.110 \\ 0.124 \\ 0.152 \end{array}$	0.0590 0.0752 0.0890 0.102 0.131	0.263 0.267 0.283 0.297 0.352	0.224 0.230 0.237 0.253 0.304
$\begin{array}{c} 0.15 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \end{array}$	0.904 1.20 1.77 2.33 2.83	$\begin{array}{c} 0.436 \\ 0.616 \\ 1.02 \\ 1.41 \\ 1.80 \end{array}$	$\begin{array}{c} 0.252 \\ 0.371 \\ 0.644 \\ 0.945 \\ 1.25 \end{array}$	0.215 0.324 0.575 0.855 1.15	0.528 0.730 1.10 1.51 1.91	$\begin{array}{c} 0.450 \\ 0.617 \\ 0.975 \\ 1.34 \\ 1.68 \end{array}$
$\begin{array}{c} 0.511 \\ 0.6 \\ 0.662 \\ 0.8 \\ 1.0 \end{array}$	$2.88 \\ 3.30 \\ 3.59 \\ 4.17 \\ 4.96$	$ \begin{array}{r} 1.84 \\ 2.18 \\ 2.41 \\ 2.94 \\ 3.63 \\ \end{array} $	1.29 1.57 1.77 2.20 2.83	$1.19 \\ 1.46 \\ 1.64 \\ 2.04 \\ 2.64$	$ \begin{array}{r} 1.95 \\ 2.30 \\ 2.53 \\ 3.04 \\ 3.72 \\ \end{array} $	1.72 2.04 2.25 2.69 3.33
$ \begin{array}{r} 1.117 \\ 1.33 \\ 1.5 \\ 2.0 \\ 3.0 \\ \end{array} $	5.37 6.07 6.64 8.04 10.3	$\begin{array}{c} 4.02 \\ 4.68 \\ 5.16 \\ 6.44 \\ 8.75 \end{array}$	3.18 3.81 4.30 5.56 7.84	2.983.584.045.297.56	$\begin{array}{r} 4.09 \\ 4.76 \\ 5.26 \\ 6.59 \\ 8.83 \end{array}$	3.67 4.25 4.68 5.87 7.98
$\begin{array}{c} 4.0 \\ 5.0 \\ 6.0 \\ 6.129 \\ 8.0 \end{array}$	$12.1 \\ 13.4 \\ 14.6 \\ 14.7 \\ 16.6$	10.9 12.9 14.7 15.0 18.2	9.92 11.7 13.5 13.7 16.7	$9.58 \\ 11.4 \\ 13.1 \\ 13.3 \\ 16.4$	$10.7 \\ 12.4 \\ 13.8 \\ 14.1 \\ 16.6$	9.91 11.6 13.1 13.3 16.1
$ \begin{array}{c} 10.0 \\ 15.0 \\ 20.0 \\ 30.0 \\ 40.0 \end{array} $	18.2 20.0 21.1 22.8 24.3	$21.7 \\ 30.3 \\ 39.1 \\ 54.5 \\ 66.3$	$ 19.8 \\ 27.2 \\ 35.1 \\ 50.4 \\ 65.0 $	$ 19.6 \\ 27.3 \\ 35.1 \\ 51.0 \\ 66.6 $	19.1 24.7 30.2 40.8 51.2	18.5 24.2 29.5 40.0 50.3
50.0 60.0 80.0 100 150	25.5 26.5 27.6 28.6 30.4	75.1 81.9 91.9 98.7 109	77.1 87.5 102 113 131	79.9 90.8 107 119 138	59.8 67.0 77.3 84.8 97.9	58.6 66.4 78.6 88.1 107
200 300 400 500 600	32.0 34.0 36.0 36.9 37.4	116 125 131 135 138	142 156 165 172 177	151 168 178 184 190	107 118 124 128 132	121 140 154 163 171
800 1,000 1,500 2,000 3,000	37.6 37.7 38.0 38.4 39.1	142 145 150 153 156	184 188 197 202 207	198 203 212 217 222	138 142 150 154 158	181 189 203 215 232
4,000 5,000 6,000 8,000 10,000	$\begin{array}{c} 39.9 \\ 40.5 \\ 41.0 \\ 41.5 \\ 41.6 \end{array}$	158 159 160 162 164	210 214 216 218 220	227 231 233 235 237	162 165 167 170 172	247 260 269 280 287

表 B.28 光子(男性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの精巣の吸収線量(単位:pGy・cm²)

* 2.2E-5は2.2×10⁻⁵を示す。

エネルギー (MeV)	AP (前方 - 後方)	PA (後方 - 前方)	LLAT (左側方)	RLAT (右側方)	ROT (回転)	ISO (等方)
$\begin{array}{c} 0.01 \\ 0.015 \\ 0.02 \\ 0.03 \\ 0.04 \end{array}$	$\begin{array}{c} 0.0063 \\ 0.216 \\ 0.534 \\ 0.649 \\ 0.634 \end{array}$	3.1E-5 3.9E-4 0.0187 0.0757	2.2E-5 0.0116 0.0621 0.134 0.160	$\begin{array}{r} 4.5\mathrm{E}\!-\!5\\ 0.0175\\ 0.0873\\ 0.173\\ 0.195\end{array}$	0.0015 0.0627 0.186 0.267 0.284	5.9E-4 0.0328 0.107 0.179 0.197
$\begin{array}{c} 0.05 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.1 \end{array}$	$\begin{array}{c} 0.596 \\ 0.578 \\ 0.595 \\ 0.613 \\ 0.693 \end{array}$	0.126 0.166 0.202 0.229 0.281	0.175 0.185 0.200 0.218 0.266	0.202 0.209 0.222 0.243 0.289	$\begin{array}{c} 0.294 \\ 0.301 \\ 0.325 \\ 0.349 \\ 0.408 \end{array}$	$\begin{array}{c} 0.204 \\ 0.220 \\ 0.243 \\ 0.265 \\ 0.317 \end{array}$
$\begin{array}{c} 0.15 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \end{array}$	$\begin{array}{c} 0.955 \\ 1.27 \\ 1.88 \\ 2.45 \\ 2.99 \end{array}$	$\begin{array}{c} 0.443 \\ 0.627 \\ 1.01 \\ 1.40 \\ 1.80 \end{array}$	$\begin{array}{c} 0.396 \\ 0.551 \\ 0.874 \\ 1.22 \\ 1.55 \end{array}$	$\begin{array}{c} 0.431 \\ 0.603 \\ 0.970 \\ 1.34 \\ 1.70 \end{array}$	$\begin{array}{c} 0.600 \\ 0.797 \\ 1.25 \\ 1.69 \\ 2.12 \end{array}$	$0.450 \\ 0.627 \\ 0.985 \\ 1.35 \\ 1.71$
$\begin{array}{c} 0.511 \\ 0.6 \\ 0.662 \\ 0.8 \\ 1.0 \end{array}$	3.05 3.48 3.77 4.39 5.19	$ \begin{array}{r} 1.84\\ 2.18\\ 2.40\\ 2.89\\ 3.57\end{array} $	$ \begin{array}{r} 1.59\\ 1.88\\ 2.07\\ 2.51\\ 3.16 \end{array} $	$ \begin{array}{r} 1.74\\ 2.06\\ 2.27\\ 2.74\\ 3.39 \end{array} $	2.17 2.52 2.77 3.28 3.98	$ \begin{array}{r} 1.74 \\ 2.05 \\ 2.27 \\ 2.72 \\ 3.38 \\ \end{array} $
$ \begin{array}{r} 1.117 \\ 1.33 \\ 1.5 \\ 2.0 \\ 3.0 \\ \end{array} $	5.63 6.37 6.90 8.42 11.0	3.93 4.56 5.01 6.31 8.62	3.54 4.18 4.68 5.98 8.28	$\begin{array}{c} 3.76 \\ 4.42 \\ 4.94 \\ 6.29 \\ 8.69 \end{array}$	4.36 5.01 5.51 6.88 9.35	3.74 4.39 4.87 6.16 8.53
$\begin{array}{c} 4.0 \\ 5.0 \\ 6.0 \\ 6.129 \\ 8.0 \end{array}$	$13.1 \\ 14.9 \\ 16.4 \\ 16.4 \\ 17.8$	$ \begin{array}{c} 10.7 \\ 12.7 \\ 14.7 \\ 15.0 \\ 18.6 \end{array} $	$ \begin{array}{c} 10.4 \\ 12.4 \\ 14.1 \\ 14.3 \\ 17.3 \end{array} $	$ \begin{array}{c} 10.8 \\ 12.8 \\ 14.5 \\ 14.7 \\ 17.5 \end{array} $	11.5 13.5 15.2 15.4 17.7	10.4 12.3 14.0 14.2 17.1
$ \begin{array}{c} 10.0 \\ 15.0 \\ 20.0 \\ 30.0 \\ 40.0 \end{array} $	18.5 18.9 19.3 20.1 20.8	$22.4 \\ 31.6 \\ 40.6 \\ 56.7 \\ 69.2$	20.1 26.9 33.2 44.7 56.0	20.4 27.2 33.3 44.6 55.0	20.3 26.3 31.6 41.2 49.5	$20.0 \\ 26.9 \\ 33.1 \\ 44.5 \\ 54.0$
50.0 60.0 80.0 100 150	21.4 21.9 22.7 23.3 25.0	78.9 86.3 96.8 105 118	$ \begin{array}{r} 66.7 \\ 75.8 \\ 91.9 \\ 103 \\ 122 \end{array} $	65.0 73.1 86.2 96.1 113	56.2 62.0 70.2 76.1 86.4	62.5 69.7 81.5 91.4 109
200 300 400 500 600	26.3 27.6 28.3 29.0 29.2	126 135 141 146 149	135 150 160 166 172	124 140 148 155 161	93.4 103 110 114 117	121 137 147 154 160
800 1,000 1,500 2,000 3,000	29.6 29.6 30.0 30.4 31.0	153 156 161 164 167	180 184 194 199 207	168 173 183 188 195	120 122 127 130 134	169 178 192 201 218
4,000 5,000 6,000 8,000 10,000	31.5 31.9 32.2 32.7 33.1	170 171 172 174 175	214 219 223 229 235	200 204 207 211 214	137 140 141 144 146	228 236 242 251 258

表 B.29 光子(男性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの甲状腺の吸収線量(単位:pGy·cm²)

* 2.2E-5は2.2×10⁻⁵を示す。

エネルギー (MeV)	AP (前方 - 後方)	PA (後方 - 前方)	LLAT (左側方)	RLAT (右側方)	ROT (回転)	ISO (等方)
$\begin{array}{c} 0.01 \\ 0.015 \\ 0.02 \\ 0.03 \\ 0.04 \end{array}$	1.0E-6 0.0064 0.0662 0.203 0.351	2.3E-5 0.0021 0.0474 0.111	1.0E-5 5.7E-4 0.0109 0.0359	$\begin{array}{r}$	0.0021 0.0217 0.0892 0.145	0.0010 0.0135 0.0608 0.100
$\begin{array}{c} 0.05 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.1 \end{array}$	$\begin{array}{c} 0.392 \\ 0.422 \\ 0.443 \\ 0.486 \\ 0.574 \end{array}$	0.165 0.212 0.247 0.278 0.357	$\begin{array}{c} 0.0623 \\ 0.0827 \\ 0.101 \\ 0.119 \\ 0.159 \end{array}$	$\begin{array}{c} 0.0503 \\ 0.0713 \\ 0.0902 \\ 0.109 \\ 0.144 \end{array}$	$\begin{array}{c} 0.177 \\ 0.208 \\ 0.240 \\ 0.272 \\ 0.327 \end{array}$	$\begin{array}{c} 0.130 \\ 0.156 \\ 0.180 \\ 0.201 \\ 0.247 \end{array}$
$\begin{array}{c} 0.15 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \end{array}$	0.822 1.09 1.62 2.12 2.58	0.528 0.725 1.12 1.50 1.90	$\begin{array}{c} 0.259 \\ 0.374 \\ 0.641 \\ 0.929 \\ 1.22 \end{array}$	$\begin{array}{c} 0.236 \\ 0.347 \\ 0.592 \\ 0.863 \\ 1.15 \end{array}$	$\begin{array}{c} 0.483 \\ 0.656 \\ 1.03 \\ 1.41 \\ 1.79 \end{array}$	$\begin{array}{c} 0.366 \\ 0.506 \\ 0.803 \\ 1.11 \\ 1.41 \end{array}$
$\begin{array}{c} 0.511 \\ 0.6 \\ 0.662 \\ 0.8 \\ 1.0 \end{array}$	$2.63 \\ 3.02 \\ 3.28 \\ 3.85 \\ 4.66$	1.94 2.27 2.50 3.01 3.71	$ 1.25 \\ 1.51 \\ 1.70 \\ 2.09 \\ 2.66 $	$ \begin{array}{r} 1.18\\ 1.44\\ 1.61\\ 2.00\\ 2.57\end{array} $	1.83 2.13 2.35 2.81 3.45	1.45 1.72 1.91 2.31 2.90
$ \begin{array}{r} 1.117 \\ 1.33 \\ 1.5 \\ 2.0 \\ 3.0 \\ \end{array} $	5.10 5.85 6.41 7.81 10.2	$\begin{array}{r} 4.08 \\ 4.75 \\ 5.25 \\ 6.60 \\ 8.88 \end{array}$	2.993.584.025.267.49	$2.90 \\ 3.46 \\ 3.91 \\ 5.13 \\ 7.24$	3.81 4.45 4.92 6.19 8.50	3.22 3.82 4.27 5.49 7.59
$\begin{array}{c} 4.0 \\ 5.0 \\ 6.0 \\ 6.129 \\ 8.0 \end{array}$	$ \begin{array}{r} 12.4 \\ 14.5 \\ 16.4 \\ 16.6 \\ 20.0 \\ \end{array} $	11.0 12.9 14.8 15.0 18.4	9.39 11.2 13.0 13.2 16.3	$9.12 \\ 11.0 \\ 12.8 \\ 13.0 \\ 16.3$	$10.6 \\ 12.6 \\ 14.5 \\ 14.7 \\ 18.1$	$9.52 \\ 11.3 \\ 13.0 \\ 13.2 \\ 16.4$
$ \begin{array}{c} 10.0 \\ 15.0 \\ 20.0 \\ 30.0 \\ 40.0 \end{array} $	23.2 29.8 35.2 42.2 46.9	$21.8 \\ 30.3 \\ 38.9 \\ 54.8 \\ 68.0$	19.6 27.5 36.0 53.9 70.6	$ 19.5 \\ 27.7 \\ 36.1 \\ 53.4 \\ 70.3 $	$21.5 \\ 29.3 \\ 37.1 \\ 51.1 \\ 63.5$	19.7 27.5 35.3 49.9 63.2
50.0 60.0 80.0 100 150	50.4 52.9 57.2 60.1 65.1	77.9 86.1 97.0 104 116	85.5 98.2 118 132 156	85.8 98.7 120 135 161	73.8 82.3 95.8 106 121	74.6 84.6 101 114 138
200 300 400 500 600	68.6 72.6 75.6 77.3 78.7	122 131 138 143 147	172 191 205 213 220	178 199 213 222 230	130 143 152 158 163	155 178 193 205 213
800 1,000 1,500 2,000 3,000	80.4 81.5 82.7 83.0 83.3	152 154 159 163 166	230 238 250 259 268	240 248 261 270 284	170 174 183 190 196	227 236 254 270 287
4,000 5,000 6,000 8,000 10,000	84.0 84.6 85.1 85.8 86.4	169 171 172 174 175	276 283 288 296 302	292 299 304 311 317	200 203 204 207 208	299 307 314 323 330

表 B.30 光子(男性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの膀胱壁 (UB-wall)の吸収線量(単位:pGy・cm²)

* 1.0E-6は1.0×10⁻⁶を示す。
(C1) この付属書は、以下の臓器について、考慮した特定の照射ジオメトリーにおける中 性子に対する臓器吸収線量換算係数の基準値を表にしている。それらは、赤色(活性)骨髄、 結腸、肺、胃、乳房、卵巣、精巣、膀胱壁(UB-wall)、食道、肝臓、甲状腺、骨表面(骨内 膜)、脳、唾液腺、皮膚および残りの組織である。データは、男性ファントムと女性ファント ムそれぞれについて与えられている。眼の水晶体のデータは、付属書下にある。本報告書に 添付している CD-ROM には、これらの線量換算係数が、個々の残りの組織の線量換算係数と ともに ASCII フォーマットの表で収載されている。個々の残りの組織には、副腎、胸郭外領 域、胆嚢、心臓、腎臓、リンパ節、筋肉、口腔粘膜、膵臓、前立腺、小腸、脾臓、胸腺、子 宮/子宮頸部が含まれる。

(C2) 考慮した特定の照射ジオメトリーは、前方 - 後方 (AP)、後方 - 前方 (PA)、左右側 方軸に沿った幅広い平行ビーム (LLAT と RLAT)、そして回転 (ROT) および等方 (ISO) 方向 (3.2 節参照) である。

(C3) 臓器吸収線量は、粒子フルエンスで規格化され、pGy・cm²の単位で与えられてい る。以下に続く表の数字は基準値であり、ICRP/ICRU標準ファントムと様々なモンテカルロ 放射線輸送コード(3.1節と3.3節参照)を使って計算された線量換算係数に、平均化および 平滑化手法(付属書 I 参照)を適用して導き出された。

表 C.1 中性子 (女性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの脳の吸収線量(単位:pGy·cm²)

エネルギー (MeV)	AP (前方 - 後方)	PA (後方 - 前方)	LLAT (左側方)	RLAT (右側方)	ROT (回転)	ISO (等方)
$\begin{array}{c} 1.0\mathrm{E}-9\\ 1.0\mathrm{E}-8\\ 2.5\mathrm{E}-8\\ 1.0\mathrm{E}-7\\ 2.0\mathrm{E}-7\\ 5.0\mathrm{E}-7\\ 1.0\mathrm{E}-6\\ 2.0\mathrm{E}-6\\ 5.0\mathrm{E}-6\end{array}$	$\begin{array}{c} 0.577\\ 0.636\\ 0.728\\ 0.942\\ 1.08\\ 1.21\\ 1.29\\ 1.35\\ 1.42\\ \end{array}$	$\begin{array}{c} 0.630\\ 0.686\\ 0.808\\ 1.06\\ 1.22\\ 1.40\\ 1.50\\ 1.56\\ 1.64 \end{array}$	$\begin{array}{c} 0.675\\ 0.804\\ 0.946\\ 1.26\\ 1.45\\ 1.67\\ 1.81\\ 1.89\\ 1.98\end{array}$	$\begin{array}{c} 0.685\\ 0.798\\ 0.952\\ 1.26\\ 1.47\\ 1.69\\ 1.83\\ 1.91\\ 2.00\\ \end{array}$	$\begin{array}{c} 0.595\\ 0.736\\ 0.853\\ 1.13\\ 1.28\\ 1.49\\ 1.61\\ 1.69\\ 1.76\end{array}$	$\begin{array}{c} 0.526 \\ 0.641 \\ 0.736 \\ 0.972 \\ 1.10 \\ 1.27 \\ 1.37 \\ 1.45 \\ 1.51 \end{array}$
$\begin{array}{c} 1.0\mathrm{E}{-5}\\ 2.0\mathrm{E}{-5}\\ 5.0\mathrm{E}{-5}\\ 1.0\mathrm{E}{-4}\\ 2.0\mathrm{E}{-4}\\ 5.0\mathrm{E}{-4}\\ 0.001\\ 0.002\\ 0.005\\ 0.001\end{array}$	$1.44 \\ 1.45 \\ 1.44 \\ 1.39 \\ 1.33 \\ 1.34 \\ 1.30 \\ 1.27$	$ \begin{array}{c} 1.66\\ 1.67\\ 1.64\\ 1.63\\ 1.60\\ 1.57\\ 1.55\\ 1.53\\ 1.52 \end{array} $	1.99 2.00 1.98 1.95 1.94 1.91 1.88 1.84 1.82 1.81	$\begin{array}{c} 2.01 \\ 2.02 \\ 1.99 \\ 1.96 \\ 1.90 \\ 1.89 \\ 1.87 \\ 1.87 \\ 1.84 \\ 1.82 \end{array}$	$ \begin{array}{c} 1.79\\ 1.80\\ 1.79\\ 1.77\\ 1.72\\ 1.63\\ 1.60\\ 1.60\\ 1.55\\ 1.52\\ \end{array} $	$ \begin{array}{c} 1.53\\ 1.53\\ 1.52\\ 1.51\\ 1.46\\ 1.38\\ 1.36\\ 1.36\\ 1.31\\ 1.28\\ \end{array} $
0.02 0.03 0.05 0.07 0.1 0.15 0.2 0.3 0.5 0.7 0.9	$ \begin{array}{c} 1.29\\ 1.31\\ 1.37\\ 1.46\\ 1.59\\ 1.84\\ 2.11\\ 2.69\\ 3.96\\ 5.30\\ 6.68 \end{array} $	$ \begin{array}{c} 1.54\\ 1.57\\ 1.66\\ 1.76\\ 1.92\\ 2.23\\ 2.57\\ 3.30\\ 4.84\\ 6.37\\ 7.88 \end{array} $	1.85 1.89 2.02 2.15 2.38 2.80 3.25 4.20 6.21 8.13 9.94	1.87 1.93 2.06 2.19 2.41 2.83 3.28 4.24 6.26 8.20	$\begin{array}{c} 1.53\\ 1.57\\ 1.68\\ 1.80\\ 2.00\\ 2.37\\ 2.75\\ 3.56\\ 5.27\\ 7.01\\ 8.77\end{array}$	$\begin{array}{c} 1.30\\ 1.34\\ 1.43\\ 1.54\\ 1.71\\ 2.03\\ 2.38\\ 3.11\\ 4.65\\ 6.23\\ 7.83\end{array}$
$ \begin{array}{c} 0.5 \\ 1.0 \\ 1.2 \\ 1.5 \\ 2.0 \\ 3.0 \\ 4.0 \\ 5.0 \\ 6.0 \\ 7.0 \\ 8.0 \\ \end{array} $	7.40 8.86 11.0 14.3 20.2 25.1 29.3 33.0 36.1 39.0	8.65 10.2 12.6 16.2 22.5 27.7 32.0 35.6 38.8 41.6	$\begin{array}{c} 3.54\\ 10.8\\ 12.7\\ 15.6\\ 19.8\\ 26.8\\ 32.4\\ 36.8\\ 40.5\\ 43.8\\ 46.7\end{array}$	10.0 10.9 12.9 15.7 20.0 27.0 32.5 37.0 40.7 43.9 46.8	$\begin{array}{c} 9.64\\ 11.4\\ 13.9\\ 17.7\\ 24.2\\ 29.6\\ 34.1\\ 37.9\\ 41.2\\ 44.1 \end{array}$	8.63 10.2 12.5 16.0 22.0 27.0 31.2 34.8 37.9 40.7
$\begin{array}{c} 9.0\\ 10.0\\ 12.0\\ 14.0\\ 15.0\\ 16.0\\ 18.0\\ 20.0\\ 21.0\\ 30.0 \end{array}$	$\begin{array}{c} 41.5\\ 43.8\\ 47.8\\ 51.1\\ 52.5\\ 53.8\\ 56.2\\ 58.2\\ 59.1\\ 65.2 \end{array}$	$\begin{array}{c} 44.2\\ 46.5\\ 50.7\\ 54.1\\ 55.5\\ 56.9\\ 59.2\\ 61.1\\ 61.9\\ 67.4 \end{array}$	$\begin{array}{c} 49.3\\ 51.8\\ 56.1\\ 59.6\\ 61.1\\ 62.4\\ 64.6\\ 66.4\\ 67.1\\ 72.0\end{array}$	$\begin{array}{c} 49.5\\ 51.9\\ 56.3\\ 61.3\\ 62.6\\ 64.8\\ 66.5\\ 67.3\\ 71.9\end{array}$	$\begin{array}{c} 46.7\\ 49.1\\ 53.0\\ 56.2\\ 57.6\\ 58.8\\ 60.9\\ 62.6\\ 63.3\\ 68.0\\ \end{array}$	$\begin{array}{c} 43.2\\ 45.4\\ 49.2\\ 52.4\\ 53.7\\ 54.9\\ 56.9\\ 58.6\\ 59.4\\ 64.1\end{array}$
50.0 75.0 100 130 150 180 200 300 400 500	$\begin{array}{c} 73.1\\ 79.5\\ 84.0\\ 87.7\\ 92.5\\ 94.3\\ 105\\ 119\\ 134 \end{array}$	74.6 80.8 84.6 87.1 88.3 89.9 91.0 100 114 129	78.0 83.4 86.1 87.0 87.4 88.3 89.1 97.2 111 128	77.6 83.0 85.8 86.8 87.1 87.8 88.5 96.1 110 127	73.1 77.5 81.3 85.2 87.6 91.0 93.2 105 118 131	69.8 75.1 80.0 84.9 87.7 91.7 94.3 108 122 136
$\begin{array}{c} 600 \\ 700 \\ 800 \\ 900 \\ 1,000 \\ 2,000 \\ 5,000 \\ 10,000 \end{array}$	148 161 172 181 188 229 286 382	144 157 167 175 181 214 271 366	145 159 170 177 183 215 266 362	143 157 169 177 184 214 254 358	143 154 163 171 178 217 268 321	148 160 169 177 184 227 293 379

表 C.2 中性子(女性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの乳房の吸収線量(単位:pGy·cm²)

エネルギー (MeV)	AP (前方 - 後方)	PA (後方 - 前方)	LLAT (左側方)	RLAT (右側方)	ROT (回転)	ISO (等方)
$ \begin{array}{r} 1.0E-9 \\ 1.0E-8 \\ 2.5E-8 \\ 1.0E-7 \\ 2.0E-7 \\ 5.0E-7 \\ \end{array} $	$ \begin{array}{r} 1.71 \\ 1.94 \\ 2.12 \\ 2.62 \\ 2.90 \\ 2.04 \\ \end{array} $	$\begin{array}{c} 0.430 \\ 0.437 \\ 0.516 \\ 0.667 \\ 0.757 \\ 0.876 \end{array}$	$\begin{array}{c} 0.472 \\ 0.478 \\ 0.584 \\ 0.666 \\ 0.806 \\ 0.828 \end{array}$	$\begin{array}{c} 0.440 \\ 0.447 \\ 0.539 \\ 0.626 \\ 0.740 \\ 0.764 \end{array}$	0.733 0.852 0.948 1.17 1.27	0.581 0.658 0.739 0.906 0.989
5.0E - 7 1.0E - 6 2.0E - 6 5.0E - 6 1.0E - 5 2.0E - 5	3.13 3.18 3.22 3.17 3.14	0.376 0.959 1.01 1.07 1.09	0.828 0.928 0.887 0.968 0.893 0.951	0.764 0.853 0.828 0.896 0.822 0.868	1.40 1.47 1.50 1.52 1.52 1.52 1.51	1.09 1.14 1.17 1.18 1.19
5.0E - 5 1.0E - 4 2.0E - 4 5.0E - 4 5.0E - 4 0.001 0.002 0.005	3.00 2.96 2.89 2.63 2.65 2.68 2.68 2.69	1.11 1.11 1.12 1.12 1.12 1.12 1.11 1.12	0.840 0.829 0.882 0.799 0.833 0.790 0.846	$\begin{array}{c} 0.788\\ 0.779\\ 0.808\\ 0.735\\ 0.766\\ 0.723\\ 0.764\\ \end{array}$	1.48 1.45 1.41 1.34 1.31 1.32 1.33	1.13 1.12 1.09 1.03 1.02 1.04 1.04
$\begin{array}{c} 0.01\\ 0.02\\ 0.03\\ 0.05\\ 0.07\\ 0.1\\ 0.15\\ 0.2\\ 0.3\\ \end{array}$	2.83 3.31 3.78 4.64 5.49 6.83 8.76 10.4 13.5	$ \begin{array}{c} 1.13\\ 1.14\\ 1.16\\ 1.18\\ 1.20\\ 1.23\\ 1.28\\ 1.34\\ 1.46\\ \end{array} $	$\begin{array}{c} 0.861\\ 0.978\\ 1.10\\ 1.35\\ 1.60\\ 1.99\\ 2.61\\ 3.16\\ 4.27\end{array}$	$\begin{array}{c} 0.779\\ 0.912\\ 1.02\\ 1.28\\ 1.51\\ 1.87\\ 2.46\\ 3.04\\ 4.12\\ \end{array}$	$\begin{array}{c} 1.40\\ 1.60\\ 1.80\\ 2.20\\ 2.58\\ 3.13\\ 3.97\\ 4.76\\ 6.18\end{array}$	$ \begin{array}{c} 1.09\\ 1.26\\ 1.43\\ 1.78\\ 2.11\\ 2.58\\ 3.32\\ 4.01\\ 5.29\end{array} $
$0.5 \\ 0.7 \\ 0.9 \\ 1.0 \\ 1.2$	18.5 22.5 26.2 27.9 30.7	1.79 2.25 2.81 3.14 3.92	$ \begin{array}{r} 6.28 \\ 8.03 \\ 9.61 \\ 10.4 \\ 11.9 \\ \end{array} $	$\begin{array}{c} 6.08 \\ 7.83 \\ 9.39 \\ 10.1 \\ 11.7 \\ \end{array}$	8.67 10.8 12.8 13.7 15.5	$7.55 \\ 9.55 \\ 11.4 \\ 12.2 \\ 13.9 \\ 9.51 \\ 11.4 \\ 12.2 \\ 13.9 \\ 12.2 \\ 13.9 \\ 12.2 \\ 13.9 \\ 12.2 \\ 13.9 \\ 13.9 \\ 10.2 \\ $
$ \begin{array}{r} 1.5 \\ 2.0 \\ 3.0 \\ 4.0 \\ 5.0 \\ 6.0 \\ 7.0 \\ 8.0 \\ \end{array} $	$\begin{array}{c} 34.0\\ 38.7\\ 46.6\\ 52.7\\ 56.7\\ 59.9\\ 62.7\\ 65.5\end{array}$	5.29 7.88 13.4 18.5 23.3 27.5 31.3 34.7	$14.1 \\ 17.4 \\ 23.0 \\ 28.0 \\ 32.0 \\ 35.4 \\ 38.4 \\ 41.0$	13.8 17.1 22.8 27.7 31.6 35.0 38.0 40.7	17.8 21.3 27.1 31.9 36.0 39.6 42.8 45.7	$ \begin{array}{c} 16.1\\ 19.3\\ 24.7\\ 29.2\\ 33.1\\ 36.4\\ 39.4\\ 42.2\\ \end{array} $
$\begin{array}{c} 9.0\\ 10.0\\ 12.0\\ 14.0\\ 15.0\\ 16.0\\ 18.0\\ 20.0\\ 21.0\\ 30.0 \end{array}$	$\begin{array}{c} 68.2 \\ 70.8 \\ 75.2 \\ 78.5 \\ 79.7 \\ 80.6 \\ 81.8 \\ 82.3 \\ 82.4 \\ 81.9 \end{array}$	$\begin{array}{c} 37.9\\ 40.8\\ 46.0\\ 50.7\\ 52.8\\ 54.8\\ 58.4\\ 61.5\\ 62.9\\ 72.1 \end{array}$	$\begin{array}{c} 43.6\\ 46.1\\ 50.7\\ 54.7\\ 56.4\\ 57.9\\ 60.4\\ 62.4\\ 63.2\\ 69.0 \end{array}$	$\begin{array}{c} 43.4\\ 45.9\\ 50.5\\ 54.4\\ 56.2\\ 57.7\\ 60.3\\ 62.4\\ 63.3\\ 69.3\end{array}$	$\begin{array}{c} 48.4\\ 50.8\\ 55.1\\ 58.6\\ 60.0\\ 61.4\\ 63.5\\ 65.2\\ 65.9\\ 69.8 \end{array}$	$\begin{array}{c} 44.7\\ 47.1\\ 51.3\\ 54.8\\ 56.3\\ 57.6\\ 59.9\\ 61.7\\ 62.4\\ 66.4 \end{array}$
50.0 75.0 100 130 150 180 200 300 400 500	$\begin{array}{c} 78.0 \\ 71.8 \\ 63.5 \\ 55.6 \\ 52.6 \\ 50.7 \\ 50.4 \\ 55.5 \\ 64.7 \\ 74.8 \end{array}$	$\begin{array}{c} 82.5\\ 90.8\\ 98.0\\ 106\\ 111\\ 117\\ 121\\ 139\\ 158\\ 176\end{array}$	74.579.180.979.880.684.386.493.6107122	$\begin{array}{c} 75.6\\ 79.3\\ 80.9\\ 80.6\\ 81.3\\ 83.6\\ 85.4\\ 95.5\\ 110\\ 126 \end{array}$	71.9 73.1 74.7 77.3 79.3 82.5 84.9 97.6 112 125	68.8 70.9 73.8 77.9 80.7 84.8 87.5 101 114 128
600 700 800 900 1,000 2,000 5,000 10,000		193 208 220 230 238 287 378 479	140 154 164 172 177 211 269 375	144 158 168 175 179 207 278 373	138 149 158 165 171 210 272 347	141 153 163 171 178 221 296 389

表 C.3 中性子 (女性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの結腸の吸収線量 (単位:pGy·cm²)

エネルギー (MeV)	AP (前方 - 後方)	PA (後方 - 前方)	LLAT (左側方)	RLAT (右側方)	ROT (回転)	ISO (等方)
$\begin{array}{c} 1.0E-9\\ 1.0E-8\\ 2.5E-8\\ 1.0E-7\\ 2.0E-7\\ 5.0E-7\\ 1.0E-6\\ 2.0E-6\\ 5.0E-6\\ 1.0E-5\\ \end{array}$	$\begin{array}{c} 1.35\\ 1.48\\ 1.75\\ 2.37\\ 2.81\\ 3.09\\ 3.39\\ 3.70\\ 3.87\\ 3.82\\ \end{array}$	$\begin{array}{c} 0.689\\ 0.774\\ 0.893\\ 1.19\\ 1.36\\ 1.56\\ 1.71\\ 1.81\\ 1.92\\ 1.97\\ \end{array}$	$\begin{array}{c} 0.362\\ 0.390\\ 0.466\\ 0.597\\ 0.699\\ 0.816\\ 0.898\\ 0.950\\ 1.01\\ 1.03\\ \end{array}$	$\begin{array}{c} 0.361 \\ 0.377 \\ 0.451 \\ 0.580 \\ 0.685 \\ 0.790 \\ 0.869 \\ 0.916 \\ 0.981 \\ 0.981 \end{array}$	$\begin{array}{c} 0.642\\ 0.806\\ 0.924\\ 1.22\\ 1.39\\ 1.62\\ 1.77\\ 1.88\\ 1.97\\ 2.02\\ \end{array}$	$\begin{array}{c} 0.504 \\ 0.614 \\ 0.703 \\ 0.910 \\ 1.03 \\ 1.20 \\ 1.30 \\ 1.37 \\ 1.43 \\ 1.46 \end{array}$
$\begin{array}{c} 2.0\mathrm{E}{-5} \\ 5.0\mathrm{E}{-5} \\ 1.0\mathrm{E}{-4} \\ 2.0\mathrm{E}{-4} \\ 5.0\mathrm{E}{-4} \\ 0.001 \\ 0.002 \\ 0.005 \\ 0.01 \\ 0.02 \end{array}$	3.97 3.93 3.83 3.90 3.74 3.77 3.81 3.72 3.61 3.65	$\begin{array}{c} 2.00\\ 2.01\\ 2.02\\ 2.05\\ 2.06\\ 2.06\\ 2.06\\ 2.07\\ 2.09\\ 2.12 \end{array}$	$\begin{array}{c} 1.04\\ 1.04\\ 1.04\\ 1.05\\ 1.04\\ 1.03\\ 1.01\\ 1.02\\ 1.02\\ 1.02\\ 1.02\\ 1.02\\ \end{array}$	$\begin{array}{c} 1.01\\ 1.00\\ 0.992\\ 1.01\\ 0.992\\ 0.992\\ 0.964\\ 0.987\\ 0.991\\ 0.991\end{array}$	$\begin{array}{c} 2.03 \\ 2.05 \\ 2.05 \\ 2.03 \\ 2.02 \\ 2.02 \\ 2.01 \\ 1.99 \\ 1.99 \\ 2.02 \end{array}$	$1.48 \\ 1.49 \\ 1.50 \\ 1.50 \\ 1.48 \\ 1.47 \\ 1.47 \\ 1.47 \\ 1.48 \\ 1.48 \\ 1.49$
$\begin{array}{c} 0.03\\ 0.05\\ 0.07\\ 0.1\\ 0.15\\ 0.2\\ 0.3\\ 0.5\\ 0.7\\ 0.9\\ \end{array}$	3.69 3.84 4.02 4.28 4.77 5.33 6.45 8.83 11.2 13.5	$\begin{array}{c} 2.15\\ 2.21\\ 2.27\\ 2.35\\ 2.49\\ 2.64\\ 2.94\\ 3.62\\ 4.37\\ 5.21 \end{array}$	$1.03 \\ 1.06 \\ 1.10 \\ 1.17 \\ 1.29 \\ 1.43 \\ 1.73 \\ 2.42 \\ 3.16 \\ 3.94$	$\begin{array}{c} 0.988\\ 1.01\\ 1.05\\ 1.11\\ 1.23\\ 1.36\\ 1.65\\ 2.34\\ 3.09\\ 3.86 \end{array}$	$\begin{array}{c} 2.05\\ 2.12\\ 2.20\\ 2.33\\ 2.57\\ 2.82\\ 3.36\\ 4.48\\ 5.62\\ 6.78\end{array}$	$\begin{array}{c} 1.51\\ 1.55\\ 1.60\\ 1.69\\ 1.86\\ 2.04\\ 2.41\\ 3.21\\ 4.04\\ 4.90\end{array}$
$1.0 \\ 1.2 \\ 1.5 \\ 2.0 \\ 3.0 \\ 4.0 \\ 5.0 \\ 6.0 \\ 7.0 \\ 8.0$	$14.6 \\ 16.8 \\ 20.1 \\ 24.8 \\ 32.7 \\ 39.1 \\ 44.1 \\ 48.3 \\ 51.8 \\ 54.9 \\$	5.66 6.65 8.26 11.1 16.6 21.7 26.4 30.5 34.2 37.5	$\begin{array}{c} 4.35\\ 5.23\\ 6.62\\ 8.97\\ 13.5\\ 17.6\\ 21.4\\ 24.8\\ 27.9\\ 30.7\end{array}$	$\begin{array}{c} 4.27\\ 5.16\\ 6.57\\ 8.94\\ 13.4\\ 17.4\\ 21.1\\ 24.5\\ 27.5\\ 30.2 \end{array}$	$\begin{array}{c} 7.37\\ 8.58\\ 10.4\\ 13.4\\ 18.9\\ 23.8\\ 28.1\\ 32.0\\ 35.4\\ 38.4 \end{array}$	$5.34 \\ 6.24 \\ 7.62 \\ 9.92 \\ 14.3 \\ 18.3 \\ 22.0 \\ 25.3 \\ 28.2 \\ 30.9$
$\begin{array}{c} 9.0\\ 10.0\\ 12.0\\ 14.0\\ 15.0\\ 16.0\\ 18.0\\ 20.0\\ 21.0\\ 30.0 \end{array}$	$57.8 \\ 60.4 \\ 64.8 \\ 68.2 \\ 69.5 \\ 70.7 \\ 72.5 \\ 73.9 \\ 74.4 \\ 77.9$	$\begin{array}{c} 40.5\\ 43.2\\ 48.0\\ 52.0\\ 53.8\\ 55.4\\ 58.3\\ 60.7\\ 61.8\\ 69.0\\ \end{array}$	$\begin{array}{c} 33.2\\ 35.5\\ 39.7\\ 43.4\\ 45.0\\ 46.6\\ 49.4\\ 51.8\\ 53.0\\ 61.0 \end{array}$	$\begin{array}{c} 32.7\\ 35.0\\ 39.2\\ 42.8\\ 44.5\\ 46.0\\ 48.8\\ 51.3\\ 52.5\\ 60.2 \end{array}$	$\begin{array}{c} 41.2\\ 43.6\\ 48.0\\ 51.5\\ 53.0\\ 54.4\\ 56.8\\ 58.9\\ 59.8\\ 66.0\\ \end{array}$	$\begin{array}{c} 33.3\\ 35.5\\ 39.4\\ 42.7\\ 44.1\\ 45.5\\ 47.9\\ 49.9\\ 50.9\\ 57.5\end{array}$
50.0 75.0 100 130 150 180 200 300 400 500	$\begin{array}{c} 82.0\\ 85.1\\ 86.3\\ 86.6\\ 86.9\\ 88.0\\ 89.0\\ 98.8\\ 114\\ 132 \end{array}$	$\begin{array}{c} 78.1\\ 86.4\\ 93.6\\ 101\\ 106\\ 113\\ 117\\ 137\\ 158\\ 178\\ \end{array}$	71.780.888.295.9101107111130149169	69.9 79.1 87.3 95.8 101 108 111 128 147 168	$\begin{array}{c} 74.1\\ 81.3\\ 87.5\\ 94.1\\ 98.2\\ 104\\ 108\\ 127\\ 146\\ 164\\ \end{array}$	$\begin{array}{c} 66.9\\ 75.6\\ 83.4\\ 91.9\\ 97.1\\ 105\\ 109\\ 132\\ 152\\ 171 \end{array}$
$\begin{array}{c} 600 \\ 700 \\ 800 \\ 900 \\ 1,000 \\ 2,000 \\ 5,000 \\ 10,000 \end{array}$	149 164 176 185 193 235 286 381	198 215 229 240 250 308 407 521	189 206 220 231 241 299 400 514	189 207 222 234 244 298 424 536	181 196 209 221 230 291 388 503	188 203 216 228 238 313 443 594

	エネルギー (MeV)	AP (前方 - 後方)	PA (後方 - 前方)	LLAT (左側方)	RLAT (右側方)	ROT (回転)	ISO (等方)
-	$\begin{array}{c} 1.0E-9\\ 1.0E-8\\ 2.5E-8\\ 1.0E-7\\ 2.0E-7\\ 5.0E-7\\ 1.0E-6\\ 2.0E-6\\ 5.0E-6\end{array}$	$\begin{array}{c} 0.970 \\ 1.09 \\ 1.23 \\ 1.59 \\ 1.79 \\ 2.00 \\ 2.13 \\ 2.22 \\ 2.31 \end{array}$	$\begin{array}{c} 0.878 \\ 0.978 \\ 1.14 \\ 1.49 \\ 1.70 \\ 1.94 \\ 2.09 \\ 2.19 \\ 2.30 \end{array}$	$\begin{array}{c} 0.451 \\ 0.511 \\ 0.596 \\ 0.763 \\ 0.874 \\ 0.988 \\ 1.06 \\ 1.10 \\ 1.13 \end{array}$	$\begin{array}{c} 0.454\\ 0.518\\ 0.601\\ 0.777\\ 0.886\\ 1.000\\ 1.07\\ 1.11\\ 1.15\end{array}$	$\begin{array}{c} 0.687\\ 0.825\\ 0.936\\ 1.22\\ 1.37\\ 1.56\\ 1.67\\ 1.75\\ 1.81\\ \end{array}$	$\begin{array}{c} 0.546 \\ 0.657 \\ 0.741 \\ 0.948 \\ 1.06 \\ 1.20 \\ 1.28 \\ 1.34 \\ 1.39 \end{array}$
	$\begin{array}{c} 1.0 \pm -5\\ 2.0 \pm -5\\ 5.0 \pm -5\\ 1.0 \pm -4\\ 2.0 \pm -4\\ 5.0 \pm -4\\ 0.001\\ 0.002\\ 0.005\\ 0.01\end{array}$	$\begin{array}{c} 2.34\\ 2.32\\ 2.30\\ 2.26\\ 2.15\\ 2.15\\ 2.15\\ 2.15\\ 2.09\\ 2.06\end{array}$	$\begin{array}{c} 2.33 \\ 2.34 \\ 2.31 \\ 2.30 \\ 2.30 \\ 2.26 \\ 2.23 \\ 2.20 \\ 2.19 \\ 2.10 \end{array}$	$ \begin{array}{c} 1.13\\ 1.13\\ 1.11\\ 1.09\\ 1.08\\ 1.05\\ 1.03\\ 1.01\\ 1.00\\ 0.007 \end{array} $	$ \begin{array}{c} 1.16\\ 1.15\\ 1.13\\ 1.11\\ 1.00\\ 1.07\\ 1.05\\ 1.03\\ 1.02\\ 1.01$	$ \begin{array}{c} 1.83\\ 1.83\\ 1.81\\ 1.79\\ 1.74\\ 1.66\\ 1.64\\ 1.64\\ 1.59\\ 1.58\\ \end{array} $	1.40 1.40 1.39 1.37 1.33 1.27 1.26 1.26 1.22
	$\begin{array}{c} 0.01\\ 0.02\\ 0.03\\ 0.05\\ 0.07\\ 0.1\\ 0.15\\ 0.2\\ 0.3\\ 0.5\\ 0.7\\ 0.0\end{array}$	$\begin{array}{c} 2.00\\ 2.10\\ 2.16\\ 2.29\\ 2.46\\ 2.71\\ 3.16\\ 3.63\\ 4.59\\ 6.54\\ 8.45\\ 10.2\end{array}$	2.192.222.262.382.512.723.103.514.356.087.770.40	$\begin{array}{c} 0.997\\ 1.03\\ 1.07\\ 1.16\\ 1.27\\ 1.44\\ 1.73\\ 2.03\\ 2.64\\ 3.85\\ 4.96\\ 6.00\end{array}$	$ \begin{array}{c} 1.01\\ 1.05\\ 1.09\\ 1.18\\ 1.29\\ 1.46\\ 1.76\\ 2.07\\ 2.68\\ 3.88\\ 5.00\\ 6.08 \end{array} $	$ \begin{array}{c} 1.36\\ 1.61\\ 1.66\\ 1.78\\ 1.91\\ 2.12\\ 2.50\\ 2.89\\ 3.69\\ 5.32\\ 6.92\\ 8.50\\ \end{array} $	$\begin{array}{c} 1.21\\ 1.23\\ 1.27\\ 1.36\\ 1.47\\ 1.64\\ 2.24\\ 2.87\\ 4.16\\ 5.45\\ 6.72\end{array}$
	$ \begin{array}{c} 1.0\\ 1.2\\ 1.5\\ 2.0\\ 3.0\\ 4.0\\ 5.0\\ 6.0\\ 7.0\\ 8.0\\ \end{array} $	10.3 11.2 13.0 15.6 19.3 25.7 30.8 34.9 38.5 41.6 44.4	$\begin{array}{c} 9.40\\ 10.2\\ 11.9\\ 14.4\\ 18.2\\ 24.7\\ 29.9\\ 34.1\\ 37.6\\ 40.7\\ 43.6\end{array}$	$\begin{array}{c} 6.00\\ 6.53\\ 7.61\\ 9.22\\ 11.8\\ 16.3\\ 20.1\\ 23.4\\ 26.2\\ 28.8\\ 31.2 \end{array}$	$\begin{array}{c} 6.08\\ 6.62\\ 7.71\\ 9.32\\ 11.9\\ 16.4\\ 20.2\\ 23.5\\ 26.4\\ 28.9\\ 31.3 \end{array}$	9.28 10.8 13.0 16.3 22.0 26.7 30.7 34.2 37.2 40.0	$\begin{array}{c} 6.73 \\ 7.36 \\ 8.62 \\ 10.4 \\ 13.2 \\ 18.1 \\ 22.3 \\ 25.8 \\ 29.0 \\ 31.8 \\ 34.3 \end{array}$
	$\begin{array}{c} 9.0\\ 10.0\\ 12.0\\ 14.0\\ 15.0\\ 16.0\\ 18.0\\ 20.0\\ 21.0\\ 30.0 \end{array}$	$\begin{array}{c} 47.0\\ 49.3\\ 53.5\\ 57.0\\ 58.4\\ 59.8\\ 62.0\\ 63.8\\ 64.5\\ 69.3\end{array}$	$\begin{array}{c} 46.2\\ 48.6\\ 52.9\\ 56.5\\ 58.0\\ 59.3\\ 61.6\\ 63.4\\ 64.1\\ 68.9 \end{array}$	$\begin{array}{c} 33.3\\ 35.4\\ 39.2\\ 42.5\\ 43.9\\ 45.3\\ 47.7\\ 49.8\\ 50.7\\ 56.9\end{array}$	$\begin{array}{c} 33.5\\ 35.5\\ 39.2\\ 42.5\\ 44.0\\ 45.3\\ 47.7\\ 49.8\\ 50.8\\ 57.3\end{array}$	$\begin{array}{c} 42.5\\ 44.8\\ 48.7\\ 52.0\\ 53.4\\ 54.6\\ 56.8\\ 58.6\\ 59.3\\ 64.3\end{array}$	$\begin{array}{c} 36.6\\ 38.7\\ 42.4\\ 45.5\\ 46.8\\ 48.1\\ 50.3\\ 52.1\\ 52.9\\ 58.5 \end{array}$
	50.0 75.0 100 130 150 180 200 300 400 500	75.0 79.5 82.4 84.8 86.2 88.4 90.0 101 116 132	74.9 80.6 84.6 87.4 88.7 90.6 91.9 102 117 134	$\begin{array}{c} 65.6\\ 73.9\\ 80.3\\ 85.8\\ 88.7\\ 92.4\\ 94.6\\ 107\\ 123\\ 141 \end{array}$	$\begin{array}{c} 66.2 \\ 74.1 \\ 80.0 \\ 85.4 \\ 88.4 \\ 92.4 \\ 94.9 \\ 108 \\ 124 \\ 142 \end{array}$	$\begin{array}{c} 70.0\\ 75.1\\ 79.7\\ 84.6\\ 87.6\\ 91.9\\ 94.8\\ 109\\ 124\\ 139 \end{array}$	65.7 72.2 77.9 84.2 88.0 93.5 97.0 114 130 146
	600 700 800 900 1,000 2,000 5,000 10,000	147 161 172 182 189 230 281 370	150 164 175 183 189 223 279 368	160 176 188 197 204 245 331 441	159 174 186 196 203 247 330 437	154 166 177 186 193 239 301 376	160 173 184 193 201 254 338 436

表 C.4 中性子(女性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの骨表面(骨内膜)の吸収線量(単位:pGy・cm²)

表 C.5 中性子 (女性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの卵巣の吸収線量 (単位:pGy·cm²)

エネルギー	AP	PA	LLAT	RLAT	ROT	ISO
(MeV)	(前方-後方)	(後方 - 前方)	(左側方)	(右側方)	(回転) 0.578	(等方) 0 275
1.0E - 9 1.0E - 8	1.01	1.09	0.199	0.252	0.661	0.490
2.5E-8 1.0E-7	1.17 1.50	1.72	0.246	0.269 0.314	0.962	0.568
2.0E-7 5.0E-7	1.70	1.98 2.36	0.385 0.405	$0.388 \\ 0.407$	1.10	$0.866 \\ 0.997$
1.0E - 6 2 0F - 6	2.17	2.59	0.482	0.543	1.54	1.10
5.0E - 6	2.44	2.86	0.523	0.579	1.69	1.30
1.0E - 3 2.0E - 5	2.51	3.00	0.545	0.610	1.74	1.28
5.0E - 5 1 0E - 4	2.67	3.03 3.01	0.545 0.594	0.548	1.84	1.28
2.0E-4 5.0E-4	2.76 2.74	3.07 3.14	$0.567 \\ 0.536$	$0.623 \\ 0.595$	1.82	1.31
0.001	2.73	3.15	0.565	0.669	1.82	1.37
0.002	2.73	3.22	0.511	0.602	1.86	1.30
0.01 0.02	2.74 2.80	3.24 3.27	0.516	0.581 0.677	1.88	1.37 1.45
0.03	2.85	3.30	0.558	0.721	1.94	1.48
0.07	2.97	3.47	0.636	0.695	2.08	1.51
0.15	3.24	3.78	0.672	0.776	2.26	1.61
0.2	3.88	4.00	0.809	0.870	2.60	1.70
0.5	4.90 6.03	5.56 6.75	0.975	1.22	3.10 3.71	2.30 2.79
0.9	7.28	8.05 8.74	1.26	1.39	4.41	3.35 3.65
1.2	9.32	10.2	1.68	1.88	5.66	4.29
2.0	15.1	16.3	3.74	4.50	9.46	7.13
4.0	27.9	29.6	9.27	10.4	19.1	14.7
5.0 6.0	33.2	34.9	12.4	13.9	23.4 27.4	21.6
7.0 8.0	41.7 45.1	43.5 47.1	18.1 20.5	20.2 22.6	30.9 34.1	24.7 27.5
9.0 10.0	48.2 50.9	50.2 53.0	22.7 24.7	24.7 26.6	36.9 39.5	30.2 32.6
12.0	55.6 59.4	57.8	28.6 32.2	30.3 34_1	43.8	37.0 41.0
15.0	61.1	63.3	33.9	35.9	48.9	42.8
18.0	65.4	67.3	38.9	41.0	52.7	47.6
20.0	68.7	70.3	42.1 43.7	44.2 45.7	54.8	50.4 51.7
30.0 50.0	75.8	76.0	55.0 65.2	54.5 65.7	61.9 70.5	60.5 71.4
75.0	91.6	87.6 91.4	75.6	73.8 87.4	79.2 87.6	79.8
130 150	104	95.5	104	97.7	97.3	94.4
180	114	103	125	115	105	106
300	118	100	129 142	119	138	137
400 500	155 173	142 162	201	152 184	159 179	163 187
600 700	189 204	181 198	231 254	230 262	196 211	209 227
800	218	213	267 275	267 262	224 235	242
1,000	239	235	278	256	244	266
5,000	375	349 434	490	395 593	406	462

表 C.6 中性子 (女性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの肝臓の吸収線量 (単位:pGy·cm²)

エネルギー (MeV)	AP (前方 - 後方)	PA (後方 - 前方)	LLAT (左側方)	RLAT (右側方)	ROT (回転)	ISO (等方)
1.0E-9 1.0E-8 2.5E-8 1.0E-7	$ \begin{array}{r} 1.24 \\ 1.43 \\ 1.63 \\ 2.18 \\ \end{array} $	$\begin{array}{c} 0.868 \\ 0.983 \\ 1.14 \\ 1.52 \end{array}$	0.224 0.241 0.277 0.358	$\begin{array}{c} 0.583 \\ 0.665 \\ 0.779 \\ 1.02 \end{array}$	$\begin{array}{c} 0.688 \\ 0.846 \\ 0.973 \\ 1.28 \end{array}$	0.520 0.638 0.728 0.946
2.0E-7 5.0E-7 1.0E-6 2.0E-6	2.49 2.85 3.07 3.24	1.74 2.02 2.20 2.33	0.411 0.479 0.521 0.553	1.19 1.39 1.51 1.59	1.46 1.69 1.84 1.95 2.00	1.07 1.24 1.35 1.42
5.0E - 6 1.0E - 5	3.42 3.50	2.48 2.54	0.585	1.68	2.06 2.10	1.50
$\begin{array}{c} 2.0E-5\\ 5.0E-5\\ 1.0E-4\\ 2.0E-4\\ 5.0E-4\\ 0.001\\ 0.002\\ 0.005\\ 0.01\\ \end{array}$	3.54 3.53 3.54 3.40 3.41 3.43 3.36 3.30	$\begin{array}{c} 2.57\\ 2.56\\ 2.59\\ 2.62\\ 2.61\\ 2.60\\ 2.58\\ 2.60\\ 2.62\\ 2.62\end{array}$	$\begin{array}{c} 0.806\\ 0.605\\ 0.605\\ 0.609\\ 0.609\\ 0.609\\ 0.609\\ 0.609\\ 0.609\\ 0.608\\ \end{array}$	$ \begin{array}{c} 1.73\\ 1.70\\ 1.71\\ 1.72\\ 1.69\\ 1.68\\ 1.66\\ 1.65\\ 1.63\\ \end{array} $	$ \begin{array}{c} 2.12\\ 2.13\\ 2.14\\ 2.12\\ 2.07\\ 2.06\\ 2.06\\ 2.02\\ 2.00\\ 2.00 \end{array} $	$ \begin{array}{c} 1.55\\ 1.57\\ 1.58\\ 1.56\\ 1.52\\ 1.51\\ 1.51\\ 1.49$
$\begin{array}{c} 0.02 \\ 0.03 \\ 0.05 \\ 0.07 \\ 0.1 \\ 0.15 \\ 0.2 \\ 0.3 \\ 0.5 \\ 0.7 \end{array}$	3.33 3.36 3.47 3.60 3.81 4.20 4.63 5.54 7.48 9.45	$\begin{array}{c} 2.65 \\ 2.68 \\ 2.75 \\ 2.83 \\ 2.95 \\ 3.16 \\ 3.39 \\ 3.87 \\ 4.91 \\ 6.00 \end{array}$	$\begin{array}{c} 0.617\\ 0.626\\ 0.649\\ 0.672\\ 0.707\\ 0.768\\ 0.831\\ 0.966\\ 1.27\\ 1.63\end{array}$	$ \begin{array}{c} 1.65\\ 1.67\\ 1.75\\ 1.82\\ 1.95\\ 2.20\\ 2.48\\ 3.07\\ 4.38\\ 5.69\\ \end{array} $	$\begin{array}{c} 2.02 \\ 2.04 \\ 2.11 \\ 2.18 \\ 2.31 \\ 2.55 \\ 2.80 \\ 3.34 \\ 4.48 \\ 5.69 \end{array}$	$\begin{array}{c} 1.50\\ 1.51\\ 1.55\\ 1.60\\ 1.68\\ 1.83\\ 2.00\\ 2.37\\ 3.17\\ 4.04\end{array}$
0.9	11.4 12.4	7.14	2.03	7.00	6.93 7.56	4.96
$ \begin{array}{c} 1.2\\ 1.5\\ 2.0\\ 3.0\\ 4.0\\ 5.0\\ 6.0\\ 7.0\\ 8.0\\ \end{array} $	$12.1 \\ 14.4 \\ 17.2 \\ 21.4 \\ 28.4 \\ 34.2 \\ 39.0 \\ 43.0 \\ 46.5 \\ 49.7 \\ 12.1 \\ 10.1 \\ $	9.05 11.1 14.5 20.6 25.9 30.5 34.5 37.9 41.1	$\begin{array}{c} 2.26\\ 2.75\\ 3.57\\ 5.07\\ 8.31\\ 11.6\\ 14.7\\ 17.7\\ 20.4\\ 23.0 \end{array}$	$\begin{array}{c} 9.12\\ 11.4\\ 14.9\\ 21.2\\ 26.4\\ 30.9\\ 34.7\\ 38.1\\ 41.1 \end{array}$	8.84 10.7 13.8 19.3 24.2 28.5 32.3 35.6 38.6	6.40 7.86 10.2 14.7 18.8 22.4 25.7 28.6 31.3
$\begin{array}{c} 9.0\\ 10.0\\ 12.0\\ 14.0\\ 15.0\\ 16.0\\ 20.0\\ 21.0\\ 30.0 \end{array}$	$52.5 \\ 55.0 \\ 59.4 \\ 62.9 \\ 64.3 \\ 65.5 \\ 67.6 \\ 69.3 \\ 70.0 \\ 74.6$	$\begin{array}{c} 43.9\\ 46.5\\ 51.2\\ 55.0\\ 56.7\\ 58.2\\ 60.8\\ 62.9\\ 63.9\\ 70.0\\ \end{array}$	$\begin{array}{c} 25.3\\ 27.5\\ 31.5\\ 35.1\\ 36.7\\ 38.3\\ 41.1\\ 43.8\\ 45.0\\ 53.9\end{array}$	$\begin{array}{c} 43.9\\ 46.4\\ 50.9\\ 54.7\\ 56.3\\ 57.8\\ 60.4\\ 62.5\\ 63.5\\ 69.5\end{array}$	$\begin{array}{c} 41.3\\ 43.7\\ 47.8\\ 51.2\\ 52.7\\ 54.1\\ 56.4\\ 58.4\\ 59.3\\ 65.2 \end{array}$	$\begin{array}{c} 33.7\\ 35.9\\ 39.7\\ 43.0\\ 44.5\\ 45.8\\ 48.3\\ 50.4\\ 51.4\\ 58.2 \end{array}$
50.0 75.0 100 130 150 180 200 300 400 500	$\begin{array}{c} 80.0\\ 84.3\\ 86.9\\ 89.1\\ 90.5\\ 92.7\\ 94.4\\ 107\\ 123\\ 141 \end{array}$	$\begin{array}{c} 77.7\\85.4\\92.0\\98.5\\102\\107\\110\\126\\145\\165\end{array}$	$\begin{array}{c} 66.6\\ 77.7\\ 87.0\\ 96.8\\ 103\\ 111\\ 117\\ 140\\ 162\\ 182 \end{array}$	$\begin{array}{c} 76.5\\ 83.6\\ 89.5\\ 94.8\\ 97.5\\ 101\\ 103\\ 115\\ 132\\ 152\\ \end{array}$	$\begin{array}{c} 72.7\\ 79.7\\ 86.1\\ 93.0\\ 97.3\\ 103\\ 107\\ 126\\ 144\\ 161 \end{array}$	$\begin{array}{c} 67.7\\ 76.3\\ 83.7\\ 91.7\\ 96.6\\ 103\\ 108\\ 128\\ 148\\ 166\\ \end{array}$
$\begin{array}{c} 600 \\ 700 \\ 800 \\ 900 \\ 1,000 \\ 2,000 \\ 5,000 \\ 10,000 \end{array}$	$158 \\ 174 \\ 186 \\ 196 \\ 204 \\ 249 \\ 306 \\ 400$	185 201 215 225 233 279 360 461	201 217 232 244 255 328 452 574	171 188 201 211 219 260 333 442	176 190 203 213 223 284 373 465	183 198 211 222 233 300 410 532

表 C.7 中性子(女性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの肺の吸収線量(単位:pGy·cm²)

エネルギー (MeV)	AP (前方 - 後方)	PA (後方 - 前方)	LLAT (左側方)	RLAT (右側方)	ROT (回転)	ISO (等方)
$\begin{array}{c} 1.0E-9\\ 1.0E-8\\ 2.5E-8\\ 1.0E-7\\ 2.0E-7\\ 5.0E-7\\ 1.0E-6\\ 2.0E-6\\ 5.0E-6\end{array}$	$\begin{array}{c} 1.01\\ 1.15\\ 1.31\\ 1.73\\ 1.98\\ 2.26\\ 2.44\\ 2.58\\ 2.73\end{array}$	$\begin{array}{c} 1.03 \\ 1.22 \\ 1.42 \\ 1.93 \\ 2.21 \\ 2.58 \\ 2.80 \\ 2.94 \\ 3.11 \end{array}$	$\begin{array}{c} 0.324\\ 0.352\\ 0.406\\ 0.519\\ 0.594\\ 0.681\\ 0.742\\ 0.785\\ 0.824\end{array}$	0.342 0.366 0.424 0.537 0.621 0.715 0.769 0.804 0.850	$\begin{array}{c} 0.654\\ 0.808\\ 0.928\\ 1.22\\ 1.38\\ 1.60\\ 1.74\\ 1.84\\ 1.94 \end{array}$	$\begin{array}{c} 0.519\\ 0.628\\ 0.716\\ 0.934\\ 1.06\\ 1.23\\ 1.33\\ 1.41\\ 1.48\\ \end{array}$
$\begin{array}{c} 1.0\mathrm{E}{-5}\\ 2.0\mathrm{E}{-5}\\ 5.0\mathrm{E}{-5}\\ 1.0\mathrm{E}{-4}\\ 2.0\mathrm{E}{-4}\\ 5.0\mathrm{E}{-4}\\ 0.001\\ 0.002\\ 0.005\\ 0.01\\ \end{array}$	$\begin{array}{c} 2.80\\ 2.83\\ 2.84\\ 2.84\\ 2.80\\ 2.71\\ 2.73\\ 2.75\\ 2.69\\ 2.63\end{array}$	3.19 3.22 3.20 3.21 3.17 3.15 3.11 3.10 3.10	$\begin{array}{c} 0.829\\ 0.846\\ 0.847\\ 0.844\\ 0.833\\ 0.833\\ 0.833\\ 0.823\\ 0.827\\ 0.829\end{array}$	$\begin{array}{c} 0.861 \\ 0.876 \\ 0.871 \\ 0.873 \\ 0.879 \\ 0.864 \\ 0.864 \\ 0.852 \\ 0.845 \\ 0.835 \end{array}$	$\begin{array}{c} 1.99\\ 2.01\\ 2.02\\ 2.01\\ 1.99\\ 1.93\\ 1.92\\ 1.91\\ 1.88\\ 1.85\end{array}$	$1.51 \\ 1.53 \\ 1.54 \\ 1.53 \\ 1.52 \\ 1.48 \\ 1.47 \\ 1.46 \\ 1.44 \\ 1.43$
$\begin{array}{c} 0.02 \\ 0.03 \\ 0.05 \\ 0.07 \\ 0.1 \\ 0.15 \\ 0.2 \\ 0.3 \\ 0.5 \\ 0.7 \\ 0.0 \end{array}$	2.65 2.68 2.75 2.84 2.98 3.27 3.61 4.34 5.99 7.76 0.58	3.11 3.15 3.26 3.39 3.62 4.05 4.53 5.58 7.80 9.96 12.0	$\begin{array}{c} 0.834 \\ 0.838 \\ 0.861 \\ 0.895 \\ 0.945 \\ 1.03 \\ 1.12 \\ 1.32 \\ 1.76 \\ 2.25 \\ 2.78 \end{array}$	$\begin{array}{c} 0.850\\ 0.855\\ 0.880\\ 0.915\\ 0.967\\ 1.06\\ 1.17\\ 1.39\\ 1.90\\ 2.46\\ 2.06\end{array}$	$ \begin{array}{c} 1.85\\ 1.87\\ 1.93\\ 2.00\\ 2.13\\ 2.37\\ 2.63\\ 3.21\\ 4.49\\ 5.85\\ 7.55\\ \end{array} $	$ \begin{array}{c} 1.42\\ 1.43\\ 1.47\\ 1.52\\ 1.61\\ 1.79\\ 1.99\\ 2.42\\ 3.39\\ 4.43\\ 5.54 \end{array} $
$ \begin{array}{c} 0.9\\ 1.0\\ 1.2\\ 1.5\\ 2.0\\ 3.0\\ 4.0\\ 5.0\\ 6.0\\ 7.0\\ 8.0\\ \end{array} $	$\begin{array}{c} 9.58\\ 10.5\\ 12.4\\ 15.1\\ 19.2\\ 26.1\\ 31.8\\ 36.5\\ 40.5\\ 43.9\\ 47\\ 0\end{array}$	$\begin{array}{c} 12.0\\ 13.1\\ 15.2\\ 18.3\\ 23.0\\ 30.6\\ 36.7\\ 41.5\\ 45.5\\ 49.0\\ 52.0\end{array}$	$\begin{array}{c} 2.78\\ 3.07\\ 3.72\\ 4.80\\ 6.73\\ 10.6\\ 14.2\\ 17.7\\ 20.8\\ 23.6\\ 26 \end{array}$	3.06 3.38 4.08 5.21 7.20 11.1 14.7 18.1 21.1 23.8 26.3	7.25 7.96 9.40 11.5 14.8 20.8 25.9 30.3 34.2 37.6 40 5	$\begin{array}{c} 5.54 \\ 6.11 \\ 7.27 \\ 9.01 \\ 11.8 \\ 16.9 \\ 21.4 \\ 25.4 \\ 28.9 \\ 32.0 \\ 34.8 \end{array}$
$\begin{array}{c} 9.0\\ 10.0\\ 12.0\\ 14.0\\ 15.0\\ 16.0\\ 18.0\\ 20.0\\ 21.0\\ 30.0 \end{array}$	$\begin{array}{c} 49.8\\ 52.4\\ 56.8\\ 60.3\\ 61.8\\ 63.1\\ 65.3\\ 67.1\\ 67.8\\ 72.7\end{array}$	$\begin{array}{c} 52.6\\ 54.8\\ 57.4\\ 61.8\\ 65.2\\ 66.6\\ 67.8\\ 69.8\\ 71.3\\ 71.9\\ 75.6\end{array}$	$\begin{array}{c} 28.4\\ 30.6\\ 34.4\\ 37.8\\ 39.3\\ 40.8\\ 43.5\\ 45.9\\ 47.0\\ 54.9\end{array}$	$\begin{array}{c} 28.6\\ 30.6\\ 34.4\\ 37.6\\ 39.1\\ 40.6\\ 43.1\\ 45.5\\ 46.5\\ 54.2 \end{array}$	$\begin{array}{c} 43.2\\ 45.6\\ 49.6\\ 52.9\\ 54.3\\ 55.6\\ 57.8\\ 59.7\\ 60.5\\ 66.0 \end{array}$	37.3 39.6 43.5 46.9 48.4 49.7 52.1 54.2 55.2 61.5
50.0 75.0 100 130 150 180 200 300 400 500	$\begin{array}{c} 78.9\\ 84.3\\ 87.9\\ 90.5\\ 91.9\\ 93.7\\ 95.0\\ 105\\ 121\\ 138 \end{array}$	80.1 84.5 87.2 88.8 89.5 90.9 92.1 103 119 137	$\begin{array}{c} 66.0\\ 76.1\\ 84.6\\ 93.1\\ 97.7\\ 103\\ 107\\ 120\\ 136\\ 154 \end{array}$	$\begin{array}{c} 65.2 \\ 75.3 \\ 83.4 \\ 91.5 \\ 96.0 \\ 102 \\ 105 \\ 119 \\ 136 \\ 154 \end{array}$	$\begin{array}{c} 73.0\\ 79.3\\ 84.8\\ 90.6\\ 94.1\\ 99.1\\ 102\\ 118\\ 134\\ 149 \end{array}$	$\begin{array}{c} 69.9\\ 77.3\\ 83.9\\ 90.9\\ 95.2\\ 101\\ 105\\ 122\\ 139\\ 154 \end{array}$
$\begin{array}{c} 600 \\ 700 \\ 800 \\ 900 \\ 1,000 \\ 2,000 \\ 5,000 \\ 10,000 \end{array}$	155 171 183 193 201 243 292 390	154 168 179 187 193 227 280 364	172 189 202 213 221 274 378 488	172 188 200 210 219 265 360 478	163 175 186 195 203 254 326 401	169 181 193 202 211 268 359 457

表 C.8	中性子(女性)	いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス
	あたりの食道の咖	δ収線量(単位∶pGy·cm²)

エネルギー (MeV)	AP (前方 - 後方)	PA (後方 - 前方)	LLAT (左側方)	RLAT (右側方)	ROT (回転)	ISO (等方)
1.0E-9 1.0E-8 2.5E-8	1.04 1.22	0.922 1.12 1.30	0.328 0.380 0.427	0.320 0.331 0.393	0.664 0.820 0.943	0.520 0.621 0.706
1.0E-7 2 0E-7	1.85	1.30 1.74 2.02	0.519	0.506	1.24	0.919 1.04
5.0E - 7	2.44	2.38	0.710	0.675	1.61	1.20
2.0E - 6	2.05	2.81	0.823	0.781	1.86	1.39
5.0E-6 1.0E-5	2.84 2.98	3.01 3.11	0.881 0.908	0.836	2.02	1.40 1.52
2.0E-5 5.0E-5	3.10 3.12	3.14 3.14	0.898	0.862	2.07 2.12	1.56 1.60
1.0E - 4	3.11	3.19	0.906	0.878	2.12	1.62
5.0E - 4	3.00	3.22	0.893	0.879	2.03	1.57
0.001	3.00	3.21	0.904	0.864	2.03	1.57
0.005	2.97 2.91	3.23 3.24	0.906	0.873	2.00	1.54 1.50
0.02	2.96	3.26 3.28	0.931	0.900	2.01	1.49
0.05	3.12 3.23	3.34 3.41	$0.936 \\ 0.965$	0.904 0.918	2.11 2.18	1.55
0.1	3.40 3.76	$3.53 \\ 3.74$	1.01	0.948 1.02	2.27 2.44	1.67
0.2	4.15	3.99	1.15	1.09	2.64	1.97
0.5	6.68	5.83	1.61	1.67	4.16	3.04
0.9	10.4	8.72	2.43	2.58	6.54	4.76
1.0	11.4 13.4	9.49 11.1	2.68	2.85 3.42	7.18 8.50	5.23 6.21
$1.5 \\ 2.0$	$16.3 \\ 20.7$	13.5 17.5	4.24 6.07	4.38 6.12	10.5 13.7	7.72 10.2
$3.0 \\ 4.0$	$28.3 \\ 34.5$	24.7 30.7	10.0 13.9	9.76 13.3	19.7 25.0	15.1 19.5
5.0 6.0	$39.5 \\ 43.6$	35.7 39.9	17.5 20.8	16.7 19.8	29.7 33.7	23.4 26.9
7.0 8.0	$\begin{array}{c} 47.1 \\ 50.3 \end{array}$	$\begin{array}{c} 43.6\\ 46.7\end{array}$	23.8 26.5	22.6 25.2	37.2 40.3	30.1 32.9
9.0 10.0	53.2 55.9	$49.6 \\ 52.1$	$28.9 \\ 31.2$	27.6 29.7	$43.0 \\ 45.5$	35.5 37.8
12.0 14.0	60.6 64.4	56.4 59.8	35.2 38.7	33.7 37.1	49.8 53.3	41.8 45.2
15.0	66.0 67.3	61.2 62.5	40.3	38.7	54.7	46.7
18.0	69.5 71.1	64.6 66.4	44.7	42.9	58.4	50.6 52.7
20.0 21.0 30.0	71.8	67.1 72.0	48.4	46.5	61.2 66.8	53.7 60.5
50.0	80.7	78.1	70.0	66.5	74.4	69.8
75.0 100	86.5 91.2	84.3 89.9	80.1 88.2	75.6 82.5	81.7 88.0	78.1 85.2
130 150	95.0 97.0	95.8 99.4	96.9 102	89.7 94.4	94.8 98.8	93.0 97.7
180 200	99.8 101	104 108	108 112	101 105	104 108	105 109
300 400	112 128	123 139	128 145	126 146	124 140	129 149
500 600	146 165	154 169	162 180	165 183	156 172	166 183
700 800	181 195	181 192	197 211	198 210	186	197 210
900	206	201	222	221	210	220
2,000	258	258	289	285	276	291
0,000 10,000	304 415	332 411	493	518	357 434	385 480

	エネルギー (MeV)	AP (前方 - 後方)	PA (後方 - 前方)	LLAT (左側方)	RLAT (右側方)	ROT (回転)	ISO (等方)
-	$\begin{array}{c} 1.0E-9\\ 1.0E-8\\ 2.5E-8\\ 1.0E-7\\ 2.0E-7\\ 5.0E-7\\ 1.0E-6\\ 2.0E-6\\ 5.0E-6\\ 1.0E-5\end{array}$	$\begin{array}{c} 0.928 \\ 1.06 \\ 1.20 \\ 1.58 \\ 1.79 \\ 2.04 \\ 2.19 \\ 2.32 \\ 2.44 \\ 2.50 \end{array}$	$ \begin{array}{c} 1.01\\ 1.16\\ 1.36\\ 1.83\\ 2.11\\ 2.45\\ 2.66\\ 2.80\\ 2.99\\ 3.04\\ 2.66\\ 2.99\\ 3.04\\ 2.66\\ 2.99\\ 3.04\\ 2.66\\ 2.99\\ 3.04\\ 2.66\\ 2.80\\ 2.99\\ 2.66\\ 2.80\\ 2.99\\ 2.66\\ 2.80\\ 2.90\\ 2.66\\ 2.80\\ 2.90\\ 2.80\\ 2.90\\ 2.80\\ 2.90\\ 2.80\\ 2.90\\ 2.80\\ 2.90\\ 2.80\\ 2.90\\ 2.80\\ 2.90\\ 2.80$	$\begin{array}{c} 0.353\\ 0.394\\ 0.458\\ 0.587\\ 0.674\\ 0.769\\ 0.832\\ 0.870\\ 0.918\\ 0.931\\ 0.640\end{array}$	$\begin{array}{c} 0.367\\ 0.408\\ 0.474\\ 0.608\\ 0.696\\ 0.800\\ 0.864\\ 0.909\\ 0.954\\ 0.967\end{array}$	$\begin{array}{c} 0.651 \\ 0.789 \\ 0.901 \\ 1.18 \\ 1.35 \\ 1.56 \\ 1.69 \\ 1.78 \\ 1.86 \\ 1.91 \\ 1.91 \\ 1.02 \end{array}$	$\begin{array}{c} 0.507 \\ 0.614 \\ 0.705 \\ 0.911 \\ 1.03 \\ 1.18 \\ 1.27 \\ 1.35 \\ 1.41 \\ 1.44 \\ 1.44 \end{array}$
	$\begin{array}{c} 2.0E-5\\ 5.0E-5\\ 1.0E-4\\ 2.0E-4\\ 5.0E-4\\ 0.001\\ 0.002\\ 0.005\\ 0.01\\ 0.02$	$\begin{array}{c} 2.53\\ 2.54\\ 2.54\\ 2.53\\ 2.47\\ 2.47\\ 2.48\\ 2.45\\ 2.44\\ 2.48\\ 2.45\\ 2.44\\ 2.48\\ 2.5\\ 2.5\\ 2.5\\ 2.5\\ 2.5\\ 2.5\\ 2.5\\ 2.5$	3.08 3.06 3.08 3.06 3.04 3.00 3.00 3.00 3.00	$\begin{array}{c} 0.940\\ 0.933\\ 0.930\\ 0.930\\ 0.933\\ 0.920\\ 0.914\\ 0.904\\ 0.907\\ 0.913\\ 0.930\\ 0.901\\ 0.900\\ 0.901\\ 0.900\\ 0.$	$\begin{array}{c} 0.977\\ 0.970\\ 0.970\\ 0.971\\ 0.959\\ 0.955\\ 0.948\\ 0.937\\ 0.924\\ 0.954\\ \end{array}$	$ \begin{array}{c} 1.93\\ 1.94\\ 1.94\\ 1.91\\ 1.86\\ 1.86\\ 1.86\\ 1.83\\ 1.82\\ 1.85$	$ \begin{array}{c} 1.45\\ 1.46\\ 1.46\\ 1.45\\ 1.42\\ 1.41\\ 1.41\\ 1.39\\ 1.38\\ 1.39\\ 1.38\\ 1.39\\ 1.41\\ 1.41\\ 1.41\\ 1.41\\ 1.41\\ 1.41\\ 1.41\\ 1.42$
	$\begin{array}{c} 0.03\\ 0.05\\ 0.07\\ 0.1\\ 0.15\\ 0.2\\ 0.3\\ 0.5\\ 0.7\\ 0.9\\ \end{array}$	$\begin{array}{c} 2.52\\ 2.63\\ 2.75\\ 2.92\\ 3.23\\ 3.54\\ 4.19\\ 5.55\\ 6.95\\ 8.39\\ \end{array}$	3.08 3.19 3.31 3.50 3.84 4.21 5.00 6.65 8.27 9.85	$\begin{array}{c} 0.946\\ 0.995\\ 1.05\\ 1.14\\ 1.29\\ 1.43\\ 1.73\\ 2.34\\ 2.94\\ 3.54\\ \end{array}$	$\begin{array}{c} 0.981 \\ 1.03 \\ 1.09 \\ 1.18 \\ 1.33 \\ 1.49 \\ 1.80 \\ 2.41 \\ 3.04 \\ 3.68 \end{array}$	$ \begin{array}{c} 1.88\\ 1.95\\ 2.04\\ 2.17\\ 2.40\\ 2.65\\ 3.17\\ 4.25\\ 5.39\\ 6.57\\ \end{array} $	$ \begin{array}{c} 1.42\\ 1.48\\ 1.55\\ 1.65\\ 1.83\\ 2.02\\ 2.41\\ 3.25\\ 4.13\\ 5.05\\ 5.55\\ \end{array} $
	$ \begin{array}{c} 1.0\\ 1.2\\ 2.0\\ 3.0\\ 4.0\\ 5.0\\ 6.0\\ 7.0\\ 8.0\\ \end{array} $	9.13 10.6 12.8 16.3 22.4 27.6 32.0 35.7 39.0 42.0	$10.7 \\ 12.3 \\ 14.9 \\ 18.8 \\ 25.6 \\ 31.0 \\ 35.4 \\ 39.1 \\ 42.4 \\ 45.3$	3.86 4.56 5.69 7.64 11.4 14.8 18.0 20.9 23.5 25.9	$\begin{array}{c} 4.02\\ 4.75\\ 5.91\\ 7.89\\ 11.7\\ 15.2\\ 18.4\\ 21.3\\ 23.9\\ 26.3\\ \end{array}$	$\begin{array}{c} 7.17\\ 8.40\\ 10.2\\ 13.1\\ 18.4\\ 23.1\\ 27.1\\ 30.7\\ 33.9\\ 36.7 \end{array}$	5.53 6.49 7.93 10.3 14.6 18.5 22.0 25.2 28.0 30.5
	$\begin{array}{c} 9.0\\ 10.0\\ 12.0\\ 14.0\\ 15.0\\ 16.0\\ 18.0\\ 20.0\\ 21.0\\ 30.0 \end{array}$	$\begin{array}{c} 44.7\\ 47.2\\ 51.6\\ 55.2\\ 56.8\\ 58.2\\ 60.6\\ 62.6\\ 63.5\\ 69.2 \end{array}$	$\begin{array}{c} 48.1\\ 50.6\\ 55.1\\ 58.8\\ 60.3\\ 61.7\\ 64.0\\ 65.7\\ 66.5\\ 71.0\end{array}$	$\begin{array}{c} 28.0\\ 30.1\\ 33.9\\ 37.3\\ 38.8\\ 40.3\\ 43.1\\ 45.5\\ 46.5\\ 54.3\end{array}$	$\begin{array}{c} 28.5\\ 30.5\\ 34.3\\ 37.7\\ 39.2\\ 40.7\\ 43.3\\ 45.7\\ 46.8\\ 54.6\end{array}$	$\begin{array}{c} 39.3\\ 41.7\\ 45.8\\ 49.2\\ 50.7\\ 52.0\\ 54.4\\ 56.4\\ 57.3\\ 63.1 \end{array}$	$\begin{array}{c} 32.9\\ 35.0\\ 38.8\\ 42.1\\ 43.6\\ 44.9\\ 47.3\\ 49.4\\ 50.3\\ 56.8 \end{array}$
	50.0 75.0 100 130 150 180 200 300 400 500	$\begin{array}{c} 76.1\\ 82.2\\ 87.1\\ 92.1\\ 95.2\\ 99.5\\ 102\\ 118\\ 135\\ 154 \end{array}$	77.0 83.5 88.3 92.3 94.2 96.7 98.4 110 128 147	$\begin{array}{c} 64.8\\ 74.8\\ 83.6\\ 92.4\\ 97.3\\ 103\\ 107\\ 123\\ 142\\ 163\\ \end{array}$	$\begin{array}{c} 65.4 \\ 75.1 \\ 83.3 \\ 91.6 \\ 96.5 \\ 103 \\ 107 \\ 124 \\ 143 \\ 163 \end{array}$	$\begin{array}{c} 70.6\\ 77.7\\ 84.2\\ 91.3\\ 95.6\\ 102\\ 105\\ 123\\ 141\\ 159 \end{array}$	$\begin{array}{c} 65.7\\ 74.2\\ 82.0\\ 90.7\\ 95.9\\ 103\\ 108\\ 129\\ 148\\ 166 \end{array}$
	600 700 800 900 1,000 2,000 5,000 10,000	172 187 201 212 221 274 344 444	165 181 193 202 209 247 312 407	184 202 216 227 236 286 392 513	183 200 214 225 234 288 392 510	175 189 202 212 222 278 359 455	183 198 210 222 231 295 402 527

表 C.9 中性子(女性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの赤色(活性)骨髄の吸収線量(単位:pGy·cm²)

	ネルギー	AP	PA	LLAT	RLAT	ROT	ISO
((MeV)	((後万 - 前万)	(左側方)	(石側万)	(回転)	(等万) 0.515
	1.0E - 8	1.13	0.968	0.464	0.333	0.816	0.621
	2.5E-8 1.0E-7	1.48 1.95	1.13	0.535	0.464 0.601	0.936	0.709 0.923
	2.0E - 7 5.0E - 7	2.21	1.72	0.795	0.695	1.39	1.05
	1.0E - 6	2.71	2.18	1.00	0.874	1.75	1.30
	2.0E - 6 5.0E - 6	3.02	2.32 2.47	1.12	0.918	1.85	1.37 1.45
	1.0E - 5	3.07	2.53	1.14	0.989	2.00	1.48
	2.0E - 5 5.0E - 5	3.10	2.56	1.16	1.00	2.02	1.40
	1.0E-4 2.0E-4	3.09 3.07	$2.58 \\ 2.60$	1.15	1.00 1.01	2.03 2.01	1.49 1.48
	5.0E - 4	2.99	2.60	1.14	1.01	1.96	1.45
	0.002	3.01	2.57	1.12	0.987	1.94	1.43
	$0.005 \\ 0.01$	2.95 2.92	2.59 2.60	1.11	0.984 0.985	1.93	1.42
	0.02	2.97	2.63	1.14	1.00	1.94	1.43
	0.05	3.14	2.74	1.10	1.02	2.05	1.43
	0.07 0.1	3.29 3.50	2.83 2.97	1.29	1.12 1.21	2.13 2.27	1.57 1.67
	0.15 0.2	3.90 4.33	3.20 3.46	1.55	1.36	2.51 2.76	1.85
	0.3	5.21	4.00	2.12	1.85	3.31	2.43
	0.7	8.92	6.44	3.83	3.29	5.74	4.18
	0.9	10.8	7.73	4.73 5.20	4.07	7.04	5.13 5.62
	1.2	13.6	9.83	6.19	5.34	9.04	6.62
	2.0	20.2	15.6	10.3	8.99	14.2	10.6
	3.0 4.0	27.2 33.0	22.2 27.8	15.2 19.6	13.4 17.5	20.0	15.2 19.5
	$5.0 \\ 6.0$	37.7 41.8	32.7 36.8	23.6 27.2	$21.2 \\ 24.6$	29.6 33.5	23.2 26.6
	7.0 8.0	45.3 48.4	40.5 43.7	30.4 33.2	27.6 30.3	37.0 40.1	29.6 32.3
	9.0	51.2	46.6	35.8	32.8	42.8	34.8
	10.0 12.0	53.8 58.1	49.3 53.9	$ 38.2 \\ 42.4 $	35.1 39.1	45.3 49.6	$37.0 \\ 41.0$
	14.0 15.0	61.6 63.0	57.7 59.3	46.0	42.7 44.2	53.1 54.6	44.3 45.7
	16.0	64.3	60.8	49.1	45.7	55.9	47.1
	20.0	68.1	65.3	54.0	$48.4 \\ 50.8$	58.3 60.2	49.5 51.6
	21.0 30.0	68.9 73.6	66.2 72.0	55.0 62.1	$51.9 \\ 59.4$	61.1 66.8	52.5 59.1
	50.0	79.2	79.3	71.8	69.7	73.6	68.3
1	75.0 .00	83.8 87.2	85.8 91.0	80.4 87.4	78.8 86.4	80.0	76.6 83.8
1	30 50	90.4 92.3	96.2 99.4	94.4 98.5	94.3 99.0	92.8 97.0	91.6 96.5
1	.80	95.2 97.2	104	104	106	103	104
3	800	110	123	125	128	125	129
4 5	i00	120 143	142	143 162	147 167	143 160	148 166
6	i00	160 175	178	180	185 201	176	182
8	600	187	204	209	214	201	209
9 1,0	100	206	214 222	220	225 234	212 221	220
2,0 5,0	000	253 310	270 346	284 382	288 383	278 361	295 402
10.0	00	399	442	489	500	450	526

表 C.10 中性子(女性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエン スあたりの残りの組織の吸収線量(単位:pGy·cm²)

エネルギー (MeV)	AP (前方 - 後方)	PA (後古 - 前方)	LLAT (左側方)	RLAT (右側方)	ROT (回転)	ISO (笔方)
1.0E-9	(前方"按方) 0.971	(1をパー前方) 0.638	0.906	0.904	0.836	0.612
1.0E-8 2.5E-8	1.01 1.12	0.689 0.779	1.05 1.23	1.10 1.24	0.980	$0.749 \\ 0.849$
1.0E - 7 2 0E - 7	1.39	1.01	1.60	1.56	1.41	1.06
5.0E - 7	1.69	1.33	1.96	1.97	1.75	1.30
1.0E-6 2.0E-6	1.80	1.47 1.55	2.03	2.05	1.84 1.91	1.38
5.0E - 6 1.0E - 5	1.91 1.94	1.64	2.10 2.09	2.13 2.13	1.97	1.46
2.0E-5	1.98	1.66	2.05	2.10	1.97	1.45
5.0E-5 1.0E-4	1.95 1.92	1.62	1.95 1.92	$2.04 \\ 2.02$	1.95 1.91	$1.43 \\ 1.42$
2.0E-4 5.0E-4	1.88	1.62	1.91 1.82	1.98 1.90	1.84	1.39
0.001	1.78	1.58	1.78	1.85	1.72	1.29
0.002	1.70	1.50	1.76	1.80	1.66	1.20
$ \begin{array}{c} 0.01 \\ 0.02 \end{array} $	1.61 1.65	1.52 1.55	1.71 1.86	1.89 1.97	1.66 1.73	1.23 1.28
0.03	1.69	1.60	2.05	2.08	1.83	1.36
0.03	1.86	1.82	2.39	2.37	2.03	1.68
0.1 0.15	2.01 2.31	2.01 2.39	3.27 4.10	3.19 3.99	3.27	2.35
$0.2 \\ 0.3$	2.68 3.48	2.80 3.69	4.87 6.32	$4.75 \\ 6.18$	$3.87 \\ 5.07$	$2.77 \\ 3.60$
0.5	5.27 7.21	5.60 7.53	9.01	8.79 11_1	7.39	5.23 6.81
0.9	9.19	9.43	13.5	13.3	11.7	8.35
$1.0 \\ 1.2$	$ \begin{array}{c} 10.2 \\ 12.2 \end{array} $	10.4 12.4	14.5 16.4	$14.3 \\ 16.2$	12.8 14.7	$9.10 \\ 10.6$
$1.5 \\ 2.0$	15.1 19.3	15.4 20.0	19.1 23.1	$ 18.9 \\ 22.8 $	17.5 21.6	12.6 15.8
3.0	26.4	27.8	29.9	29.5	28.4	21.3
5.0	36.8	38.8	39.7	39.3	38.7	29.9
6.0 7.0	40.7 44.1	42.8 46.3	43.4 46.6	43.1 46.4	42.6 46.1	33.3 36.3
8.0	47.1	49.5	49.6	49.4 52.1	49.0	39.0 41.4
10.0	52.3	55.1	54.8	54.6	54.0	43.5
12.0 14.0	56.6 60.1	59.8 63.7	59.2 62.8	58.8 62.3	57.9 60.9	47.0 49.9
$15.0 \\ 16.0$	61.5 62.8	65.3 66.7	64.2 65.5	$63.7 \\ 65.0$	$62.1 \\ 63.2$	$51.2 \\ 52.3$
18.0 20.0	64.9 66.7	69.0 70.8	67.6 69.2	67.2	64.9 66.3	54.3 56.0
21.0	67.4	71.5	69.8 72.5	69.6 72.6	66.8	56.7
50.0	72.4 78.4	81.3	75.5	75.6	70.1 73.1	62.1 69.2
75.0 100	82.3 83.3	86.7 89.3	82.5 84.4	79.5 80.9	76.2 79.3	75.1 80.0
130	83.3	89.8	84.8	82.4 82.7	83.0	85.1
180	83.4 84.2	90.0	86.0	85.7 86.1	85.5 88.9	92.3
200 300	85.0 93.2	91.9 102	87.1 97.3	87.9 99.6	91.4 104	95.0 109
400 500	106 120	117 133	112 127	114 129	117 130	122 136
600	134	148	142	143	143	149
700 800	146 156	161 171	155 167	155 165	153 163	160 170
900 1,000	164 171	179 185	176 183	173 180	171 178	179 186
2,000	206 244	217 258	217 264	225 203	222 271	236 311
10,000	332	363	379	382	310	397

表 C.11 中性子(女性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの唾液腺の吸収線量(単位:pGy·cm²)

エネルギー	AP	PA	LLAT	RLAT	ROT	ISO
(MeV)	(前方 - 後方)	(後方 - 前方)	(左側方)	(右側方)	(回転)	(等方)
1.0E-9 1.0E-8 2.5E-8 1.0E-7	$1.73 \\ 1.43 \\ 1.43 \\ 1.50$	1.85 1.46 1.52 1.57	$0.826 \\ 0.648 \\ 0.666 \\ 0.663$	$0.825 \\ 0.647 \\ 0.664 \\ 0.661$	1.28 1.11 1.09 1.15	1.02 0.880 0.862 0.897
2.0E-7 5.0E-7 1.0E-6	1.61 1.62 1.64	1.71 1.73 1.79	0.708 0.722 0.750	0.705 0.720 0.744	1.20 1.25 1.27	0.926 0.960 0.978
2.0E-6 5.0E-6 1.0E-5	1.66 1.65	1.79 1.86 1.81	0.746 0.760 0.738	0.739 0.755 0.736	1.29 1.29 1.27	0.992 0.991 0.973
5.0E-5 5.0E-5 1.0E-4 2.0E-4 5.0E-4 0.001 0.002 0.005 0.01	$1.57 \\ 1.54 \\ 1.52 \\ 1.42 \\ 1.44 \\ 1.48 \\ 1.57 \\ 1.75$	$ \begin{array}{c} 1.62\\ 1.70\\ 1.66\\ 1.69\\ 1.60\\ 1.60\\ 1.60\\ 1.71\\ 1.89\\ \end{array} $	$\begin{array}{c} 0.733\\ 0.688\\ 0.677\\ 0.680\\ 0.649\\ 0.654\\ 0.657\\ 0.726\\ 0.829\\ \end{array}$	$\begin{array}{c} 0.728\\ 0.680\\ 0.668\\ 0.674\\ 0.646\\ 0.648\\ 0.648\\ 0.720\\ 0.824\\ \end{array}$	$ \begin{array}{c} 1.23\\ 1.22\\ 1.19\\ 1.15\\ 1.09\\ 1.09\\ 1.12\\ 1.20\\ 1.37\\ \end{array} $	0.934 0.927 0.906 0.879 0.832 0.833 0.869 0.945 1.10
$\begin{array}{c} 0.02 \\ 0.03 \\ 0.05 \\ 0.07 \\ 0.1 \\ 0.15 \end{array}$	$2.18 \\ 2.58 \\ 3.31 \\ 3.97 \\ 4.84 \\ 6.06$	$ \begin{array}{r} 2.30 \\ 2.67 \\ 3.36 \\ 4.00 \\ 4.82 \\ 5.99 \\ \end{array} $	$ \begin{array}{c} 1.06\\ 1.26\\ 1.65\\ 2.01\\ 2.48\\ 3.15\\ \end{array} $	$ \begin{array}{c} 1.06\\ 1.27\\ 1.66\\ 2.02\\ 2.49\\ 3.17 \end{array} $	$ \begin{array}{r} 1.73 \\ 2.06 \\ 2.67 \\ 3.22 \\ 3.94 \\ 4.97 \\ \end{array} $	1.43 1.74 2.30 2.81 3.48 4.43
$0.2 \\ 0.3 \\ 0.5 \\ 0.7 \\ 0.9$	$7.11 \\ 8.87 \\ 11.8 \\ 14.3 \\ 16.6$	$7.00 \\ 8.70 \\ 11.5 \\ 13.9 \\ 16.1$	$3.75 \\ 4.77 \\ 6.49 \\ 8.03 \\ 9.45$	3.76 4.79 6.52 8.08 9.52	5.85 7.37 9.89 12.1 14.0	5.25 6.66 8.99 11.0 12.8
$ \begin{array}{c} 1.0\\ 1.2\\ 1.5\\ 2.0\\ 3.0\\ 4.0\\ 5.0\\ 6.0\\ 7.0\\ 8.0\\ \end{array} $	$17.7 \\ 19.5 \\ 21.8 \\ 25.1 \\ 30.8 \\ 35.7 \\ 39.6 \\ 42.9 \\ 45.9 \\ 48.6$	$17.1 \\ 18.8 \\ 21.0 \\ 24.3 \\ 30.2 \\ 35.0 \\ 38.9 \\ 42.1 \\ 45.0 \\ 47.7 $	$10.1 \\ 11.3 \\ 13.0 \\ 15.6 \\ 20.1 \\ 23.9 \\ 27.2 \\ 30.1 \\ 32.8 \\ 35.2$	$10.2 \\ 11.4 \\ 13.1 \\ 15.7 \\ 20.2 \\ 24.1 \\ 27.5 \\ 30.4 \\ 33.0 \\ 35.4$	$14.9 \\ 16.5 \\ 18.7 \\ 21.7 \\ 27.0 \\ 31.4 \\ 35.2 \\ 38.4 \\ 41.3 \\ 43.9$	$13.6 \\ 15.2 \\ 17.1 \\ 20.0 \\ 24.8 \\ 28.8 \\ 32.3 \\ 35.3 \\ 38.1 \\ 40.5$
$\begin{array}{c} 9.0\\ 10.0\\ 12.0\\ 14.0\\ 15.0\\ 16.0\\ 18.0\\ 20.0\\ 21.0\\ 30.0 \end{array}$	$51.1 \\ 53.5 \\ 57.5 \\ 60.4 \\ 61.5 \\ 62.4 \\ 63.5 \\ 64.0 \\ 64.1 \\ 64.2$	$50.2 \\ 52.6 \\ 59.6 \\ 60.6 \\ 61.5 \\ 62.5 \\ 62.9 \\ 63.0 \\ 63.0 \\ 63.0 \\ $	$\begin{array}{c} 37.4\\ 39.5\\ 43.1\\ 46.0\\ 47.2\\ 48.3\\ 50.1\\ 51.4\\ 52.0\\ 55.4\end{array}$	$\begin{array}{c} 37.7\\ 39.7\\ 43.4\\ 46.3\\ 47.6\\ 48.7\\ 50.5\\ 51.9\\ 52.4\\ 55.9\end{array}$	$\begin{array}{c} 46.3\\ 48.3\\ 51.7\\ 54.1\\ 55.0\\ 55.7\\ 56.5\\ 56.9\\ 57.0\\ 56.6\end{array}$	$\begin{array}{c} 42.8\\ 44.8\\ 48.1\\ 50.6\\ 51.5\\ 52.2\\ 53.2\\ 53.7\\ 53.8\\ 54.0 \end{array}$
50.0 75.0 100 130 150 180 200 300 400 500	$\begin{array}{c} 63.9 \\ 64.2 \\ 63.2 \\ 62.3 \\ 62.4 \\ 63.6 \\ 64.7 \\ 73.4 \\ 84.8 \\ 96.9 \end{array}$	$\begin{array}{c} 63.4 \\ 64.5 \\ 63.6 \\ 62.0 \\ 61.7 \\ 62.3 \\ 63.2 \\ 70.6 \\ 81.6 \\ 93.6 \end{array}$	$59.7 \\ 62.9 \\ 64.1 \\ 64.5 \\ 65.3 \\ 67.3 \\ 68.9 \\ 78.5 \\ 90.7 \\ 104$	$\begin{array}{c} 60.0\\ 63.1\\ 64.4\\ 64.9\\ 65.8\\ 67.8\\ 69.4\\ 79.0\\ 91.0\\ 104 \end{array}$	$55.2 \\ 55.8 \\ 57.9 \\ 61.0 \\ 63.1 \\ 66.2 \\ 68.3 \\ 79.2 \\ 90.5 \\ 102$	$53.6 \\ 55.1 \\ 57.7 \\ 61.3 \\ 63.7 \\ 67.2 \\ 69.6 \\ 81.4 \\ 93.3 \\ 105$
600 700 800 900 1,000 2,000 5,000 10,000	109 119 128 134 140 170 205 280	105 115 123 128 133 157 197 272	116 127 136 144 149 182 245 338	117 128 137 144 149 182 245 339	112 121 129 135 140 172 219 277	116 125 133 140 145 181 243 317

表 C.12 中性子(女性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの皮膚の吸収線量(単位:pGy·cm²)

エネルギー (MeV)	AP (前方 - 後方)	PA (後方 - 前方)	LLAT (左側方)	RLAT (右側方)	ROT (回転)	ISO (等方)
$\begin{array}{c} 1.0E-9\\ 1.0E-8\\ 2.5E-8\\ 1.0E-7\\ 2.0E-7\\ 5.0E-7\\ 1.0E-6\\ 2.0E-6\\ 5.0E-6\\ 1.0E-5\\ 2.0E-5\\ 5.0E-5\\ 5.0E-5\end{array}$	$\begin{array}{c} 1.33\\ 1.55\\ 1.79\\ 2.37\\ 2.70\\ 3.10\\ 3.32\\ 3.50\\ 3.67\\ 3.76\\ 3.79\\ 2.78\end{array}$	$\begin{array}{c} 0.724\\ 0.792\\ 0.932\\ 1.23\\ 1.40\\ 1.62\\ 1.77\\ 1.88\\ 2.01\\ 2.07\\ 2.10\\ \end{array}$	$\begin{array}{c} 0.695\\ 0.798\\ 0.954\\ 1.26\\ 1.46\\ 1.69\\ 1.85\\ 1.96\\ 2.05\\ 2.07\\ 2.09\\ 2.08\end{array}$	$\begin{array}{c} 0.177\\ 0.173\\ 0.204\\ 0.266\\ 0.304\\ 0.354\\ 0.378\\ 0.392\\ 0.416\\ 0.431\\ 0.437\\ 0.441\end{array}$	$\begin{array}{c} 0.685\\ 0.840\\ 0.967\\ 1.27\\ 1.45\\ 1.68\\ 1.83\\ 1.94\\ 2.03\\ 2.07\\ 2.09\\ 2.11\\ \end{array}$	$\begin{array}{c} 0.509\\ 0.629\\ 0.714\\ 0.924\\ 1.05\\ 1.24\\ 1.36\\ 1.42\\ 1.48\\ 1.52\\ 1.54\\ 1.55\end{array}$
$\begin{array}{c} 5.0E-5\\ 1.0E-4\\ 2.0E-4\\ 5.0E-4\\ 0.001\\ 0.002\\ 0.005\\ 0.01\\ 0.02\\ 0.03\end{array}$	3.76 3.69 3.57 3.59 3.63 3.54 3.46 3.48 3.52	2.10 2.11 2.13 2.14 2.15 2.14 2.15 2.14 2.17 2.18 2.22 2.24	2.08 2.08 2.03 2.02 2.01 2.01 2.01 2.00 2.01	$\begin{array}{c} 0.441\\ 0.449\\ 0.452\\ 0.447\\ 0.448\\ 0.446\\ 0.444\\ 0.450\\ 0.456\\ 0.456\\ 0.463\end{array}$	$\begin{array}{c} 2.11\\ 2.10\\ 2.08\\ 2.03\\ 2.02\\ 2.02\\ 1.98\\ 1.97\\ 1.97\\ 1.99\\ 1.99\end{array}$	1.55 1.54 1.52 1.49 1.49 1.49 1.49 1.47 1.45 1.46 1.47
$\begin{array}{c} 0.05\\ 0.07\\ 0.1\\ 0.15\\ 0.2\\ 0.3\\ 0.5\\ 0.7\\ 0.9\\ \end{array}$	3.65 3.82 4.07 4.57 5.11 6.24 8.62 11.0 13.3	2.30 2.36 2.44 2.58 2.73 3.03 3.73 4.53 5.43	2.09 2.19 2.37 2.75 3.17 4.07 5.95 7.84 9.71	$\begin{array}{c} 0.480\\ 0.495\\ 0.514\\ 0.548\\ 0.583\\ 0.657\\ 0.830\\ 1.05\\ 1.32\\ 1.65\\ 0.657\\ 0.830\\ 1.05\\ 0.830\\ 0.05\\ 0.00\\ 0$	2.06 2.14 2.29 2.55 2.83 3.41 4.63 5.90 7.20	$ \begin{array}{c} 1.51\\ 1.57\\ 1.66\\ 1.84\\ 2.04\\ 2.44\\ 3.31\\ 4.23\\ 5.19\\ \end{array} $
$ \begin{array}{c} 1.0\\ 1.2\\ 1.5\\ 2.0\\ 3.0\\ 4.0\\ 5.0\\ 6.0\\ 7.0\\ 8.0\\ \end{array} $	$14.4 \\ 16.6 \\ 19.7 \\ 24.1 \\ 31.6 \\ 37.6 \\ 42.5 \\ 46.6 \\ 50.2 \\ 53.3$	5.92 7.01 8.78 11.9 17.8 23.1 27.7 31.9 35.5 38.8	10.7 12.6 15.4 19.9 27.3 38.3 42.4 46.1 49.3	$ \begin{array}{c} 1.48\\ 1.84\\ 2.51\\ 3.82\\ 6.89\\ 10.1\\ 13.4\\ 16.5\\ 19.3\\ 22.0\\ \end{array} $	7.86 9.19 11.1 14.3 20.0 25.0 29.3 33.2 36.6 39.6	5.68 6.67 8.17 10.6 15.2 19.3 23.1 26.4 29.4 32.1
$\begin{array}{c} 9.0\\ 10.0\\ 12.0\\ 14.0\\ 15.0\\ 16.0\\ 20.0\\ 21.0\\ 30.0 \end{array}$	$56.1 \\ 58.7 \\ 62.9 \\ 66.3 \\ 67.6 \\ 68.8 \\ 70.7 \\ 72.2 \\ 72.9 \\ 76.8 \\ $	$\begin{array}{c} 41.7\\ 44.4\\ 49.2\\ 53.3\\ 55.1\\ 56.7\\ 59.5\\ 61.9\\ 63.0\\ 70.1 \end{array}$	$52.2 \\ 54.9 \\ 59.5 \\ 63.3 \\ 64.8 \\ 66.3 \\ 68.6 \\ 70.6 \\ 71.4 \\ 76.4$	$\begin{array}{c} 24.4\\ 26.7\\ 30.8\\ 34.4\\ 36.1\\ 37.7\\ 40.7\\ 43.4\\ 44.7\\ 54.0 \end{array}$	$\begin{array}{c} 42.4\\ 44.8\\ 49.0\\ 52.4\\ 53.9\\ 55.3\\ 57.6\\ 59.6\\ 60.5\\ 66.4\end{array}$	$\begin{array}{c} 34.6\\ 36.9\\ 40.9\\ 44.3\\ 45.8\\ 47.2\\ 49.7\\ 51.9\\ 52.9\\ 59.9 \end{array}$
50.0 75.0 100 130 150 180 200 300 400 500	$\begin{array}{c} 81.2\\ 84.0\\ 85.4\\ 86.5\\ 87.4\\ 89.2\\ 90.7\\ 102\\ 117\\ 133 \end{array}$	$\begin{array}{c} 78.6\\ 86.1\\ 92.7\\ 99.4\\ 103\\ 109\\ 113\\ 131\\ 151\\ 171\\ \end{array}$	81.7 85.9 91.6 93.3 96.2 98.3 111 127 144	$\begin{array}{c} 67.6\\79.6\\89.4\\99.7\\106\\114\\120\\143\\166\\187\end{array}$	73.8 80.4 93.0 97.2 103 107 125 142 158	$\begin{array}{c} 69.3\\ 77.8\\ 85.1\\ 92.9\\ 97.7\\ 104\\ 109\\ 130\\ 149\\ 168 \end{array}$
600 700 800 900 1,000 2,000 5,000 10,000	150 164 175 185 192 232 277 361	191 208 221 233 242 297 383 486	161 175 187 197 205 245 313 407	207 224 240 252 263 331 452 578	173 186 198 209 218 279 370 462	185 200 213 224 234 302 414 544

表 C.13 中性子(女性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの胃壁の吸収線量(単位:pGy·cm²)

エネルギー	AP	PA	LLAT	RLAT	ROT	ISO
(MeV)	(前方 - 後方)	(後方 - 前方)	(左側方)	(右側方)	(回転)	(等方)
1.0E-9 1.0E-8 2.5E-8	1.66 2.02 2.32	0.671 0.665 0.820	$ \begin{array}{r} 0.395 \\ 0.398 \\ 0.457 \end{array} $	$0.504 \\ 0.540 \\ 0.574$	$0.816 \\ 0.955 \\ 1.07$	0.561 0.755 0.805
1.0E - 7 2 0E - 7	2.93	1.12	0.590	0.715	1.40	1.000
5.0E - 7	3.60	1.20	0.763	0.999	1.84	1.28
1.0E-6 2.0E-6	3.74 3.81	1.64 1.76	0.802	1.04 1.05	1.95 2.02	1.41 1.52
5.0E - 6	3.88	1.88	0.848	1.11	2.08	1.57
2.0E-5	3.83	1.90	0.898	1.14	2.08	1.58
5.0E - 5	3.80	1.99	0.904	1.11	2.05	1.53
2.0E-4	3.48	1.97	0.885	1.13	1.98	1.49
5.0E-4 0.001	3.17 3.17	1.97	0.876	1.06 1.09	1.85 1.79	$1.46 \\ 1.42$
0.002	3.23	1.96	0.859	1.10	1.77	1.38
0.003	3.08	2.04	0.820	1.15	1.78	1.32
0.02	3.27	2.04	0.847	1.17	1.84	1.34
0.05	4.03	2.03	0.803	1.15	2.13	1.59
$ \begin{array}{c} 0.07 \\ 0.1 \end{array} $	4.63 5.53	2.11 2.15	0.874 0.877	1.10	2.33 2.63	1.65 1.85
0.15	7.01	2.20	0.903	1.29	3.15	2.19
0.2	11.0	2.57	1.06	1.43	4.70	3.24
0.5 0.7	15.7 19.6	3.18 3.89	1.31	2.31 2.85	6.67 8.54	4.60 5.91
0.9	23.1	4.70	1.91	3.41	10.3	7.19
$1.0 \\ 1.2$	24.6 27.4	5.18 6.28	2.08 2.46	3.71 4.35	11.2 12.8	7.82 9.06
$1.5 \\ 2.0$	30.8 35.5	8.17	3.10 4.30	5.38 7.18	15.1 18.5	10.8 13.6
3.0	43.0	17.5	6.96	10.8	24.3	18.6
5.0	53.2	27.3	12.3	17.4	33.4	26.8
$6.0 \\ 7.0$	56.9 60.1	31.1 34.6	14.8	20.3 22.9	37.0 40.2	30.2 33.2
8.0	63.1	37.6	19.3	25.3	43.0	36.0
9.0 10.0	65.9 68.4	40.4 43.0	21.3 23.2	27.5 29.5	45.5 47.8	38.5 40.8
12.0 14.0	72.6	47.6	26.5 29.4	33.0 36.0	51.7 54.8	44.8 48.3
15.0	76.8	52.9	30.8	37.4	56.2	49.8
18.0	77.8	56.9	34.5	40.8	59.5	51.2 53.7
20.0 21.0	80.3 80.7	59.0 59.9	36.8 37.8	42.7 43.6	61.3 62.0	55.8 56.8
30.0	82.3	66.6	45.8	50.1	66.6	63.2
50.0 75.0	81.6 78.1	73.8 81.3	58.2 69.2	60.7 70.7	70.6 73.8	71.1 76.8
100	73.4	89.1	77.6	77.8	77.3	81.3
150	68.4	100	90.3	87.8	85.2	89.7
180 200	68.7	103 104	96.4 100	92.6 95.6	90.0 93.2	94.8 98.3
300 400	79.1	113 128	117	110 125	109 124	115 132
500	109	148	147	140	138	147
600 700	124	168 186	160 172	155 167	151 162	160 172
800	144	200	182	177	172	181
1,000	151	210	191	193	188	190
2,000 5,000	182 205	260 345	239 324	238 330	236 300	245 333
10,000	282	434	445	418	366	445

表 C.14 中性子(女性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの甲状腺の吸収線量(単位:pGy·cm²)

エネルギー	AP	PA	LLAT	RLAT	ROT	ISO
(MeV)	(前方 - 後方)	(後方 - 前方)	(左側方)	(右側方)	(回転)	(等方)
1.0E-9	1.64	0.584	0.211	0.207	0.659	0.481
1.0E - 8	1.91	0.635	0.216	0.221	0.813	0.615
2.5E-8 1 0E-7	2.22	0.734	0.254	0.255	0.932	0.698
1.0E - 7 2.0E - 7	2.90	0.950	0.314	0.310	1.20	1 01
5.0E - 7	3.79	1.28	0.411	0.418	1.56	1.16
1.0E - 6	4.08	1.39	0.480	0.468	1.68	1.26
2.0E - 6	4.20	1.48	0.520	0.508	1.77	1.33
5.0E - 6	4.35	1.59	0.520	0.535	1.86	1.40
1.0E-5	4.37	1.64	0.499	0.539	1.89	1.43
2.0E-5	4.48	1.64	0.538	0.540	1.91	1.45
5.0E - 5 1 0F - 4	4.37	1.02	0.545	0.555	1.92	1.42
2.0E - 4	4.43	1.67	0.545	0.542	1.87	1.38
5.0E - 4	4.04	1.67	0.564	0.551	1.83	1.35
0.001	4.17	1.67	0.550	0.550	1.83	1.34
0.002	4.19	1.66	0.543	0.542	1.83	1.33
0.005	4.10	1.00	0.045	0.544	1.00	1.50
0.02	4.25	1.73	0.557	0.558	1.82	1.34
0.03	4.31	1.77	0.563	0.569	1.87	1.39
0.05	4.63	1.84	0.547	0.584	1.99	1.49
0.07	5.10	1.90	0.598	0.605	2.11	1.58
0.1	5.48	1.98	0.668	0.630	2.31	1.71
0.15	0.43 7.49	2.08	0.717	0.659	2.02	1.94
0.2	9.00	2.32	0.784	0.745	3.54	2.65
0.5	12.4	2.67	0.956	0.926	4.72	3.57
0.7	15.5	3.10	1.16	1.17	5.87	4.49
0.9	18.1	3.61	1.39	1.46	7.01	5.42
1.0	19.6	3.91	1.53	1.63	7.58	5.89
1.2	25.0	4.37	2 70	2.02	0.71	8.20
2.0	29.9	7.81	4.25	4.09	13.0	10.4
3.0	37.6	12.3	7.51	7.27	17.9	14.6
4.0	44.4	16.8	10.6	10.6	22.4	18.4
5.0	49.4	21.1	14.1	14.0	26.4	22.0
7.0	55.8	23.0	20.6	20 1	33.3	28.1
8.0	58.3	31.9	23.1	22.9	36.3	30.8
9.0	61.4	34.9	25.4	25.4	38.9	33.2
10.0	64.7	37.7	27.6	27.7	41.4	35.4
12.0	70.5	42.6	31.5	31.9	45.6	39.4
14.0	73.8	46.8	35.2	35.5	49.1	42.7
16.0	74.0	50 4	38.6	38.8	52.1	44.2
18.0	76.4	53.5	41.8	41.7	54.5	48.2
20.0	76.8	56.2	44.7	44.3	56.6	50.4
21.0	76.7	57.4	46.1	45.6	57.6	51.4
30.0	19.0	00.4	55.9	04.3	03.8	28.4
50.0 75.0	80.7	75.5 84 5	67.3	66.7 77.6	71.2	68.0 76.6
100	84 0	92.6	86.6	86.9	83.9	84 0
130	77.4	102	96.4	96.5	91.2	92.3
150	77.4	107	103	102	95.9	97.6
180	74.6	116	111	109	103	105
200	10.4 83 5	146	110	114	107	110
400	99.9	170	151	152	148	153
500	116	194	177	171	167	172
600	147	215	205	188	185	190
700	171	233	225	203	200	206
800	176	248	237	217	214	220
1 000	165	269	244	239	236	243
2,000	220	326	300	309	300	316
5,000	243	428	420	426	394	444
10,000	349	557	562	538	498	596

表 C.15 中性子(女性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの膀胱壁 (UB-wall)の吸収線量 (単位:pGy·cm²)

エネルギー (MeV)	AP (前方 - 後方)	PA (後方 - 前方)	LLAT (左側方)	RLAT (右側方)	ROT (回転)	ISO (等方)
1.0E-9	0.518 0.574	0.629	0.663	0.708	0.605	0.526
1.0E - 8 2.5E - 8	0.574 0.646	0.698	0.789 0.918	0.835	0.736	0.639
1.0E-7 2.0E-7	0.847 0.963	1.07 1.21	1.23 1.42	1.29 1.49	$1.11 \\ 1.27$	0.964 1.09
5.0E - 7 1.0E - 6	$1.10 \\ 1.17$	1.40 1.51	1.66 1.81	1.73 1.88	1.48 1.61	1.27 1.38
2.0E-6 5.0E-6	1.24	1.59	1.90 1.97	1.98 2.06	1.70 1.78	1.46 1.52
1.0E-5	1.32	1.69	2.00	2.08	1.80	1.54
2.0E-5 5.0E-5	1.32 1.34	1.69 1.70	2.01 2.01	2.09 2.09	1.81 1.80	1.55
1.0E-4 2.0E-4	1.35 1.32	1.70 1.67	2.00 1.98	2.07 2.05	1.79 1.78	$1.54 \\ 1.53$
5.0E - 4 0.001	1.31	1.66	1.96 1.93	2.02	1.76 1.74	1.52 1.50
0.002	1.28	1.61	1.91	1.97	1.72	1.48
0.01	1.27	1.60	1.86	1.97	1.71	1.46
0.02	1.31	1.64	1.94	2.01	1.75	1.47
$0.05 \\ 0.07$	1.37 1.44	1.70 1.78	$2.05 \\ 2.16$	$2.11 \\ 2.24$	1.83 1.94	$1.57 \\ 1.66$
$ \begin{array}{c} 0.1 \\ 0.15 \end{array} $	$1.55 \\ 1.75$	1.93 2.20	$2.35 \\ 2.71$	$2.46 \\ 2.85$	$2.11 \\ 2.43$	$1.82 \\ 2.10$
$0.2 \\ 0.3$	1.97 2.46	2.49 3.14	3.11 3.96	3.25 4.12	$2.78 \\ 3.50$	2.41 3.06
0.5	3.55	4.54	5.73	5.96	5.02	4.42
0.9	5.85	7.36	9.16	9.45	8.12	7.23
$1.0 \\ 1.2$	6.46 7.75	8.08 9.58	10.0 11.8	10.3 12.1	8.90 10.5	7.94 9.37
$1.5 \\ 2.0$	$9.76 \\ 13.0$	11.8 15.4	14.4 18.5	14.8 19.0	12.8 16.5	$11.5 \\ 14.9$
3.0 4 0	18.9 23.8	21.6 26.8	25.3 30.9	25.8 31.3	23.0 28.4	20.8 25.8
5.0	28.0	31.1	35.4	35.7	33.0	30.0 33.7
7.0	34.9	38.1	42.5	42.8	40.2	36.8
9.0	40.3	40.9	43.4	48.3	45.8	42.1
$10.0 \\ 12.0$	$42.6 \\ 46.7$	45.9 49.9	$50.4 \\ 54.6$	50.7 55.0	$48.2 \\ 52.2$	44.3 48.1
$14.0 \\ 15.0$	50.0 51.5	$53.2 \\ 54.7$	58.1 59.5	$58.4 \\ 59.9$	55.4 56.8	51.1 52.5
16.0 18.0	52.9	55.9	60.8	61.1	58.0	53.6
20.0	57.3	60.0	64.9	65.0 65.7	61.8	57.5
30.0	64.4	66.3	70.5	70.2	67.4	63.5
$50.0 \\ 75.0$	72.4 79.5	73.8 80.6	76.4 81.8	76.1 81.6	73.0 77.9	70.6 76.7
100 130	85.0 90.2	85.4 89.0	85.7 88.6	85.5 88.4	82.2 86.7	81.9 87.2
150 180	92.9 96.2	90.6 92.7	90.2 92.3	89.7 91.5	89.5 93.4	90.4 95.0
200	98.3	93.9	93.8	92.7	96.0	98.1
400	105	116	104 119 124	116	103 123 127	113 128 142
600	140	131	154	132	137	145 156
700 800	169 181	159 169	163 174	162 173	160 170	168 178
900	190 198	177	183	182	178	187 194
2,000	242	219	228	224	227	241
5,000 10.000	406	362	382	377	333	310

表 C.16 中性子(男性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの脳の吸収線量(単位:pGy·cm²)

表 C.17 中性子(男性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの乳房の吸収線量(単位:pGy·cm²)

エネルギー (MeV)	AP (前方 - 後方)	PA (後方 - 前方)	LLAT (左側方)	RLAT (右側方)	ROT (回転)	ISO (等方)
$\begin{array}{c} 1.0E-9\\ 1.0E-8\\ 2.5E-8\\ 1.0E-7\\ 2.0E-7\\ 5.0E-7\\ 1.0E-6\\ 2.0E-6\\ 5.0E-6\\ 1.0E-5\\ \end{array}$	$\begin{array}{c} 1.75\\ 1.98\\ 2.12\\ 2.57\\ 2.68\\ 2.74\\ 2.80\\ 2.84\\ 2.84\\ 2.85\end{array}$	$\begin{array}{c} 0.318\\ 0.330\\ 0.368\\ 0.478\\ 0.542\\ 0.633\\ 0.692\\ 0.738\\ 0.771\\ 0.793 \end{array}$	$\begin{array}{c} 0.530\\ 0.570\\ 0.630\\ 0.713\\ 0.784\\ 0.874\\ 0.902\\ 0.912\\ 0.911\\ 0.887\end{array}$	$\begin{array}{c} 0.488\\ 0.521\\ 0.567\\ 0.701\\ 0.746\\ 0.795\\ 0.845\\ 0.855\\ 0.871\\ 0.875\\ \end{array}$	$\begin{array}{c} 0.819\\ 0.868\\ 0.956\\ 1.11\\ 1.19\\ 1.30\\ 1.35\\ 1.37\\ 1.35\\ 1.33\\ \end{array}$	$\begin{array}{c} 0.503\\ 0.685\\ 0.741\\ 0.848\\ 0.938\\ 1.04\\ 1.10\\ 1.13\\ 1.12\\ 1.11\\ \end{array}$
$\begin{array}{c} 2.0\mathrm{E}{-5} \\ 5.0\mathrm{E}{-5} \\ 1.0\mathrm{E}{-4} \\ 2.0\mathrm{E}{-4} \\ 5.0\mathrm{E}{-4} \\ 0.001 \\ 0.002 \\ 0.005 \\ 0.01 \\ 0.02 \end{array}$	$\begin{array}{c} 2.69\\ 2.61\\ 2.58\\ 2.56\\ 2.53\\ 2.44\\ 2.44\\ 2.58\\ 3.00\\ 3.57\end{array}$	$\begin{array}{c} 0.796\\ 0.814\\ 0.827\\ 0.811\\ 0.808\\ 0.809\\ 0.803\\ 0.782\\ 0.774\\ 0.793\\ \end{array}$	$\begin{array}{c} 0.873\\ 0.840\\ 0.824\\ 0.810\\ 0.797\\ 0.784\\ 0.785\\ 0.785\\ 0.844\\ 1.08 \end{array}$	$\begin{array}{c} 0.865\\ 0.818\\ 0.776\\ 0.773\\ 0.782\\ 0.761\\ 0.744\\ 0.745\\ 0.819\\ 1.06\end{array}$	$\begin{array}{c} 1.32\\ 1.30\\ 1.28\\ 1.26\\ 1.22\\ 1.19\\ 1.19\\ 1.27\\ 1.41\\ 1.65\end{array}$	$\begin{array}{c} 1.08\\ 1.02\\ 0.991\\ 0.964\\ 0.936\\ 0.927\\ 0.940\\ 0.994\\ 1.10\\ 1.34\end{array}$
$\begin{array}{c} 0.03 \\ 0.05 \\ 0.07 \\ 0.1 \\ 0.15 \\ 0.2 \\ 0.3 \\ 0.5 \\ 0.7 \\ 0.9 \end{array}$	$\begin{array}{r} 4.16\\ 5.36\\ 6.49\\ 8.05\\ 10.3\\ 12.2\\ 15.5\\ 20.6\\ 24.7\\ 28.2\end{array}$	$\begin{array}{c} 0.814\\ 0.840\\ 0.863\\ 0.993\\ 0.932\\ 0.960\\ 1.01\\ 1.18\\ 1.42\\ 1.74\end{array}$	$\begin{array}{c} 1.33 \\ 1.79 \\ 2.23 \\ 2.82 \\ 3.69 \\ 4.48 \\ 5.89 \\ 8.30 \\ 10.4 \\ 12.2 \end{array}$	$\begin{array}{c} 1.29\\ 1.70\\ 2.10\\ 2.65\\ 3.54\\ 4.36\\ 5.79\\ 8.20\\ 10.2\\ 11.9\end{array}$	$\begin{array}{c} 1.90\\ 2.40\\ 2.87\\ 3.53\\ 4.55\\ 5.47\\ 7.09\\ 9.76\\ 12.0\\ 13.9\end{array}$	$\begin{array}{c} 1.58\\ 2.03\\ 2.45\\ 3.05\\ 3.96\\ 4.79\\ 6.28\\ 8.82\\ 11.0\\ 12.9\end{array}$
$ \begin{array}{c} 1.0\\ 1.2\\ 1.5\\ 2.0\\ 3.0\\ 4.0\\ 5.0\\ 6.0\\ 7.0\\ 8.0\\ \end{array} $	$\begin{array}{c} 29.6\\ 32.2\\ 35.3\\ 39.8\\ 47.4\\ 53.0\\ 56.9\\ 60.1\\ 63.0\\ 65.8\end{array}$	$\begin{array}{c} 1.94\\ 2.39\\ 3.21\\ 4.85\\ 8.74\\ 12.9\\ 17.0\\ 20.9\\ 24.5\\ 27.9\end{array}$	$13.0 \\ 14.5 \\ 16.5 \\ 19.3 \\ 24.0 \\ 27.7 \\ 30.9 \\ 33.8 \\ 36.4 \\ 38.7 \\ 14.5 \\ 38.7 \\ $	$12.7 \\ 14.1 \\ 16.0 \\ 18.7 \\ 23.1 \\ 26.8 \\ 30.0 \\ 32.8 \\ 35.3 \\ 37.6 \\ 12.7 \\ 37.6 \\ 14.1 \\ $	$14.8 \\ 16.5 \\ 18.7 \\ 22.0 \\ 27.5 \\ 32.0 \\ 35.8 \\ 39.1 \\ 42.2 \\ 44.9$	$\begin{array}{c} 13.7\\ 15.4\\ 17.6\\ 20.8\\ 26.2\\ 30.5\\ 34.2\\ 37.4\\ 40.2\\ 42.6\end{array}$
$\begin{array}{c} 9.0\\ 10.0\\ 12.0\\ 14.0\\ 15.0\\ 16.0\\ 18.0\\ 20.0\\ 21.0\\ 30.0 \end{array}$	68.5 71.0 75.5 78.7 79.9 80.8 81.9 82.2 82.2 82.2 80.1	$\begin{array}{c} 30.9\\ 33.8\\ 38.9\\ 43.4\\ 45.5\\ 47.4\\ 50.9\\ 54.1\\ 55.5\\ 65.4\end{array}$	$\begin{array}{c} 41.0\\ 43.0\\ 46.7\\ 49.9\\ 51.2\\ 52.5\\ 54.7\\ 56.6\\ 57.4\\ 63.0\end{array}$	$\begin{array}{c} 39.7\\ 41.8\\ 45.5\\ 48.7\\ 50.2\\ 51.5\\ 54.0\\ 56.0\\ 56.9\\ 62.4 \end{array}$	$\begin{array}{c} 47.5\\ 49.8\\ 53.9\\ 57.2\\ 58.6\\ 59.9\\ 61.9\\ 63.6\\ 64.3\\ 67.8 \end{array}$	$\begin{array}{c} 44.9\\ 46.9\\ 50.3\\ 53.0\\ 54.1\\ 55.1\\ 56.8\\ 58.1\\ 58.7\\ 61.9\end{array}$
$50.0 \\ 75.0 \\ 100 \\ 130 \\ 150 \\ 180 \\ 200 \\ 300 \\ 400 \\ 500$	$\begin{array}{c} 74.3 \\ 65.3 \\ 54.9 \\ 45.8 \\ 42.5 \\ 40.7 \\ 40.8 \\ 47.8 \\ 56.5 \\ 65.5 \end{array}$	$\begin{array}{c} 78.2\\ 88.6\\ 97.5\\ 107\\ 113\\ 120\\ 125\\ 145\\ 164\\ 182 \end{array}$	$\begin{array}{c} 68.7\\ 71.2\\ 72.1\\ 73.2\\ 74.4\\ 76.9\\ 79.0\\ 91.5\\ 106\\ 119 \end{array}$	67.0 68.3 67.7 67.0 67.4 69.3 71.2 85.2 102 119	$\begin{array}{c} 68.8\\ 68.4\\ 69.2\\ 71.1\\ 72.9\\ 76.1\\ 78.5\\ 92.1\\ 106\\ 120\\ \end{array}$	64.0 65.5 67.8 71.3 74.0 78.3 81.3 96.4 111 123
$\begin{array}{c} 600 \\ 700 \\ 800 \\ 900 \\ 1,000 \\ 2,000 \\ 5,000 \\ 10,000 \end{array}$	73.579.484.087.690.7109129190	198 213 225 235 244 305 416 520	132 143 152 160 167 211 284 347	136 149 160 168 173 202 274 369	133 144 154 162 170 217 291 377	135 145 155 163 170 224 304 381

エネルギー	AP	PA	LLAT	RLAT	ROT	ISO
(MeV)	(前方 - 後方)	(後方 - 前方)	(左側方)	(右側方)	(回転)	(等方)
1.0E-9 1.0E-8	1.20	0.633	0.528 0.612	0.394 0.458	0.673	0.497 0.610
2.5E - 8	1.57	0.858	0.713	0.524	0.925	0.699
1.0E-7 2 0E-7	2.10	1.14	0.944	0.690	1.23	0.911
5.0E - 7	2.77	1.51	1.25	0.948	1.62	1.20
1.0E-6 2.0E-6	2.97	1.66	1.36	1.04	1.77	1.30
5.0E - 6	3.30	1.85	1.51	1.16	1.98	1.44
1.0E-5	3.38	1.90	1.53	1.19	2.02	1.47
2.0E-5 5.0E-5	3.38	1.93	1.53	1.20	2.05	1.49
1.0E - 4	3.43	2.00	1.49	1.21	2.04	1.51
2.0E-4 5.0E-4	3.41 3.39	1.97	1.49	1.21 1.20	2.04 2.02	1.51 1.49
0.001	3.36	2.00	1.46	1.20	2.02	1.48
0.002	3.34 3.31	2.00	1.44	1.19	2.00	1.48
0.01	3.32	2.02	1.40	1.17	1.99	1.49
0.02	3.30	2.06	1.40	1.18	2.01	1.50
0.05	3.51	2.10	1.42	1.19	2.04 2.12	1.51
0.07	3.64	2.21	1.59	1.28	2.21	1.61
0.15	4.25	2.44	2.02	1.50	2.54	1.87
0.2	4.69	2.58	2.31	1.67 2.04	2.82	2.04 2 41
0.5	7.63	3.55	4.15	2.84	4.44	3.19
$0.7 \\ 0.9$	9.58	4.28	5.36 6.54	3.67	5.56	4.02 4.87
1.0	12.4	5.55	7.12	4.98	7.27	5.30
1.2	14.4	6.52	8.28	5.89	8.44	6.20
2.0	21.6	10.9	12.6	9.59	13.1	9.85
3.0	29.1	16.3 21.4	17.4	13.9	18.5	14.2
5.0	40.0	26.0	25.2	21.3	27.5	21.6
$6.0 \\ 7.0$	44.2	30.1 33.8	28.5 31.4	24.4	31.3	24.8 27.7
8.0	51.0	37.0	34.1	29.8	37.6	30.3
9.0	53.9 56.5	40.0	36.5 38.7	32.2 34 4	40.3	32.7 34.8
12.0	60.9	47.4	42.7	38.3	47.0	38.7
14.0 15.0	64.4 65.8	51.4	46.0	41.8	50.6 52.1	42.1
16.0	67.0	54.7	48.9	44.8	53.6	45.0
18.0 20.0	69.0 70.5	57.5 59.9	51.4 53.6	47.4	56.1 58.2	47.5
21.0	71.2	61.0	54.6	50.9	59.2	50.8
30.0	75.4	68.1 77.1	61.5 70.8	58.7	65.6 73.5	58.0 67.9
75.0	84.8	85.5	78.9	79.3	80.5	76.9
100	87.7	92.9	85.8	87.5	86.9	84.7
150	91.2	106	97.9	102	98.6	98.6
180 200	93.2 94 7	113	105	109	105	106
300	106	139	129	135	129	134
400 500	122 139	160 181	150 169	156 176	149 168	155 176
600	157	200	187	195	185	195
700 800	173	217	203	211	200	211
900	196	242	229	236	225	238
1,000	204	252	239	247	235	249
5,000	309	407	420	422	394	446
10.000	401	519	529	537	501	584

表 C.18 中性子(男性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの結腸の吸収線量(単位:pGy·cm²)

	エネルギー (MeV)	AP (前方 - 後方)	PA (後方 - 前方)	LLAT (左側方)	RLAT (右側方)	ROT (回転)	ISO (等方)
-	$\begin{array}{c} 1.0E-9\\ 1.0E-8\\ 2.5E-8\\ 1.0E-7\\ 2.0E-7\\ 5.0E-7\\ 1.0E-6\\ 2.0E-6\\ 5.0E-6\\ 1.0E-5\\ 2.0E-5\\ 5.0E-5\\ 1.0E-5\\ 1.0E-5\end{array}$	$\begin{array}{c} 0.915\\ 1.04\\ 1.16\\ 1.50\\ 1.67\\ 1.88\\ 1.99\\ 2.09\\ 2.15\\ 2.18\\ 2.17\\ 2.16\\ 2.15$	$\begin{array}{c} 0.824\\ 0.952\\ 1.09\\ 1.44\\ 1.64\\ 1.89\\ 2.04\\ 2.14\\ 2.24\\ 2.28\\ 2.28\\ 2.28\\ 2.28\\ 2.28\\ 2.28\\ 2.28\\ 2.28\\ 2.28\\ 2.28\\ 2.28\\ 2.26\end{array}$	$\begin{array}{c} 0.441 \\ 0.506 \\ 0.578 \\ 0.750 \\ 0.850 \\ 0.970 \\ 1.03 \\ 1.08 \\ 1.11 \\ 1.11 \\ 1.10 \\ 1.09 \\ 1.07 \end{array}$	$\begin{array}{c} 0.450\\ 0.517\\ 0.587\\ 0.762\\ 0.863\\ 0.981\\ 1.04\\ 1.09\\ 1.11\\ 1.12\\ 1.11\\ 1.09\\ 1.08\end{array}$	$\begin{array}{c} 0.679\\ 0.814\\ 0.925\\ 1.20\\ 1.35\\ 1.53\\ 1.64\\ 1.71\\ 1.77\\ 1.79\\ 1.78\\ 1.76\\ 1.74\end{array}$	$\begin{array}{c} 0.551 \\ 0.653 \\ 0.737 \\ 0.946 \\ 1.06 \\ 1.20 \\ 1.28 \\ 1.33 \\ 1.37 \\ 1.38 \\ 1.38 \\ 1.37 \\ 1.38 \\ 1.37 \\ 1.25 \end{array}$
	$\begin{array}{c} 1.0E-4\\ 2.0E-4\\ 5.0E-4\\ 0.001\\ 0.002\\ 0.005\\ 0.01\\ 0.02\\ 0.$	2.13 2.11 2.08 2.04 2.01 1.99 2.01 2.05	2.24 2.21 2.18 2.16 2.14 2.15 2.18	1.07 1.05 1.03 1.01 0.992 0.974 0.974 1.01	$ \begin{array}{c} 1.08\\ 1.06\\ 1.03\\ 1.01\\ 0.996\\ 0.982\\ 0.986\\ 1.02\\ 1.02\\ 1.05\\ \end{array} $	$ \begin{array}{c} 1.74\\ 1.72\\ 1.69\\ 1.67\\ 1.65\\ 1.63\\ 1.64\\ 1.67$	1.33 1.33 1.31 1.29 1.27 1.26 1.26 1.30
	$\begin{array}{c} 0.03 \\ 0.05 \\ 0.07 \\ 0.1 \\ 0.15 \\ 0.2 \\ 0.3 \\ 0.5 \\ 0.7 \\ 0.9 \end{array}$	$\begin{array}{c} 2.12\\ 2.28\\ 2.45\\ 2.72\\ 3.19\\ 3.68\\ 4.66\\ 6.59\\ 8.37\\ 10.0 \end{array}$	2.23 2.34 2.46 2.67 3.04 3.44 4.27 5.99 7.65 9.26	$1.06 \\ 1.15 \\ 1.26 \\ 1.44 \\ 1.74 \\ 2.05 \\ 2.67 \\ 3.90 \\ 5.03 \\ 6.12$	$1.07 \\ 1.17 \\ 1.28 \\ 1.47 \\ 1.78 \\ 2.10 \\ 2.74 \\ 3.98 \\ 5.13 \\ 6.24$	$1.72 \\ 1.85 \\ 1.99 \\ 2.22 \\ 2.61 \\ 3.01 \\ 3.83 \\ 5.47 \\ 7.02 \\ 8.52$	$\begin{array}{c} 1.34\\ 1.44\\ 1.56\\ 1.74\\ 2.05\\ 2.38\\ 3.04\\ 4.36\\ 5.63\\ 6.87\end{array}$
	$ \begin{array}{c} 1.0\\ 1.2\\ 1.5\\ 2.0\\ 3.0\\ 4.0\\ 5.0\\ 6.0\\ 7.0\\ 8.0\\ \end{array} $	$10.9 \\ 12.5 \\ 15.0 \\ 18.7 \\ 25.0 \\ 30.0 \\ 34.2 \\ 37.6 \\ 40.7 \\ 43.5 \\ $	$10.1 \\ 11.7 \\ 14.2 \\ 18.1 \\ 24.6 \\ 29.8 \\ 34.0 \\ 37.5 \\ 40.7 \\ 43.5 \\ \end{cases}$	$\begin{array}{c} 6.65 \\ 7.74 \\ 9.34 \\ 11.9 \\ 16.3 \\ 20.0 \\ 23.3 \\ 26.1 \\ 28.7 \\ 31.0 \end{array}$	$\begin{array}{c} 6.78 \\ 7.88 \\ 9.50 \\ 12.0 \\ 16.5 \\ 20.3 \\ 23.5 \\ 26.4 \\ 28.9 \\ 31.2 \end{array}$	$\begin{array}{c} 9.26 \\ 10.7 \\ 12.9 \\ 16.2 \\ 22.0 \\ 26.7 \\ 30.7 \\ 34.1 \\ 37.1 \\ 39.8 \end{array}$	$\begin{array}{c} 7.49 \\ 8.71 \\ 10.5 \\ 13.3 \\ 18.3 \\ 22.4 \\ 26.0 \\ 29.1 \\ 31.9 \\ 34.4 \end{array}$
	$\begin{array}{c} 9.0\\ 10.0\\ 12.0\\ 14.0\\ 15.0\\ 16.0\\ 18.0\\ 20.0\\ 21.0\\ 30.0 \end{array}$	$\begin{array}{c} 46.0\\ 48.4\\ 52.6\\ 56.0\\ 57.5\\ 58.8\\ 60.9\\ 62.7\\ 63.4\\ 68.1 \end{array}$	$\begin{array}{c} 46.1\\ 48.4\\ 52.6\\ 56.1\\ 57.6\\ 58.9\\ 61.1\\ 62.9\\ 63.7\\ 68.5 \end{array}$	$\begin{array}{c} 33.1\\ 35.1\\ 38.7\\ 41.9\\ 43.3\\ 44.6\\ 46.9\\ 48.9\\ 49.8\\ 56.2 \end{array}$	$\begin{array}{c} 33.4\\ 35.4\\ 39.0\\ 42.1\\ 43.5\\ 44.8\\ 47.2\\ 49.2\\ 50.1\\ 56.4 \end{array}$	$\begin{array}{c} 42.3\\ 44.6\\ 48.6\\ 51.9\\ 53.3\\ 54.5\\ 56.7\\ 58.5\\ 59.2\\ 64.0 \end{array}$	$\begin{array}{c} 36.7\\ 38.8\\ 42.5\\ 45.6\\ 47.0\\ 48.2\\ 50.4\\ 52.3\\ 53.1\\ 58.7 \end{array}$
	$50.0 \\ 75.0 \\ 100 \\ 130 \\ 150 \\ 180 \\ 200 \\ 300 \\ 400 \\ 500$	$\begin{array}{c} 73.7\\ 78.4\\ 81.6\\ 84.3\\ 85.8\\ 88.1\\ 89.8\\ 101\\ 116\\ 133 \end{array}$	$\begin{array}{c} 74.5\\ 79.9\\ 83.6\\ 86.5\\ 88.0\\ 90.3\\ 92.0\\ 103\\ 118\\ 135 \end{array}$	$\begin{array}{c} 64.8\\ 72.5\\ 78.3\\ 83.9\\ 87.2\\ 91.7\\ 94.5\\ 109\\ 125\\ 142 \end{array}$	$\begin{array}{c} 65.1\\ 72.5\\ 78.1\\ 83.3\\ 86.4\\ 90.8\\ 93.6\\ 108\\ 125\\ 143 \end{array}$	$\begin{array}{c} 69.5 \\ 74.6 \\ 79.3 \\ 84.3 \\ 87.3 \\ 91.5 \\ 94.2 \\ 109 \\ 125 \\ 141 \end{array}$	$\begin{array}{c} 65.7\\ 72.0\\ 77.6\\ 83.8\\ 87.6\\ 93.0\\ 96.6\\ 114\\ 131\\ 147\end{array}$
	$\begin{array}{c} 600 \\ 700 \\ 800 \\ 900 \\ 1,000 \\ 2,000 \\ 5,000 \\ 10,000 \end{array}$	149 164 176 185 193 234 286 383	151 165 176 185 191 226 282 371	159 174 186 195 203 251 343 456	159 174 186 196 204 252 343 445	156 169 180 190 243 307 386	162 176 188 197 206 261 352 460

表 C.19 中性子(男性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの骨表面(骨内膜)の吸収線量(単位:pGy·cm²)

エネルギー	AP	PA	LLAT	RLAT	ROT	ISO
(MeV)	(前方 - 後方)	(後方 - 前方)	(左側方)	(右側方)	(回転)	(等方)
1.0E - 9 1.0E - 8	2.04 2.32	0.579 0.630	0.250 0.254	0.182 0.180	0.823 0.983	0.645 0.778
2.5E - 8	2.58	0.712	0.295	0.224	1.09	0.849
1.0E-7 2.0E-7	3.41	1.05	0.399	0.317	1.34 1.45	1.03
5.0E - 7	3.74	1.19	0.452	0.378	1.57	1.30
1.0E-6 2.0E-6	3.88	1.31	0.490	0.408	1.67	1.30
5.0E - 6	4.16	1.45	0.514	0.454	1.83	1.37
1.0E = 5 2 0E = 5	4.19	1.49	0.514	0.456	1.85	1.30
5.0E - 5	4.04	1.51	0.545	0.455	1.77	1.38
1.0E-4 2 0F-4	3.94	1.50	0.543	0.446	1.74	1.38
5.0E - 4	3.78	1.56	0.553	0.430	1.69	1.32
0.001	3.71	1.54	0.527	0.436	1.68	1.30
0.005	3.64	1.52	0.516	0.446	1.73	1.30
$0.01 \\ 0.02$	3.72 3.88	1.52	0.513 0.545	0.454 0.445	1.77 1.85	1.35 1.45
0.03	4.05	1.61	0.554	0.439	1.94	1.53
0.05 0.07	4.46 4.95	1.67	0.540	$0.440 \\ 0.447$	2.13 2.33	1.70
0.1	5.67	1.75	0.548	0.459	2.63	2.12
0.15	7.84	1.85	0.654	0.485	3.59	2.55 2.97
0.3	9.93	2.10	0.745	0.566	4.46	3.75 5.17
0.5	17.1	3.08	1.14	0.853	7.48	6.47
0.9	19.9	3.72	1.39	1.05	8.84	7.68
1.0	21.2 23.7	4.08	1.93	1.17 1.45	9.49 10.8	8.20 9.41
1.5	27.0	6.27 8.77	2.66	1.99	12.6	11.0
3.0	39.3	14.0	7.46	5.91	20.6	18.0
$4.0 \\ 5.0$	45.3	19.0 23.6	10.8	9.02 12.2	25.1 29.1	22.0 25.5
6.0	53.6	27.8	17.5	15.3	32.6	28.7
7.0 8.0	56.8 59.7	31.5 34.8	20.5 23.2	18.2 20.8	35.8 38.7	31.5 34.1
9.0	62.3	37.9	25.6	23.3	41.2	36.5
10.0 12.0	64.7	40.8	27.9 31.9	25.5 29.6	43.5 47.5	38.7 42.4
14.0	71.5	50.2	35.5	33.1	50.8	45.6
16.0	72.0	53.8	38.7	36.3	53.4	47.0 48.2
18.0	74.7	56.9 59.6	41.5	39.1	55.6 57.4	50.4
21.0	76.0	60.8	45.2	42.8	58.2	53.1
30.0	78.0	68.6	53.0	51.0	63.2	58.7
50.0 75.0	78.5	88.5	72.0	71.1	08.8 74.1	73.8
100	71.4	97.9	79.7 87.7	79.2	79.7 86.4	80.6
150	63.2	103	92.6	93.4	90.6	92.3
180 200	61.1	121	98.7 102	101	96.5 100	98.5 102
300	65.3	141	117	124	118	121
400 500	75.2 87.4	160 181	135 154	142 159	135 150	140 159
600	100	201	173	176	164	177
700 800	111 121	218 232	190 203	192 205	176 187	193 207
900	129	243	213	216	197	218
1,000 2,000	136 173	252 309	220 276	226 280	205 265	228 288
5,000	204	417	422	388	353 436	385 534

表 C.20 中性子(男性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの精巣の吸収線量(単位:pGy·cm²)

表 C.21 中性子(男性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの肝臓の吸収線量(単位:pGy·cm²)

	AP (前方 - 後方)	PA (後方 - 前方)	LLAT (左側方)	RLAT (右側方)	ROT (回転)	ISO (等方)
$\begin{array}{c} 1.0E-9\\ 1.0E-8\\ 2.5E-8\\ 1.0E-7\\ 2.0E-7\\ 5.0E-7\\ 1.0E-6\\ 2.0E-6\\ 5.0E-6\\ 1.0E-5\\ \end{array}$	$\begin{array}{c} 1.05\\ 1.25\\ 1.42\\ 1.89\\ 2.14\\ 2.49\\ 2.69\\ 2.86\\ 3.02\\ 3.10\\ \end{array}$	$\begin{array}{c} 0.695\\ 0.823\\ 0.949\\ 1.26\\ 1.45\\ 1.70\\ 1.85\\ 1.97\\ 2.09\\ 2.15\\ \end{array}$	$\begin{array}{c} 0.168\\ 0.177\\ 0.200\\ 0.254\\ 0.288\\ 0.334\\ 0.363\\ 0.386\\ 0.404\\ 0.412\\ \end{array}$	$\begin{array}{c} 0.610\\ 0.725\\ 0.839\\ 1.13\\ 1.30\\ 1.52\\ 1.66\\ 1.77\\ 1.86\\ 1.90\\ \end{array}$	$\begin{array}{c} 0.618\\ 0.768\\ 0.885\\ 1.16\\ 1.33\\ 1.55\\ 1.69\\ 1.79\\ 1.89\\ 1.94\end{array}$	$\begin{array}{c} 0.479\\ 0.583\\ 0.664\\ 0.872\\ 0.985\\ 1.15\\ 1.25\\ 1.33\\ 1.40\\ 1.44 \end{array}$
$\begin{array}{c} 2.0\mathrm{E}{-5} \\ 5.0\mathrm{E}{-5} \\ 1.0\mathrm{E}{-4} \\ 2.0\mathrm{E}{-4} \\ 5.0\mathrm{E}{-4} \\ 0.001 \\ 0.002 \\ 0.005 \\ 0.01 \\ 0.02 \end{array}$	$\begin{array}{c} 3.13\\ 3.17\\ 3.19\\ 3.18\\ 3.20\\ 3.17\\ 3.15\\ 3.16\\ 3.19\\ 3.22\\ \end{array}$	2.18 2.21 2.22 2.24 2.25 2.25 2.25 2.25 2.24 2.25 2.27 2.30	$\begin{array}{c} 0.419\\ 0.426\\ 0.427\\ 0.428\\ 0.430\\ 0.428\\ 0.426\\ 0.426\\ 0.427\\ 0.432\\ 0.443\end{array}$	$\begin{array}{c} 1.91 \\ 1.92 \\ 1.92 \\ 1.91 \\ 1.90 \\ 1.88 \\ 1.87 \\ 1.85 \\ 1.85 \\ 1.88 \\ 1.88 \end{array}$	$ 1.95 \\ 1.97 \\ 1.98 \\ 1.98 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 2.00 \\ 2.02 $	$1.46 \\ 1.47 \\ 1.48 \\ 1.48 \\ 1.49 \\ 1.50 \\ 1.49 \\ 1.49 \\ 1.49 \\ 1.49 \\ 1.51$
$\begin{array}{c} 0.03 \\ 0.05 \\ 0.07 \\ 0.1 \\ 0.15 \\ 0.2 \\ 0.3 \\ 0.5 \\ 0.7 \\ 0.9 \end{array}$	3.26 3.35 3.45 3.62 3.91 4.22 4.89 6.30 7.72 9.14	$\begin{array}{c} 2.34\\ 2.41\\ 2.48\\ 2.58\\ 2.76\\ 2.95\\ 3.33\\ 4.16\\ 5.06\\ 6.01\end{array}$	$\begin{array}{c} 0.450\\ 0.460\\ 0.471\\ 0.487\\ 0.516\\ 0.544\\ 0.600\\ 0.720\\ 0.864\\ 1.04 \end{array}$	$\begin{array}{c} 1.91 \\ 1.99 \\ 2.07 \\ 2.22 \\ 2.48 \\ 2.77 \\ 3.39 \\ 4.67 \\ 5.96 \\ 7.27 \end{array}$	$\begin{array}{c} 2.05\\ 2.11\\ 2.17\\ 2.28\\ 2.46\\ 2.66\\ 3.09\\ 3.99\\ 4.92\\ 5.89\end{array}$	$\begin{array}{c} 1.53 \\ 1.57 \\ 1.62 \\ 1.69 \\ 1.83 \\ 1.97 \\ 2.27 \\ 2.91 \\ 3.59 \\ 4.31 \end{array}$
$ \begin{array}{c} 1.0\\ 1.2\\ 1.5\\ 2.0\\ 3.0\\ 4.0\\ 5.0\\ 6.0\\ 7.0\\ 8.0\\ \end{array} $	$\begin{array}{c} 9.87 \\ 11.4 \\ 13.8 \\ 17.5 \\ 24.2 \\ 29.7 \\ 34.3 \\ 38.3 \\ 41.7 \\ 44.8 \end{array}$	6.52 7.60 9.30 12.2 17.7 22.8 27.2 31.2 34.7 37.8	$1.15 \\ 1.39 \\ 1.84 \\ 2.74 \\ 4.91 \\ 7.31 \\ 9.81 \\ 12.3 \\ 14.7 \\ 16.9$	$\begin{array}{c} 7.95 \\ 9.35 \\ 11.5 \\ 15.0 \\ 21.2 \\ 26.5 \\ 31.0 \\ 34.8 \\ 38.2 \\ 41.2 \end{array}$	$\begin{array}{c} 6.39 \\ 7.44 \\ 9.07 \\ 11.8 \\ 16.9 \\ 21.4 \\ 25.5 \\ 29.1 \\ 32.4 \\ 35.3 \end{array}$	$\begin{array}{c} 4.69 \\ 5.50 \\ 6.77 \\ 8.95 \\ 13.1 \\ 17.0 \\ 20.5 \\ 23.7 \\ 26.6 \\ 29.2 \end{array}$
$\begin{array}{c} 9.0\\ 10.0\\ 12.0\\ 14.0\\ 15.0\\ 16.0\\ 18.0\\ 20.0\\ 21.0\\ 30.0 \end{array}$	$\begin{array}{c} 47.5\\ 50.0\\ 54.4\\ 57.9\\ 59.4\\ 60.8\\ 63.0\\ 64.9\\ 65.7\\ 71.0\end{array}$	$\begin{array}{c} 40.7\\ 43.3\\ 47.8\\ 51.6\\ 53.3\\ 54.8\\ 57.5\\ 59.8\\ 60.8\\ 67.7\end{array}$	$19.0 \\ 20.9 \\ 24.6 \\ 27.9 \\ 29.5 \\ 31.0 \\ 33.9 \\ 36.6 \\ 37.8 \\ 47.3$	$\begin{array}{c} 44.0\\ 46.5\\ 50.9\\ 54.5\\ 56.1\\ 57.5\\ 60.0\\ 62.1\\ 63.0\\ 68.9 \end{array}$	$\begin{array}{c} 37.9\\ 40.3\\ 44.5\\ 48.0\\ 49.6\\ 51.0\\ 53.5\\ 55.6\\ 56.6\\ 56.6\\ 63.2 \end{array}$	$\begin{array}{c} 31.5\\ 33.7\\ 37.7\\ 41.1\\ 42.6\\ 44.0\\ 46.6\\ 48.9\\ 49.9\\ 57.1\end{array}$
$50.0 \\ 75.0 \\ 100 \\ 130 \\ 150 \\ 180 \\ 200 \\ 300 \\ 400 \\ 500$	$\begin{array}{c} 77.5\\ 83.3\\ 88.1\\ 92.6\\ 95.2\\ 98.6\\ 101\\ 114\\ 131\\ 150\\ \end{array}$	$\begin{array}{c} 76.5\\ 84.5\\ 91.6\\ 99.4\\ 104\\ 111\\ 115\\ 136\\ 157\\ 178\\ \end{array}$	$\begin{array}{c} 61.3\\ 73.8\\ 84.5\\ 96.1\\ 103\\ 113\\ 119\\ 146\\ 171\\ 194 \end{array}$	76.1 82.7 88.5 94.3 97.8 102 105 121 139 158	$71.9 \\ 80.0 \\ 87.5 \\ 95.7 \\ 101 \\ 108 \\ 112 \\ 133 \\ 153 \\ 172$	$\begin{array}{c} 66.8\\ 75.8\\ 84.1\\ 93.2\\ 98.9\\ 107\\ 111\\ 133\\ 155\\ 176 \end{array}$
$\begin{array}{c} 600 \\ 700 \\ 800 \\ 900 \\ 1,000 \\ 2,000 \\ 5,000 \\ 10,000 \end{array}$	169 186 200 211 221 272 338 442	197 213 227 239 249 310 410 514	216 235 251 265 276 354 504 649	176 192 205 216 225 275 362 459	190 206 220 232 242 307 410 528	196 214 229 243 254 330 451 597

エネルギー (MeV)	AP (前方 - 後方)	PA (後方 - 前方)	LLAT (左側方)	RLAT (右側方)	ROT (回転)	ISO (等方)
$\begin{array}{r} 1.0E-9\\ 1.0E-8\\ 2.5E-8\\ 1.0E-7\\ 2.0E-7\\ 5.0E-7\end{array}$	$\begin{array}{c} 0.976\\ 1.13\\ 1.29\\ 1.74\\ 1.98\\ 2.29\end{array}$	$\begin{array}{c} 0.811\\ 0.984\\ 1.14\\ 1.55\\ 1.77\\ 2.09 \end{array}$	$\begin{array}{c} 0.325\\ 0.359\\ 0.410\\ 0.528\\ 0.600\\ 0.691 \end{array}$	$\begin{array}{c} 0.315\\ 0.352\\ 0.395\\ 0.502\\ 0.571\\ 0.662\end{array}$	$\begin{array}{c} 0.611 \\ 0.743 \\ 0.853 \\ 1.13 \\ 1.28 \\ 1.49 \end{array}$	$\begin{array}{c} 0.482 \\ 0.587 \\ 0.665 \\ 0.877 \\ 0.999 \\ 1.17 \end{array}$
1.0E - 6 2.0E - 6 5.0E - 6 1.0E - 5 2.0E - 5	2.47 2.61 2.75 2.83 2.85	2.28 2.43 2.56 2.64 2.67	0.746 0.791 0.830 0.843 0.855	0.721 0.763 0.801 0.819 0.831	1.62 1.72 1.81 1.86	$ \begin{array}{r} 1.27 \\ 1.34 \\ 1.42 \\ 1.45 \\ 1.47 \\ \end{array} $
$\begin{array}{c} 5.0E-5\\ 1.0E-4\\ 2.0E-4\\ 5.0E-4\\ 0.001\\ 0.002\\ 0.005\\ 0.01\\ \end{array}$	2.85 2.86 2.84 2.85 2.82 2.78 2.78 2.78 2.78 2.79	2.73 2.74 2.72 2.73 2.72 2.72 2.72 2.72 2.71 2.73	$\begin{array}{c} 0.862\\ 0.867\\ 0.867\\ 0.867\\ 0.861\\ 0.856\\ 0.851\\ 0.848\\ \end{array}$	$\begin{array}{c} 0.841\\ 0.841\\ 0.842\\ 0.841\\ 0.839\\ 0.834\\ 0.836\\ 0.836\\ 0.842\\ \end{array}$	1.80 1.91 1.91 1.91 1.90 1.89 1.88 1.88	$ \begin{array}{c} 1.48\\ 1.48\\ 1.48\\ 1.48\\ 1.48\\ 1.48\\ 1.47\\ 1.47\\ 1.47\\ 1.47\\ \end{array} $
$\begin{array}{c} 0.02 \\ 0.03 \\ 0.05 \\ 0.07 \\ 0.1 \\ 0.15 \\ 0.2 \\ 0.3 \\ 0.5 \\ 0.7 \\ 0.6 \end{array}$	$\begin{array}{c} 2.82 \\ 2.87 \\ 2.97 \\ 3.09 \\ 3.29 \\ 3.68 \\ 4.10 \\ 5.02 \\ 6.95 \\ 8.82 \\ 2.8 \end{array}$	2.75 2.79 2.87 2.95 3.08 3.33 3.61 4.23 5.62 7.07	$\begin{array}{c} 0.865\\ 0.882\\ 0.907\\ 0.928\\ 0.965\\ 1.04\\ 1.12\\ 1.30\\ 1.69\\ 2.12\\ \end{array}$	$\begin{array}{c} 0.840\\ 0.844\\ 0.862\\ 0.884\\ 0.923\\ 0.997\\ 1.08\\ 1.26\\ 1.65\\ 2.10\\ 0.96\\ 0.997\\ 0.997\\ 0.997\\ 0.997\\ 0.90\\ 0$	$ \begin{array}{c} 1.90\\ 1.93\\ 1.99\\ 2.05\\ 2.16\\ 2.36\\ 2.58\\ 3.07\\ 4.12\\ 5.24\\ 5.24 \end{array} $	$ \begin{array}{c} 1.49\\ 1.51\\ 1.56\\ 1.60\\ 1.69\\ 1.84\\ 2.01\\ 2.38\\ 3.20\\ 4.08\\ \end{array} $
$ \begin{array}{c} 0.9\\ 1.0\\ 1.2\\ 1.5\\ 2.0\\ 3.0\\ 4.0\\ 5.0\\ 6.0\\ 7.0\\ 8.0\\ \end{array} $	10.6 11.6 13.4 16.2 20.6 27.8 33.7 38.5 42.5 45.9 49.0	$\begin{array}{c} 8.37\\ 9.36\\ 11.0\\ 13.5\\ 17.5\\ 24.6\\ 30.4\\ 35.3\\ 39.4\\ 43.0\\ 46.1\end{array}$	$\begin{array}{c} 2.39\\ 2.85\\ 3.42\\ 4.38\\ 6.10\\ 9.56\\ 12.9\\ 16.0\\ 18.9\\ 21.6\\ 24.0\end{array}$	$\begin{array}{c} 2.80\\ 2.87\\ 3.46\\ 4.43\\ 6.15\\ 9.63\\ 12.9\\ 16.1\\ 18.9\\ 21.5\\ 23.9\end{array}$	$\begin{array}{c} 6.40\\ 7.00\\ 8.24\\ 10.1\\ 13.3\\ 18.9\\ 23.9\\ 28.2\\ 31.9\\ 35.2\\ 38.2 \end{array}$	5.02 5.51 6.53 8.11 10.7 15.7 20.0 23.9 27.3 30.3 33.0
$\begin{array}{c} 9.0\\ 10.0\\ 12.0\\ 14.0\\ 15.0\\ 16.0\\ 18.0\\ 20.0\\ 21.0\\ 30.0 \end{array}$	$51.9 \\ 54.4 \\ 58.8 \\ 62.3 \\ 63.7 \\ 65.0 \\ 67.1 \\ 68.7 \\ 69.4 \\ 73.8 $	$\begin{array}{c} 48.9\\ 51.4\\ 55.7\\ 59.2\\ 60.7\\ 62.0\\ 64.2\\ 66.0\\ 66.8\\ 71.8 \end{array}$	$\begin{array}{c} 26.2\\ 28.2\\ 31.8\\ 35.1\\ 36.6\\ 38.0\\ 40.6\\ 42.9\\ 44.0\\ 51.8\end{array}$	$\begin{array}{c} 26.0\\ 28.0\\ 31.6\\ 34.8\\ 36.3\\ 37.6\\ 40.2\\ 42.5\\ 43.5\\ 51.3\end{array}$	$\begin{array}{c} 40.8\\ 43.2\\ 47.3\\ 50.7\\ 52.2\\ 53.6\\ 56.0\\ 58.0\\ 58.9\\ 64.8\end{array}$	$\begin{array}{c} 35.5\\ 37.7\\ 41.6\\ 45.0\\ 46.4\\ 47.8\\ 50.2\\ 52.2\\ 53.2\\ 59.6\end{array}$
50.0 75.0 100 130 150 180 200 300 400 500	79.1 83.5 86.7 89.2 90.5 92.4 93.9 105 121 139	$\begin{array}{c} 77.8\\ 83.5\\ 88.2\\ 92.8\\ 95.6\\ 99.4\\ 102\\ 116\\ 133\\ 151 \end{array}$	$\begin{array}{c} 63.2 \\ 73.9 \\ 83.0 \\ 92.2 \\ 97.5 \\ 104 \\ 108 \\ 124 \\ 142 \\ 162 \end{array}$	$\begin{array}{c} 62.7\\ 73.1\\ 81.7\\ 90.5\\ 95.6\\ 102\\ 107\\ 125\\ 144\\ 163\\ \end{array}$	$\begin{array}{c} 72.3\\ 79.3\\ 85.6\\ 92.5\\ 96.6\\ 102\\ 106\\ 123\\ 140\\ 157 \end{array}$	$\begin{array}{c} 68.1 \\ 76.2 \\ 83.4 \\ 91.0 \\ 95.7 \\ 102 \\ 106 \\ 126 \\ 144 \\ 163 \end{array}$
$\begin{array}{c} 600 \\ 700 \\ 800 \\ 900 \\ 1,000 \\ 2,000 \\ 5,000 \\ 10,000 \end{array}$	157 173 186 196 205 250 307 400	167 181 193 202 210 254 325 410	180 197 211 221 230 284 404 538	181 197 210 222 231 296 414 524	173 187 199 209 218 274 360 452	180 195 208 219 229 294 395 514

表 C.22 中性子(男性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの肺の吸収線量(単位:pGy·cm²)

表 C.23 中性子(男性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの食道の吸収線量(単位:pGy·cm²)

	. –					
エネルギー (MeV)	AP (前方 - 後方)	PA (後方 - 前方)	LLAT (左側方)	RLAT (右側方)	ROT (回転)	ISO (等方)
(MeV) $1.0E-9$ $1.0E-8$ $2.5E-8$ $1.0E-7$ $2.0E-7$ $1.0E-6$ $2.0E-6$ $1.0E-5$ $2.0E-5$ $5.0E-5$ $1.0E-4$ $5.0E-4$ $5.0E-4$ 0.001 0.002 0.005 0.01 0.02 0.03 0.05 0.07 0.1 0.2	(前方 - 後方) 0.984 1.15 1.30 1.77 2.02 2.32 2.50 2.67 2.82 2.89 2.90 2.95 2.97 2.96 2.96 2.97 2.96 2.97 2.96 2.97 2.96 2.97 2.96 2.97 2.96 3.14 3.26 3.44 3.78 4.16	(後方 - 前方) 0.777 0.906 1.06 1.44 1.66 1.96 2.18 2.34 2.49 2.56 2.63 2.71 2.74 2.76 2.78 2.77 2.77 2.77 2.79 2.84 2.89 2.93 3.01 3.06 3.14 3.30 3.48	(左側方) (左側方) 0.362 0.416 0.464 0.591 0.676 0.791 0.860 0.911 0.947 0.957 0.966 0.973 0.980 0.980 0.989 1.00 1.01 0.999 0.986 0.990 1.02 1.05 1.08 1.11 1.15 1.24 1.33 	 (右側方) 0.299 0.354 0.393 0.488 0.560 0.661 0.721 0.763 0.811 0.835 0.846 0.867 0.887 0.887 0.866 0.884 0.893 0.883 0.879 0.890 0.914 0.959 1.04 13 	(回転) 0.593 0.734 0.854 1.10 1.26 1.50 1.64 1.74 1.82 1.87 1.92 1.96 1.98 1.98 1.98 1.94 1.94 1.94 1.97 2.055 2.111 2.17 2.27 2.46	(等方) 0.451 0.558 0.640 0.851 0.967 1.11 1.22 1.32 1.46 1.49 1.46 1.49 1.52 1.53 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.53 1.52 1.52 1.52 1.53 1.54 1.66 1.61 1.66 1.74 1.85 1.96
$0.2 \\ 0.3 \\ 0.5 \\ 0.7 \\ 0.9$	$\begin{array}{c} 4.16 \\ 4.96 \\ 6.56 \\ 8.10 \\ 9.64 \end{array}$	3.48 3.88 4.81 5.88 7.05	$ \begin{array}{r} 1.33 \\ 1.54 \\ 2.02 \\ 2.53 \\ 3.09 \\ \end{array} $	$ \begin{array}{r} 1.13 \\ 1.31 \\ 1.70 \\ 2.13 \\ 2.61 \\ \end{array} $	$2.66 \\ 3.07 \\ 3.97 \\ 4.92 \\ 5.93$	$ \begin{array}{r} 1.96 \\ 2.23 \\ 2.84 \\ 3.51 \\ 4.25 \\ \end{array} $
$ \begin{array}{c} 1.0\\ 1.2\\ 1.5\\ 2.0\\ 3.0\\ 4.0\\ 5.0\\ 6.0\\ 7.0\\ 8.0\\ \end{array} $	$10.4 \\ 12.0 \\ 14.5 \\ 18.4 \\ 25.4 \\ 31.3 \\ 36.2 \\ 40.4 \\ 44.0 \\ 47.3$	$\begin{array}{c} 7.68\\ 9.01\\ 11.1\\ 14.7\\ 21.3\\ 27.1\\ 32.1\\ 36.4\\ 40.1\\ 43.4 \end{array}$	$\begin{array}{c} 3.39 \\ 4.03 \\ 5.07 \\ 6.91 \\ 10.7 \\ 14.3 \\ 17.8 \\ 21.0 \\ 23.9 \\ 26.5 \end{array}$	$\begin{array}{c} 2.87\\ 3.42\\ 4.33\\ 5.97\\ 9.40\\ 12.8\\ 16.0\\ 19.0\\ 21.7\\ 24.2 \end{array}$	$\begin{array}{c} 6.46 \\ 7.57 \\ 9.30 \\ 12.2 \\ 17.8 \\ 22.9 \\ 27.4 \\ 31.4 \\ 34.9 \\ 38.0 \end{array}$	$\begin{array}{c} 4.64 \\ 5.48 \\ 6.81 \\ 9.09 \\ 13.6 \\ 17.7 \\ 21.5 \\ 24.8 \\ 27.9 \\ 30.6 \end{array}$
$\begin{array}{c} 9.0\\ 10.0\\ 12.0\\ 14.0\\ 15.0\\ 16.0\\ 18.0\\ 20.0\\ 21.0\\ 30.0 \end{array}$	$50.2 \\ 52.8 \\ 57.4 \\ 61.1 \\ 62.7 \\ 64.1 \\ 66.5 \\ 68.5 \\ 69.4 \\ 74.6$	$\begin{array}{c} 46.3\\ 48.9\\ 53.4\\ 57.1\\ 58.6\\ 60.0\\ 62.4\\ 64.4\\ 65.3\\ 70.9\end{array}$	$\begin{array}{c} 29.0\\ 31.3\\ 35.4\\ 39.0\\ 40.6\\ 42.2\\ 45.0\\ 47.6\\ 48.8\\ 57.3\end{array}$	$\begin{array}{c} 26.5\\ 28.7\\ 32.5\\ 35.9\\ 37.4\\ 38.8\\ 41.5\\ 43.9\\ 45.0\\ 53.0\\ \end{array}$	$\begin{array}{c} 40.7\\ 43.2\\ 47.5\\ 51.0\\ 52.5\\ 53.9\\ 56.4\\ 59.3\\ 65.6\end{array}$	$\begin{array}{c} 33.0\\ 35.2\\ 39.1\\ 42.4\\ 43.9\\ 45.2\\ 47.7\\ 49.9\\ 50.9\\ 58.6\end{array}$
$50.0 \\ 75.0 \\ 100 \\ 130 \\ 150 \\ 180 \\ 200 \\ 300 \\ 400 \\ 500$	$\begin{array}{c} 80.6\\ 86.2\\ 91.0\\ 95.9\\ 98.8\\ 103\\ 106\\ 121\\ 140\\ 159 \end{array}$	$\begin{array}{c} 77.8\\ 84.2\\ 89.7\\ 95.6\\ 99.3\\ 105\\ 108\\ 126\\ 144\\ 163 \end{array}$	$\begin{array}{c} 68.7\\ 77.9\\ 85.2\\ 92.8\\ 97.6\\ 105\\ 109\\ 131\\ 152\\ 172 \end{array}$	$\begin{array}{c} 65.0\\ 75.4\\ 83.7\\ 92.5\\ 97.8\\ 105\\ 110\\ 130\\ 150\\ 170\\ \end{array}$	$\begin{array}{c} 73.8\\ 81.6\\ 88.9\\ 96.9\\ 102\\ 109\\ 113\\ 133\\ 153\\ 171\\ \end{array}$	$\begin{array}{c} 69.9\\ 78.9\\ 85.6\\ 92.7\\ 97.2\\ 104\\ 108\\ 130\\ 153\\ 175\\ \end{array}$
$\begin{array}{c} 600 \\ 700 \\ 800 \\ 900 \\ 1,000 \\ 2,000 \\ 5,000 \\ 10,000 \end{array}$	177 193 207 218 227 282 353 440	180 195 208 219 229 290 379 462	191 208 222 234 244 311 435 545	189 206 220 233 245 323 444 550	188 203 216 227 236 295 393 501	195 213 228 241 251 322 448 597

エネルギー	AP	PA	LLAT	RLAT	ROT	ISO
(MeV)	(前方 - 後方)	(後方 - 前方)	(左側方)	(石側方)	(回転)	(等方)
1.0E-9 1.0E-8	0.991	1.13	0.330	0.411	0.771	0.602
2.5E - 8	1.12	1.31	0.462	0.465	0.885	0.685
1.0E = 7 2.0E = 7	1.40	2.04	0.598	0.601	1.17	1.01
5.0E - 7	1.91	2.39	0.781	0.790	1.53	1.17
1.0E-6 2 0E-6	2.06	2.61	0.843	0.852	1.66	1.26
5.0E - 6	2.28	2.93	0.928	0.932	1.84	1.39
1.0E-5	2.33	3.00	0.944	0.947	1.89	1.42
2.0E-5 5.0E-5	2.34 2.37	3.02	0.949	0.955	1.90	1.44
1.0E - 4	2.37	3.06	0.943	0.953	1.91	1.44
2.0E-4 5.0E-4	2.30	3.05	0.938	0.947	1.90	1.44
0.001	2.34	3.02	0.923	0.930	1.89	1.43
0.002	2.32	3.01	0.917	0.923	1.88	1.42
0.01	2.35	3.01	0.912	0.924	1.89	1.42
0.02	2.39	3.05	0.934	0.944	1.92	1.45
0.03	2.45	3.20	1.01	1.02	2.03	1.48
0.07	2.69	3.32	1.07	1.08	2.12	1.61
0.15	2.88	3.84	1.15	1.17	2.20	1.72
0.2	3.51	4.19	1.45	1.48	2.75	2.09
0.3	4.16 5.44	4.94 6.52	2.35	2.40	3.25 4.29	2.48
0.7	6.67	8.08	2.95	3.02	5.35	4.09
0.9	7.89 8.52	9.65	3.57	3.00	6.41	4.91
1.2	9.83	12.1	4.54	4.65	8.10	6.22
1.5 2.0	11.8	14.6	5.57	5.71 7.50	9.83	7.57
3.0	20.9	25.2	10.7	11.0	17.9	14.0
4.0	25.9	30.7	13.9	14.2	22.4	17.8
6.0	33.8	39.0	19.6	19.9	29.9	24.2
$7.0 \\ 8.0$	37.0	42.3 45.2	22.1 24 4	22.4 24.7	33.0	26.9 29.4
9.0	42.6	48.0	26.5	26.8	38.4	31.7
10.0	45.1	50.4	28.4	28.8	40.7	33.8
14.0	53.1	58.3	35.2	35.6	44.0	40.8
15.0	54.7	59.8	36.6	37.0	49.7	42.3
18.0	58.6	63.3	40.5	40.9	53.5	45.0
20.0	60.6	65.1	42.8	43.2	55.5	48.2
30.0	67.1	70.6	51.5	51.9	62.2	55.7
50.0	74.2	76.6	62.8	63.0	69.7	64.5
75.0 100	80.9	82.5 87.2	73.1	73.0	77.1	72.8
130	93.0	91.5	90.7	89.9	91.5	89.2
150 180	96.5	94.0 97.6	96.1 104	95.2 102	96.0	94.6 102
200	101	100	101	102	106	107
300 400	120	114	129	128	126	129 150
500	158	151	169	168	164	170
600	178	169	187	187	182	188
800	210	185 198	203	203	211	205
900	222	207	228	229	222	231
2,000	231 288	215 258	306	306	232	242 315
5,000	365	326	431	423	382	436 577

表 C.24 中性子(男性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの赤色(活性)骨髄の吸収線量(単位:pGy·cm²)

エネルギー	AP	PA	LLAT	RLAT	ROT	ISO
(MeV)	(前方 - 後方)	(後方 - 前方)	(左側方)	(右側方)	(回転)	(等方)
1.0E - 9 1.0E - 8	1.05	0.765 0.897	0.400	0.367 0.423	0.640 0.774	$0.493 \\ 0.599$
2.5E - 8	1.38	1.04	0.518	0.480	0.884	0.684
1.0E-7 2 0E-7	1.82	1.39	0.677	0.625	1.17	0.880
5.0E - 7	2.36	1.86	0.891	0.827	1.54	1.14
1.0E - 6	2.52	2.03	0.967	0.901	1.67	1.24
2.0E-6 5.0E-6	2.65	2.14 2.27	1.03	0.959	1.77	1.31
1.0E - 5	2.84	2.34	1.09	1.02	1.89	1.40
2.0E-5	2.85	2.37	1.11	1.03	1.91	1.41
1.0E-3	2.88	2.39	1.12	1.04	1.92	1.43
2.0E - 4	2.86	2.41	1.11	1.03	1.92	1.44
5.0E-4 0.001	2.80	2.42	1.10	1.03	1.91	1.44
0.002	2.79	2.40	1.09	1.02	1.90	1.43
0.005	2.79	2.41	1.09	1.01	1.91	1.42
0.02	2.86	2.43	1.12	1.02	1.96	1.42
0.03	2.94	2.51	1.14	1.05	1.99	1.49
0.03	3.25	2.68	1.20	1.11	2.08	1.63
0.1	3.49	2.81	1.36	1.28	2.33	1.74
0.15	4.33	3.29	1.52	1.43	2.38	2.12
0.3	5.19	3.78	2.05	1.98	3.38	2.52
0.5	6.88 8.48	4.84 5.93	2.80	3.45	4.48 5.60	3.34 4.18
0.9	10.0	7.07	4.35	4.22	6.73	5.04
1.0 1.2	10.8	7.67	4.76	4.62 5.45	7.31 8.49	5.48 6.39
1.5	14.7	10.9	6.96	6.73	10.3	7.78
$2.0 \\ 3.0$	18.5 25.0	14.2	9.21	8.90	13.3	10.1 14.5
4.0	30.4	25.7	17.5	16.9	23.7	18.5
5.0 6.0	35.0	30.3 34.4	21.1	20.3	28.0	22.2 25.4
7.0	42.4	37.9	27.3	26.3	35.1	28.4
8.0	45.4	41.1	30.0	28.9	38.1	31.0
10.0	50.7	46.5	34.7	33.4	43.2	35.7
12.0	55.0	51.1	38.7	37.3	47.5	39.5
15.0	60.0	56.5	43.8	42.3	52.5	44.3
16.0	61.3	58.0	45.2	43.7	53.9	45.6
20.0	65.2	62.7	50.1	40.3	58.4	50.2
21.0	66.0	63.7	51.2	49.6	59.4	51.1
50.0	76.7	77 0	68.8	67 1	73.3	67 7
75.0	81.8	83.7	77.9	76.1	80.6	76.7
100	86.0	90.0	85.5	83.6 91.7	87.0 94.0	84.5 92.9
150	92.6	101	98.1	96.7	98.4	98.1
180 200	96.0	106	105	104	105	105
300	112	126	128	129	128	132
400 500	130	145 164	147	149 169	147 165	152 170
600	166	183	184	187	182	188
700	182	199	200	203	197	203
900	206	212	213	228	210	229
1,000	215	231	234	238	231	239
2,000	266	282	295 408	300	292 380	312 430
10,000	431	468	527	520	484	565

表 C.25 中性子(男性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの残りの組織の吸収線量(単位:pGy·cm²)

エネルギー	AP	PA	LLAT	RLAT	ROT	ISO
(MeV)	(前方 - 後方)	(後方 - 前方)	(左側方)	(石側方)	(回転)	(等方)
1.0E-9 1.0E-8	0.976	0.613	1.00	1.15	0.845	0.622
2.5E - 8	1.05	0.689	1.32	1.28	1.05	0.821
1.0E - 7 2.0E - 7	1.43	0.888	1.05	1.35	1.54	1.04
5.0E - 7	1.59	1.12	1.91	1.89	1.66	1.24
1.0E-6 2.0E-6	1.65	1.21	2.03	1.94	1.74	1.31
5.0E - 6	1.78	1.30	2.05	2.01	1.80	1.38
1.0E-5	1.80	1.32	2.03	1.99	1.79	1.37
5.0E-5	1.79	1.32	1.97	1.90	1.78	1.34
1.0E-4	1.74	1.32	1.92	1.88	1.71	1.29
5.0E-4	1.69	1.29	1.80	1.02	1.66	1.27
0.001	1.67	1.26	1.75	1.73	1.63	1.23
0.002	1.65	1.23	1.72	1.71	1.59	1.22
0.01	1.61	1.26	1.81	1.79	1.63	1.23
0.02	1 70	1 38	2.02	2.10	1 91	1.32
0.05	1.83	1.55	2.64	2.46	2.21	1.65
0.07	1.95	1.75	3.03	2.84	2.51	1.88
0.15	2.59	2.56	4.48	4.23	3.65	2.75
$0.2 \\ 0.3$	3.06	3.09 4.20	5.29 6.79	5.03	4.33	3.27 4.26
0.5	6.23	6.41	9.33	9.04	7.94	6.09
$0.7 \\ 0.9$	8.34	8.49	11.5 13.4	11.2	10.0	7.76
1.0	11.4	11.5	14.3	14.0	12.9	10.0
1.2	13.4	13.5	16.0	15.7	14.6	11.5
2.0	20.7	20.8	21.8	21.5	20.9	16.6
3.0	28.0	28.2	27.6	27.5	27.3	22.0
5.0	38.5	38.9	36.7	36.5	37.0	30.2
6.0	42.5	42.9	40.2	39.9	40.7	33.5
8.0	48.9	49.5	46.2	45.7	46.9	39.1
9.0	51.6	52.4	48.7	48.3	49.6	41.6
12.0	58.4	59.7	54.8	54.8	56.2	43.8
14.0	61.8	63.4	57.9	58.2	59.5	50.7 52.1
16.0	64.5	66.3	60.4	61.0	62.0	53.2
18.0	66.6	68.6	62.3	63.2	63.9	55.2
20.0	69.1	70.4	64.5	65.8	65.7	57.5
30.0	73.9	75.6	68.3	70.2	68.4	61.6
50.0 75.0	78.6	79.7 82.5	71.8 74.5	73.7 76.2	69.5 71.0	65.4 68.7
100	78.4	83.9	76.8	78.1	73.6	72.3
130 150	76.9	84.7 85.2	79.2	80.0 81.6	77.0	76.9
180	77.2	86.4	83.6	84.5	82.7	84.3
200	78.1	87.7 98.6	85.6 97.5	86.5 98.0	85.0	87.2 102
400	101	114	111	112	113	117
500	115	132	125	127	129	133
700	141	163	149	154	155	160
800 900	151	175	159	165 173	165	169 177
1,000	165	190	175	179	180	184
2,000	196	220	220	213	213	226
10,000	306	352	373	391	326	417

表 C.26 中性子(男性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの唾液腺の吸収線量(単位:pGy·cm²)

表 C.27 中性子(男性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの皮膚の吸収線量(単位:pGy·cm²)

エネルギー (MeV)	AP (前方 - 後方)	PA (後方 - 前方)	LLAT (左側方)	RLAT (右側方)	ROT (回転)	ISO (等方)
$\begin{array}{c} 1.0E-9\\ 1.0E-8\\ 2.5E-8\\ 1.0E-7\\ 2.0E-7\\ 5.0E-7\\ 1.0E-6\\ 2.0E-6\\ 5.0E-6\\ \end{array}$	$\begin{array}{c} 1.62\\ 1.40\\ 1.38\\ 1.48\\ 1.55\\ 1.60\\ 1.62\\ 1.64\\ 1.65\end{array}$	$\begin{array}{c} 1.71 \\ 1.43 \\ 1.45 \\ 1.55 \\ 1.63 \\ 1.70 \\ 1.75 \\ 1.77 \\ 1.80 \end{array}$	$\begin{array}{c} 0.792\\ 0.655\\ 0.653\\ 0.667\\ 0.698\\ 0.726\\ 0.739\\ 0.739\\ 0.739\\ 0.743\end{array}$	$\begin{array}{c} 0.786\\ 0.653\\ 0.652\\ 0.667\\ 0.697\\ 0.725\\ 0.740\\ 0.743\\ 0.745\end{array}$	1.25 1.11 1.10 1.16 1.20 1.26 1.28 1.30 1.30	0.993 0.881 0.870 0.910 0.942 0.978 0.996 1.00 0.999
$\begin{array}{c} 1.0\mathrm{E}{-5}\\ 2.0\mathrm{E}{-5}\\ 5.0\mathrm{E}{-5}\\ 1.0\mathrm{E}{-4}\\ 2.0\mathrm{E}{-4}\\ 5.0\mathrm{E}{-4}\\ 0.001\\ 0.002\\ 0.005\\ 0.01\\ \end{array}$	$ \begin{array}{r} 1.63\\ 1.60\\ 1.52\\ 1.49\\ 1.46\\ 1.45\\ 1.47\\ 1.57\\ 1.78\\ \end{array} $	$ \begin{array}{r} 1.77 \\ 1.75 \\ 1.68 \\ 1.65 \\ 1.63 \\ 1.58 \\ 1.56 \\ 1.57 \\ 1.66 \\ 1.86 \\ \end{array} $	$\begin{array}{c} 0.733\\ 0.719\\ 0.689\\ 0.674\\ 0.663\\ 0.645\\ 0.642\\ 0.649\\ 0.708\\ 0.819\end{array}$	$\begin{array}{c} 0.732\\ 0.719\\ 0.689\\ 0.674\\ 0.663\\ 0.644\\ 0.642\\ 0.651\\ 0.710\\ 0.818\\ \end{array}$	$1.28 \\ 1.26 \\ 1.23 \\ 1.20 \\ 1.17 \\ 1.14 \\ 1.13 \\ 1.15 \\ 1.24 \\ 1.41$	$\begin{array}{c} 0.986\\ 0.971\\ 0.942\\ 0.919\\ 0.899\\ 0.878\\ 0.876\\ 0.876\\ 0.894\\ 0.978\\ 1.14\end{array}$
$\begin{array}{c} 0.02 \\ 0.03 \\ 0.05 \\ 0.07 \\ 0.1 \\ 0.15 \\ 0.2 \\ 0.3 \\ 0.5 \\ 0.7 \end{array}$	$\begin{array}{c} 2.19\\ 2.58\\ 3.30\\ 3.94\\ 4.78\\ 5.99\\ 7.02\\ 8.78\\ 11.6\\ 14.1 \end{array}$	$\begin{array}{c} 2.25\\ 2.62\\ 3.29\\ 3.90\\ 4.70\\ 5.84\\ 6.82\\ 8.50\\ 11.2\\ 13.6\end{array}$	$1.04 \\ 1.26 \\ 1.64 \\ 1.99 \\ 2.46 \\ 3.14 \\ 3.73 \\ 4.76 \\ 6.49 \\ 8.00$	$1.03 \\ 1.24 \\ 1.61 \\ 1.95 \\ 2.41 \\ 3.07 \\ 3.64 \\ 4.65 \\ 6.33 \\ 7.81$	$1.76 \\ 2.10 \\ 2.70 \\ 3.23 \\ 3.94 \\ 4.95 \\ 5.83 \\ 7.34 \\ 9.81 \\ 11.9$	$1.46 \\ 1.76 \\ 2.31 \\ 2.80 \\ 3.46 \\ 4.41 \\ 5.23 \\ 6.63 \\ 8.93 \\ 10.9$
$\begin{array}{c} 0.9 \\ 1.0 \\ 1.2 \\ 1.5 \\ 2.0 \\ 3.0 \\ 4.0 \\ 5.0 \\ 6.0 \\ 7.0 \\ 8.0 \end{array}$	16.2 17.2 18.9 21.2 24.5 30.3 35.1 39.0 42.3 45.3 45.3	$15.6 \\ 16.6 \\ 18.3 \\ 20.5 \\ 23.8 \\ 29.4 \\ 34.1 \\ 38.0 \\ 41.3 \\ 44.3 \\ 46.9 $	$\begin{array}{c} 9.39 \\ 10.0 \\ 11.3 \\ 12.9 \\ 15.4 \\ 19.8 \\ 23.6 \\ 26.8 \\ 29.7 \\ 32.3 \\ 34.6 \end{array}$	$\begin{array}{c} 9.17\\ 9.81\\ 11.0\\ 12.7\\ 15.1\\ 19.5\\ 23.2\\ 26.5\\ 29.3\\ 31.9\\ 34.2\end{array}$	$13.8 \\ 14.6 \\ 16.2 \\ 18.2 \\ 21.3 \\ 26.6 \\ 30.9 \\ 34.7 \\ 37.9 \\ 40.8 \\ 43.3 \\ 34.7 \\ 37.9 \\ 40.8 \\ 43.3 \\ 34.7 \\ 37.9 \\ 40.8 \\ 43.3 \\ $	$12.6 \\ 13.4 \\ 14.8 \\ 16.8 \\ 19.6 \\ 24.5 \\ 28.5 \\ 32.0 \\ 35.0 \\ 37.7 \\ 40.1 \\ 1000000000000000000000000000000000$
9.0 10.0 12.0 14.0 15.0 16.0 18.0 20.0 21.0 30.0	$\begin{array}{c} 40.0\\ 50.5\\ 52.7\\ 56.6\\ 59.4\\ 60.5\\ 61.3\\ 62.5\\ 63.2\\ 63.4\\ 63.9\end{array}$	$\begin{array}{c} 40.9\\ 49.4\\ 51.6\\ 55.4\\ 58.1\\ 59.2\\ 60.0\\ 61.2\\ 61.8\\ 62.1\\ 62.6\end{array}$	36.7 38.7 42.2 45.0 46.1 47.2 48.9 50.3 50.9 54.4	36.3 38.3 41.8 44.6 45.7 46.8 48.5 49.9 50.5 54.1	$\begin{array}{c} 45.3\\ 45.7\\ 47.7\\ 51.1\\ 53.5\\ 54.4\\ 55.1\\ 56.1\\ 56.6\\ 56.8\\ 56.7\end{array}$	$\begin{array}{c} 40.1\\ 42.3\\ 44.3\\ 47.6\\ 50.0\\ 51.0\\ 51.7\\ 52.8\\ 53.5\\ 53.7\\ 54.4\end{array}$
50.0 75.0 100 130 150 180 200 300 400 500	$\begin{array}{c} 63.4\\ 63.3\\ 62.8\\ 62.8\\ 63.4\\ 64.9\\ 66.3\\ 75.6\\ 87.3\\ 99.6\end{array}$	$\begin{array}{c} 62.8\\ 63.2\\ 62.9\\ 62.6\\ 63.0\\ 64.1\\ 65.3\\ 73.7\\ 85.0\\ 97.0 \end{array}$	$58.3 \\ 61.2 \\ 62.8 \\ 64.3 \\ 65.6 \\ 68.1 \\ 69.9 \\ 80.8 \\ 93.4 \\ 106$	58.1 61.0 62.7 64.3 65.6 68.1 69.9 80.8 93.5 106	55.6 56.3 58.3 61.4 63.7 67.0 69.3 81.0 92.8 104	$54.5 \\ 55.9 \\ 58.5 \\ 62.1 \\ 64.5 \\ 68.3 \\ 70.8 \\ 83.5 \\ 96.0 \\ 108 \\$
$\begin{array}{c} 600 \\ 700 \\ 800 \\ 900 \\ 1,000 \\ 2,000 \\ 5,000 \\ 10,000 \end{array}$	112 122 131 138 144 176 218 291	108 118 126 132 137 164 209 281	119 129 138 146 152 189 265 360	119 130 139 146 152 191 264 352	115 125 132 139 145 181 235 297	119 129 138 145 152 193 262 346

エネルギー	AP	PA	LLAT	RLAT	ROT	ISO
(MeV)	(前方 - 後方)	(後方 - 前方)	(左側方)	(右側方)	(回転)	(等方)
1.0E - 9 1.0E - 8	$1.18 \\ 1.42$	0.551 0.631	$0.560 \\ 0.666$	$0.166 \\ 0.172$	$0.607 \\ 0.740$	$0.452 \\ 0.549$
2.5E - 8	1.60	0.726	0.748	0.191	0.834	0.632
1.0E-7 2.0E-7	2.16	0.971	1.01	0.244	1.13	0.834
5.0E - 7	2.87	1.31	1.39	0.331	1.50	1.09
1.0E-6	3.10	1.43	1.51	0.357	1.63	1.21
5.0E-6	3.52	1.62	1.03	0.374	1.75	1.30
1.0E - 5	3.58	1.67	1.79	0.412	1.90	1.41
2.0E-5	3.59	1.69	1.80	0.421	1.92	1.42
1.0E-3 1.0E-4	3.67	1.73	1.81	0.423	1.92	1.44
2.0E-4	3.65	1.74	1.83	0.423	1.96	1.47
0.001	3.64	1.76	1.79	0.424	1.95	1.40
0.002	3.62	1.75	1.76	0.424	1.95	1.44
0.005	3.62	1.76	1.78	0.430	1.96	1.44
0.02	3.66	1.82	1.81	0.439	1.99	1.46
0.03	3.71	1.86	1.84	0.437	2.02	1.47
0.07	3.95	1.97	1.98	0.463	2.12	1.56
0.1	4.15	2.04	2.08	0.492	2.21	1.64
0.13	4.92	2.25	2.50	0.557	2.59	1.92
0.3	5.80	2.46	3.11	0.612	3.02	2.21
0.5	9.53	3.45	5.73	0.729	4.84	3.53
0.9	11.4	4.05	7.13	1.06	5.81	4.26
1.0 1.2	12.3 14.2	4.39	7.86	1.17	6.32 7.38	$4.65 \\ 5.46$
1.5	17.0	6.43	11.7	1.94	9.03	6.73
$2.0 \\ 3.0$	21.3 28.8	8.76	15.6 22.4	$2.96 \\ 5.46$	11.8	8.91 13.2
4.0	34.9	18.2	28.1	8.25	21.6	17.1
5.0	39.9 44.1	22.5 26.4	32.9 37.0	11.1	25.8 29.5	20.8 24.0
7.0	47.7	30.0	40.7	16.6	32.9	27.0
8.0	50.9 53.7	33.1	43.9	19.1	35.9	29.6
10.0	56.3	38.7	49.5	23.5	41.0	34.2
12.0	60.6 64.0	43.4	54.1 57.9	27.5	45.4	38.0
15.0	65.4	49.2	59.5	32.7	50.6	42.7
16.0	66.6 68.7	50.9	61.0	34.3	52.1	44.1
20.0	70.3	56.3	65.6	40.2	56.9	48.6
21.0	71.0 75.6	57.4	66.5 72.2	41.5	57.9 64.6	49.5 56.4
50.0	80.8	75.2	78.9	64.7	73.3	66.3
75.0	85.1	84.6	85.9	76.6	81.3	75.4
130	88.3 91.3	93.0 102	92.1 97.8	80.7 97.7	88.4 96.3	83.3 91.8
150	93.1	108	101	104	101	97.0
180 200	95.8 97.7	116	104	114	108	104 109
300	110	145	119	146	133	131
400 500	125 142	108	136	171 194	153 173	152 172
600	159	212	173	216	191	191
700 800	174	230	189 203	235	207	208 223
900	197	257	214	263	233	236
1,000	206	268	223	274	244	247 325
5,000	305	446	355	484	410	450
10 000	394	559	459	617	529	601

表 C.28 中性子(男性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの胃壁の吸収線量(単位:pGy·cm²)

表 C.29	中性子(男性)	いろいろなジオメトリーで入射する	単一エネルギー粒子に対するフルエンス
	あたりの甲状腺の	⊃吸収線量(単位:pGy·cm²)	

エネルギー	AP (前古- 谷古)	PA (後古一前古)	LLAT (左側左)	RLAT (左側士)	ROT (回転)	ISO (笙士)
1.0E-9	(則万一夜万)	(夜月一前月)	0.517	0.495	(回転) 0.878	0.677
1.0E-8 2.5E-8	1.98 2.20	0.661 0.723	0.568 0.640	0.557 0.612	0.985	$0.749 \\ 0.849$
1.0E-7 2.0E-7	2.84 3.21	0.940 1.08	0.836 0.945	0.805 0.923	1.34 1.51	1.07 1.19
5.0E - 7 1.0E - 6	3.62 3.82	1.26	1.08	1.08	$1.73 \\ 1.86$	1.35
2.0E - 6 5.0E - 6	3.94	1.56	1.19	1.17	1.96	1.46
1.0E - 5	4.00	1.65	1.25	1.15	2.00	1.55
2.0E-5 5.0E-5	3.98 3.85	1.65 1.67	$1.24 \\ 1.21$	1.20 1.23	$2.12 \\ 2.08$	$1.56 \\ 1.53$
1.0E-4 2.0E-4	3.73	1.69	1.20	1.22	2.05	1.50
5.0E - 4	3.59	1.74	1.22	1.16	1.95	1.43
0.002	3.43	1.74	1.16	1.14	1.87	1.42
0.005 0.01	3.39 3.42	1.71 1.73	1.10 1.09	1.11 1.10	1.85 1.87	$1.40 \\ 1.41$
0.02	3.52	1.75	1.13	1.13	1.95	1.45
0.05	4.14	1.83	1.10	1.24	2.18	1.50
0.07	4.65 5.43	1.88 1.95	1.30	1.31 1.45	2.37 2.68	1.72 1.91
$ \begin{array}{c} 0.15 \\ 0.2 \end{array} $	6.73 8.01	2.05 2.13	1.61 1.83	$1.74 \\ 2.05$	$3.21 \\ 3.74$	2.22 2.55
$ \begin{array}{c} 0.3 \\ 0.5 \end{array} $	$10.5 \\ 14.9$	$2.29 \\ 2.76$	2.29 3.26	2.68 3.93	$4.77 \\ 6.69$	$3.18 \\ 4.42$
0.7	18.7	3.38	4.22	5.09	8.47 10.1	5.66
1.0	23.4	4.57	5.64	6.77	10.1	7.50
$1.2 \\ 1.5$	26.1 29.7	5.51 7.09	6.59 8.01	7.90 9.59	12.5 14.7	8.69 10.4
$2.0 \\ 3.0$	$34.7 \\ 42.4$	9.91 15.5	$ 10.3 \\ 14.6 $	$ 12.3 \\ 17.1 $	18.2 24.2	13.2 18.1
$4.0 \\ 5.0$	48.3 53.0	20.6 25.2	18.4 21.8	21.2 24.8	29.2 33.6	22.3 26.1
6.0	56.8 60.1	29.2	24.9	28.0	37.3	29.4
8.0	63.0	35.9	30.1	33.4	43.4	35.0
9.0 10.0	65.7 68.0	38.8 41.4	32.4 34.4	35.7 37.8	45.9 48.1	37.4 39.7
$\begin{array}{c} 12.0 \\ 14.0 \end{array}$	71.9 74.8	45.9 49.7	38.2 41.4	41.6 44.8	$51.9 \\ 54.8$	$43.6 \\ 47.0$
15.0 16.0	76.0 77.1	51.4 52.9	42.9 44.3	46.2 47.6	$\frac{56.1}{57.2}$	48.4 49.8
18.0	78.8	55.7	46.8	49.9	59.0	52.2 54.2
20.0	80.6	59.1 66.6	50.1 57.0	52.9	61.2 65.5	55.2
50.0	82.4	75.8	69.0	68.9	70.9	69.3
75.0 100	$78.3 \\ 74.5$	83.0 88.8	77.7 83.5	76.0 80.7	76.0 80.5	76.0 81.3
130 150	72.0 71.5	95.3 99.4	88.9 92.0	85.1 87.7	85.7 89.2	86.8 90.2
180	72.0	105	96.5	91.6	94.4	95.2
300	80.9	105	114	111	115	115
400 500	92.5 105	147 165	128 142	130	130	132 147
600 700	118 129	182 197	155 167	168 185	156 167	162 176
800	138 146	209	177	197 206	177	188
1,000	152	228	195	213	193	208
5,000	238	379 457	346 448	317 441	319 401	374 523

エネルギー	AP (前古- 裕古)	PA (後去-前去)	LLAT (左側方)	RLAT (左側古)	ROT (回転)	ISO (笙士)
1.0E-9	1.21	0.655	0.226	0.205	0.613	0.453
1.0E - 8 2 5E - 8	1.47	$0.784 \\ 0.926$	$0.258 \\ 0.276$	0.223 0.245	0.752	$0.532 \\ 0.602$
1.0E - 7	2.27	1.24	0.352	0.317	1.14	0.808
2.0E-7 5.0E-7	2.63	1.40	0.407	0.365	1.27 1.46	0.938
1.0E - 6	3.38	1.76	0.515	0.460	1.59	1.18
5.0E - 6	3.84	2.02	0.579	0.519	1.83	1.32
1.0E-5	3.92	2.06	0.593	0.534	1.88	1.37
5.0E - 5	3.93	2.11	0.616	0.552	1.90	1.41
1.0E-4 2.0E-4	3.93	2.22 2.20	0.612 0.615	0.554 0.556	1.93 1.96	1.43
5.0E - 4	3.94	2.20	0.627	0.557	1.95	1.41
0.002	3.92	2.22	0.628	0.550	1.93	1.42
0.005 0.01	3.89 3.91	2.27 2.30	0.619 0.615	0.561 0.576	1.98 2.02	1.40
0.02	3.95	2.32	0.618	0.576	2.04	1.44
$0.03 \\ 0.05$	4.01 4.15	2.35 2.43	0.619 0.636	0.580 0.597	$2.05 \\ 2.07$	1.46 1.51
0.07	4.29	2.51	0.655	0.612	2.13	1.55
0.15	4.92	2.75	0.725	0.664	2.38	1.73
0.2 0.3	5.39 6.40	2.87 3.13	0.772 0.866	0.700	2.56 2.93	$1.85 \\ 2.10$
$0.5 \\ 0.7$	8.50 10.5	3.72 4.38	1.07	0.932	3.72 4.55	2.65
0.9	12.5	5.14	1.60	1.36	5.44	3.91
1.0 1.2	13.5 15.6	5.56 6.49	1.77 2.18	1.50	5.92 6.92	4.26 4.98
1.5	18.7	8.02	2.91	2.47	8.52	6.12
3.0	31.2	16.3	7.63	6.74	16.4	12.0
$4.0 \\ 5.0$	37.5 42.6	$21.5 \\ 26.2$	11.1 14.5	9.98 13.2	21.2 25.5	15.7 19.2
6.0	46.9	30.4	17.7	16.4	29.3	22.3
8.0	53.9	37.6	23.5	21.9	35.7	27.8
9.0	56.9 59.6	40.7	25.9 28.2	24.4	38.5	30.2
12.0	64.2	48.4	32.4	30.8	45.5	36.3
14.0 15.0	67.7 69.2	52.5 54.3	36.1 37.8	34.5 36.2	49.2 50.9	39.6 41.1
16.0 18.0	70.5 72.6	55.9 58.8	39.4 42.4	37.8 40.8	52.4 55.0	42.5 45.1
20.0	74.3	61.2	45.1	43.5	57.3	47.4
21.0 30.0	75.0	69.3	46.4 55.4	44.8 53.6	58.3 65.1	48.5 56.4
50.0	83.4	78.0	67.3	65.6	74.0	68.3
100	88.9	94.4	87.7	86.8	90.0	88.6
130 150	90.7 92.0	103 108	98.2 105	97.9 105	98.5 104	98.5 105
180 200	94.2	114	113	114	111	113
300	108	139	143	143	135	144
400 500	125 143	161 183	166 189	166 188	157 179	165 184
600	162	204	209	210	200	202
800	179 192	236	227 241	228 243	218 233	218 232
900 1.000	203 212	248 258	253 263	256 266	245 256	244 256
2,000	260	317	330 471	335 472	322	338
10,000	414	525	612	614	525	652

表 C.30 中性子(男性) いろいろなジオメトリーで入射する単一エネルギー粒子に対するフルエンス あたりの膀胱壁 (UB-wall)の吸収線量(単位:pGy·cm²)

付属書 D 骨格のフルエンスから線量への応答関数:光子

(D1) 放射線リスクを有し、それゆえ組織加重係数 wT が割り当てられている骨格組織は、 ICRP 標準コンピュータファントムにおいて幾何学的に表すことができない。これらの組織へ のエネルギー沈着は、近傍にある異なる密度と元素組成をもつ組織によって影響を受ける。こ のエネルギー沈着は、光子輸送のモンテカルロ計算時に、骨格領域(海綿質または髄腔)ごと の光子フルエンスの計算値を、光子フルエンスあたりの標的組織の吸収線量を表す関数によっ てスケーリングすることで導出できる(Eckerman, 1985; Eckerman ら, 2008; Johnson ら, 2011)。応答関数 R と呼ばれるこれらの関数は、様々な骨格領域の骨の幾何学的形状の微細構 造モデルと、それらの幾何学的形状による二次電離放射線の輸送モデル(Hough ら, 2011) を使って導出される。この付属書では、骨格内での光子の相互作用についての応答関数の値を 提示するが、中性子照射による骨格線量を評価するために同様の関数を導出することができる (付属書 E 参照)。

D.1 骨部位別の光子骨格線量評価のための応答関数

(D2) 骨部位 x においてエネルギー E の光子によってもたらされる骨部位別の骨格組織の 吸収線量を評価するための応答関数 R は,以下のように与えられる。

$$R(\mathbf{r}_{\mathrm{T}} \leftarrow \mathbf{r}_{\mathrm{S}}, \mathbf{x}, E) = \frac{D(\mathbf{r}_{\mathrm{T}}, \mathbf{x})}{\varPhi(E, \mathbf{r}_{\mathrm{S}}, \mathbf{x})}$$
(D.1)

$$=\sum_{r} \frac{m(r,x)}{m(r_{\mathrm{T}},x)} \sum_{i} \int_{0}^{\infty} \phi(r_{\mathrm{T}} \leftarrow r, T_{i}, x) (\mu_{i}/\rho)_{r,E} T_{i} n_{r}(T_{i}, E) \mathrm{d}T_{i}$$
(D.2)

ここで、xはファントム内の様々な骨部位のインデックス(大腿骨上部、頭蓋、その他;長骨 については、海綿質領域と髄腔領域は異なる骨部位と見なす)、 $r_{\rm T}$ は線量評価における標的組 織のインデックス(活性骨髄または骨内膜)、 $r_{\rm S}$ は光子フルエンスが記録される骨部位xの線 源組織のインデックス(海綿質または骨髄髄質)、rは線源組織 $r_{\rm S}$ の構成組織のインデックス ($r_{\rm S}$ =海綿質の場合には、rは骨梁骨、活性骨髄または不活性骨髄であり、 $r_{\rm S}$ =骨髄髄質の場合 には、rは成人における不活性骨髄である)、Eは骨部位xの骨格組織 $r_{\rm S}$ を通過し、その中で 相互作用する可能性のある光子のエネルギー、m(r,x)は骨部位xの構成組織rの質量、 $m(r_{\rm T}, x)$ は骨部位xの標的組織 $r_{\rm T}$ の質量、iは考慮している光子の相互作用の種類を示すイ 176 付属書 D 骨格のフルエンスから線量への応答関数:光子

ンデックス(光電子,コンプトン,電子対生成または3電子生成), T_i は相互作用の種類iに よって構成組織rにおいて解放される二次電子のエネルギー, $\phi(r_T, \leftarrow r, T_i, x)$ は骨部位xの構成組織rにおいて解放される二次電子エネルギー T_i のうち,骨部位xの標的組織 r_T に付 与される割合, $(\mu_i/\rho)_{r,E}$ は構成組織rにおける光子相互作用の種類iに対する光子エネルギ ーEでの質量減衰係数,そして $n_r(T_i, E)$ d T_i は相互作用の種類iで,エネルギーEの光子に より構成組織rで解放される T_i と T_i +d T_i の間のエネルギーの二次電子の数である。

(D3) 本報告書では、式(D.2)を Johnson ら(2011)の論文に述べられている方法で評

図 D.1 ICRP 標準ファントムの個々の骨の海綿質領域内で記録された光子フルエンス あたりの骨部位別の活性骨髄吸収線量(Gy・m²)。腰椎の活性骨髄に対する ORNL-TM 8381 均一骨格モデルを比較のために示す。

図 D.2 ICRP 標準ファントムの個々の骨の海綿質領域内で記録された光子フルエンス あたりの骨部位別の骨内膜吸収線量(Gy・m²)。腰椎の骨内膜に対する ORNL-TM 8381均一骨格モデルを比較のために示す。

図 D.3 ICRP 標準ファントムの個々の長骨の髄腔内で記録された光子フルエンスあたり の骨部位別の骨内膜吸収線量(Gy・m²)

価した。電子の吸収割合のデータは,40歳の男性の遺体の骨格から得た32の骨部位のマイク ロコンピュータ断層撮影画像を使った対画像(paired-image)放射線輸送計算(Hough ら, 2011)から得た。荷電粒子平衡は,通常,200 keV を上回る光子エネルギーにおいて,骨部位 全体で成り立つ。そのため,本報告書では,このエネルギーより上での線量応答関数の値は, 対応する海綿質のカーマ係数を用いている。式(D.2)から得られた骨部位別の線量応答関数 を表 D.1 に表形式で示し,図D.1~D.3 に同じ関数を図示する。

(D4) したがって、骨部位 x における組織 r_{T} の骨部位別吸収線量 $D(r_{T}, x)$ は、骨部位別 のエネルギー依存光子フルエンス $\phi(E, r_{S}, x)$ と骨部位別のエネルギー依存線量応答関数 $R(r_{T} \leftarrow r_{S}, x, E)$ の積の積分として決定される。

$$D(\mathbf{r}_{\mathrm{T}}, \mathbf{x}) = \int_{E} \boldsymbol{\Phi}(E, \mathbf{r}_{\mathrm{S}}, \mathbf{x}) R(\mathbf{r}_{\mathrm{T}} \leftarrow \mathbf{r}_{\mathrm{S}}, \mathbf{x}, E) \,\mathrm{d}E \tag{D.3}$$

(D5) 光子フルエンスのいくつかの評価法(estimator)を,光子輸送のモンテカルロシミ ュレーションの中で定式化できる。着目するフルエンスは,ボイドではない体積内のものであ るため,「衝突密度評価法」を,以下のように使用できる。

$$\Phi(E, r_{\rm S}, x) = \frac{N(E, r_{\rm S}, x)}{\mu(E, r_{\rm S}, x) V(r_{\rm S}, x)}$$
(D.4a)

ここで、 $V(r_{s}, x)$ はフルエンスを計算しようとしている骨部位 x内の線源組織 r_{s} の体積, $N(E, r_{s}, x)$ はこの体積内で起こる光子相互作用の数,そして $\mu(E, r_{s}, x)$ は光子エネルギー Eにおける当該組織媒質の線減衰係数である。同様に、フルエンスは、以下のように「飛跡 長評価法」に基づいて計算できる。 178 付属書 D 骨格のフルエンスから線量への応答関数:光子

$$\Phi(E, \mathbf{r}_{\mathrm{S}}, \mathbf{x}) = \frac{L(E, \mathbf{r}_{\mathrm{S}}, \mathbf{x})}{V(\mathbf{r}_{\mathrm{S}}, \mathbf{x})} \tag{D.4b}$$

ここで, *L*(*E*, *r*_s, *x*) は, 骨部位 *x* 内の線源組織 *r*_s におけるエネルギー *E* の光子の総飛跡長である。

D.2 骨部位別の光子骨格線量評価のスケーリングファクター

(D6) 線量応答関数法に代わる方法となるのは、エネルギー依存スケーリングファクター を海綿質カーマに適用することである(Kramer, 1979; Zankl ら, 2002; Lee ら, 2006)。この アプローチでは、活性骨髄と骨内膜の吸収線量は、3つのファクターによって決定される。

$$D(AM, x) = \int_{E} K(SP, x, E) \left[\frac{\mu_{en}}{\rho}(E) \right]_{SP}^{AM} S(AM, x, E) dE$$
(D.5)

および

$$D(\mathrm{TM}_{50}, x) = \int_{E} K(\mathrm{SP}/\mathrm{MM}, x, E) \left[\frac{\mu_{\mathrm{en}}}{\rho}(E)\right]_{\mathrm{SP}/\mathrm{MM}}^{\mathrm{TM}} S(\mathrm{TM}_{50}, x, E) \,\mathrm{d}E \tag{D.6}$$

ここで, K(SP/MM, x, E) はエネルギー E の光子による骨部位 x 内の海綿質 (SP) あるいは 骨髄髄質 (MM) のいずれかのカーマ, $\left[\frac{\mu_{en}}{\rho}(E)\right]_{SP}^{AM}$ は活性骨髄と海綿質との MEAC (mass energy absorption coefficient: 質量エネルギー吸収係数) 比, $\left[\frac{\mu_{en}}{\rho}(E)\right]_{SP/MM}^{TM}$ は骨髄全体と海 綿質または骨髄髄質との MEAC 比, S(AM, x, E) は活性骨髄の線量増加ファクター, そして $S(TM_{50}, x, E)$ は骨内膜の線量増加ファクターである。

(**D7**) 式 (D.5) と (D.6) は, カーマ係数 (フルエンスあたりのカーマ, 小文字の *k* で 表す) の比と線量応答関数を使って, 次のように表現しなおすこともできる。

$$D(AM, x) = \int_{E} K(SP, x, E) \left[\frac{k(AM, x, E)}{k(SP, x, E)} \right] \left[\frac{R(AM \leftarrow SP, x, E)}{k(AM, x, E)} \right] dE$$
(D.7)

および

$$D(\mathrm{TM}_{50}, x) = \int_{E} K(\mathrm{SP}/\mathrm{MM}, x, E) \left[\frac{k(\mathrm{TM}, x, E)}{k(\mathrm{SP}/\mathrm{MM}, x, E)} \right] \left[\frac{R(\mathrm{TM}_{50} \leftarrow \mathrm{SP}, x, E)}{k(\mathrm{TM}, x, E)} \right] \mathrm{d}E$$
(D.8)

(D8) この3ファクター法を適用する場合,最初に,エネルギー依存のカーマをコンピュ ータファントムの海綿質と骨髄髄質領域ごとに記録する。次に,これらの値を,対応する MEAC比(活性骨髄と海綿質,あるいは骨髄全体と海綿質または骨髄髄質)および線量増加 ファクター(活性骨髄,あるいは骨内膜標的)によって,さらにスケーリングする。MEAC 比は,使用するコンピュータファントムの骨格組織固有の元素組成と,光子放射線輸送時に使 用する断面積ライブラリ固有の MEAC 値に基づいて,各ユーザーによって整備されるべきで
ある。参考のために, ICRP の標準男性と標準女性コンピュータファントム(成人)における 比を,それぞれ表 D.2 と D.3 に示している。これらの比は, ICRP *Publication 110*(ICRP, 2009)の付属書 B に与えられている骨格の元素組成と,これらの元素組成に基づく MEAC 値 (米国国立標準技術研究所の物理データライブラリ(Hubbell と Seltzer, 2004)から引用)に 基づいている。Johnson ら(2011)の研究において示されているのと同様に,活性骨髄と骨内 膜の線量増加ファクターの値を,光子エネルギーの関数として骨部位ごとに表 D.4 に示して いる。髄腔の組成は,その骨内膜と同じであるため,MEAC 比と線量増加ファクターは,髄 腔に沿った骨内膜で1である。線量応答関数と同様,エネルギー E は,骨格組織を通過し, その中で相互作用する可能性がある光子のエネルギーであり,コンピュータファントムの外表 面に入射する光子のエネルギーではない。

D.3 骨格平均光子吸収線量

(D9) 骨部位別の骨格組織の吸収線量推定値は、インターベンショナル透視検査あるいは コンピュータ断層撮影のような、身体が部分的に照射される場合には重要になり得る。しか し、放射線防護と実効線量の計算の目的のためには、活性骨髄と骨内膜の骨格平均吸収線量が 必要となる。そこで、骨格平均吸収線量を骨部位別の吸収線量の質量加重平均として求める。

$$D_{\rm skel}(r_{\rm T}) = \sum_{x} \frac{m(r_{\rm T}, x)}{m(r_{\rm T})} D(r_{\rm T}, x)$$
(D.9)

ここで、 $m(r_T, x)$ は骨部位 x における標的組織 r_T の質量、 $m(r_T)$ は骨格全体を通じた標的組織 r_T の全質量、そして $D(r_T, x)$ は式 (D.3) [または式 (D.5) と (D.6)] によって与えら れる骨部位別吸収線量である。ICRP の標準男性と標準女性ファントム (成人) の骨格組織の 質量は、本報告書の 3.4 節にまとめられている。

D.4 海綿質の線量を用いた骨格標的組織線量の近似

(D10) 式 (D.5) と (D.6) に示すように, 骨梁海綿質のカーマは, 活性骨髄か骨内膜い ずれかの吸収線量のおおよその推定値にすぎない。2つの追加のスケーリングファクター, す なわち MEAC 比と線量増加ファクターを, 名目上適用しなければならない。成人の標準男性 について表 D.2 に示したように, MEAC 比は, 約 200 keV 未満では1より小さく, 30 keV で最小値に達し, その値は0.261 (下顎骨における骨髄全体の海綿質に対する比) から0.945 (仙骨における活性骨髄の海綿質に対する比) の範囲にある。このような海綿質吸収線量の減 少は, 完全にではないが, 部分的に式 (D.5) と式 (D.6) の第3項, すなわち線量増加ファ クターSを適用することによって補われる。活性骨髄のS値を表 D.4 に示す。この値は 50 keV で最大値になり、その最大値は近位上腕骨の1.00 から頭蓋の1.25 の範囲にある。骨内 膜の S 値も表 D.4 で示しているが、この値も 50 keV で最大値に達し、その範囲は仙骨の 1.68 から手と手首の2.33 である (Johnson ら、2011)。

(D11) 図 D.4 は, MEAC 比と線量増加ファクターの複合的影響を,海綿質カーマと活性 骨髄および骨内膜の吸収線量の相対差として示している。活性骨髄の場合,海綿質カーマから の相対差は,10 keV で 144%,25 keV で 172%(最大値),そして 100 keV で約 16% である。 骨内膜の場合,海綿質カーマとの相対差は,10 keV で 180%,25 keV で 135%,60 keV で 15% である。海綿質カーマは、80 keV から 200 keV までのエネルギー範囲にわたって,骨内 膜吸収線量を数パーセント低めに予測することが分かる。全体的に見て,骨格内で相互作用す る光子に対して,海綿質カーマは,活性骨髄と骨内膜の吸収線量を,それぞれ 200 keV 未満 と 80 keV 未満で高めに推定する。

図 D.4 標準成人の骨格における,海綿質の光子カーマ係数と活性骨髄 (AM)標的および骨内膜(TM50)標的の対応する線量応答関 数との間の相対差(%)

- D.5 参考文献
- Eckerman, K. F., 1985. Aspects of the dosimetry of radionuclides within the skeleton with particular emphasis on the active marrow. In: Schlafke-Stelson, A. T., Watson, E. E. (Eds.), Proceedings of the Fourth International Radiopharmaceutical Dosimetry Symposium. Oak Ridge Associated Universities, Oak Ridge, TN, pp. 514–534.
- Eckerman, K. F., Bolch, W. E., Zankl, et al., 2008. Response functions for computing absorbed dose to skeletal tissues for photon irradiation. *Radiat. Prot. Dosim.* **127**, 187–191.
- Hough, M., Johnson, P., Rajon, D., et al., 2011. An image-based skeletal dosimetry model for the ICRP reference adult male internal electron sources. *Phys. Med. Biol.* 56, 2309–2346.

- Hubbell, J., Seltzer, S., 2004. Tables of X-ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients. Version 1.4. National Institute of Standards and Technology, Gaithersburg, MD.
- ICRP, 2009. Adult reference computational phantoms. ICRP Publication 110. Ann. ICRP 39(2).
- Johnson, P. B., Bahadori, A. A., Eckerman, K. F., et al., 2011. Response functions for computing absorbed dose to skeletal tissues from photon irradiation—an update. *Phys. Med. Biol.* 56, 2347–2365.
- Kramer, R., 1979. Determination of Conversion Factors Between Tissue Dose and Relevant Radiation Quantities for External X-ray and Gamma-ray Radiation. GSF Report S-556. GSF—National Research Centre for Environment and Health, Neuherberg.
- Lee, C., Lee, C., Shah, A. P., et al., 2006. An assessment of bone marrow and bone endosteum dosimetry methods for photon sources. *Phys. Med. Biol.* **51**, 5391–5407.
- Zankl, M., Fill, U., Petoussi-Henss, N., et al., 2002. Organ dose conversion coefficients for external photon irradiation of male and female voxel models. *Phys. Med. Biol.* 47, 2367–2385.

9	
(TM50	
と骨内膜	
(AM)	
活性骨髓	
して表した,	
-の関数と1	
ネルギー	
光子日	
ふんご	y.cm ⁸
骨部位	位:G
Р 4 0	譚 ()
ファン	吸収緩
の標準	計部位別
110	500畳
cation	バスあた
Publi	しエン
ICRP	光子フ
表 D.1	

D:21 记号 : 髄腔	組織	TM50 (骨内膜)	4.38E-16	1.79E - 16	9.35E - 17	3.76E - 17	2.26E - 17	1.94E - 17	2.03E - 17	$2.69 \mathrm{E} - 17$	3.53E - 17	6.20E - 17	9.48E - 17	1.53E - 16	2.10E - 16	2.65E - 16	3.17E - 16	4.12E - 16	$4.99 \mathrm{E}{-16}$	6.86E - 16	8.41E - 16	1.10E - 15	1.33E - 15	1.54E - 15	1.74E - 15	2.13E - 15	2.52E - 15
藏 志 憲 派 派	標的	AM (活性骨髄)																I									I
D:20 记号 海綿質	組織	TM ₅₀ (骨内膜)	4.75E - 16	$2.19\mathrm{E}-16$	1.33E - 16	7.49E - 17	5.61E - 17	4.88E-17	4.58E - 17	4.60E - 17	4.99 E - 17	$6.89\mathrm{E}\!-\!17$	9.49E - 17	1.51E-16	$2.08\mathrm{E}-16$	2.61E - 16	3.12E - 16	$4.06\mathrm{E}-16$	4.92E - 16	$6.75\mathrm{E}\!-\!16$	$8.28\mathrm{E}-16$	$1.09 \mathrm{E} - 15$	1.32E - 15	$1.54\mathrm{E}-15$	1.75E - 15	2.16E - 15	2.58E - 15
臓器 I 前 療 減 :	標的	AM (活性骨髄)																I									
D:18 下半分 : 髄腔	組織	TM50 (骨内膜)	3.78E-16	1.54E - 16	8.06E - 17	3.25E - 17	1.95E - 17	1.67E-17	1.75E - 17	2.32E - 17	3.04E - 17	5.99E - 17	9.48E - 17	1.53E - 16	2.10E - 16	$2.65\mathrm{E}\!-\!16$	3.17E - 16	$4.12\mathrm{E}{-16}$	4.99 E - 16	6.86E - 16	8.41E - 16	1.10E - 15	1.33E - 15	1.54E - 15	1.74E - 15	2.13E - 15	2.52E - 15
臓器 I 上腕骨, 線源	標的	AM (活性骨髄)																									
D:17 下半分 海綿質	組織	TM ₅₀ (骨内膜)	4.71E - 16	2.17E - 16	1.33E - 16	7.44E - 17	5.62E - 17	4.88E-17	4.58E - 17	4.59E - 17	4.97E - 17	6.97E - 17	9.49E - 17	1.51E-16	2.07E - 16	2.60E - 16	3.11E - 16	4.05E - 16	4.90E - 16	6.73E - 16	8.26E - 16	1.09E - 15	1.32E - 15	1.54E - 15	1.75E - 15	2.17E - 15	2.60E - 15
臓器 I 上腕骨, 線源:	標的	AM (活性骨髄)																									
D:15 上半分 : 髄腔	組織	TM50 (骨内膜)	3.78E-16	1.54E - 16	8.06E - 17	3.25E - 17	1.95E - 17	1.67E-17	1.75E - 17	2.32E - 17	3.04E - 17	5.99E - 17	9.48E - 17	1.53E - 16	2.10E - 16	2.65E - 16	3.17E - 16	4.12E - 16	4.99 E - 16	6.86E - 16	8.41E - 16	1.10E - 15	1.33E - 15	1.54E - 15	1.74E - 15	2.13E - 15	2.52E - 15
臓器1 上腕骨, 線源:	標的	AM (活性骨髄)																I									
D:14 上半分 海綿質	組織	TM ₅₀ (骨内膜)	5.36E - 16	2.44E - 16	1.46E - 16	8.00E - 17	5.90E-17	5.04E - 17	4.73E - 17	4.75E - 17	5.17E - 17	7.05E - 17	9.48E - 17	1.52E - 16	2.08E - 16	2.61E - 16	3.12E - 16	4.07E - 16	4.92E - 16	6.76E - 16	8.30E - 16	1.09E - 15	1.32E - 15	1.54E - 15	1.75E - 15	2.16E - 15	2.58E-15
臓器 I 上腕骨, 線源:	標的	AM (活性骨髄)	6.13E-16	2.58E - 16	1.38E - 16	5.98E - 17	3.68E-17	2.92E - 17	2.76E - 17	3.18E-17	3.99E - 17	6.56E - 17	9.48E-17	1.52E - 16	2.08E - 16	2.61E - 16	3.12E-16	4.07E - 16	4.92E - 16	6.76E - 16	8.30E-16	1.09E - 15	1.32E - 15	1.54E - 15	1.75E - 15	2.16E - 15	2.58E-15
光 子	エネルギー (MeV)		0.010	0.015	0.020	0.030	0.040	0.050	0.060	0.080	0.10	0.15	0.20	0.30	0.40	0.50	09.0	0.80	1.0	1.5	2.0	3.0	4.0	5.0	6.0	8.0	10.0

D:32 下半分 海綿質	組織	TM ₅₀ (骨内膜)	5.30E - 16	2.44E - 16	1.48E - 16	8.23E - 17	6.15E - 17	5.35E - 17	5.06E - 17	5.11E - 17	5.56E - 17	7.26E - 17	9.49E - 17	1.51E - 16	2.07E - 16	2.61E - 16	3.11E - 16	4.05E - 16	4.90E - 16	6.73E - 16	8.27E - 16	1.09E - 15	1.32E - 15	1.54E - 15	1.75E - 15	2.17E - 15	2.59E - 15	()づく)
臓器1 大腿骨, 線源:	標的	AM (活性骨髄)																										
D:30 上半分 髄腔	組織	TM50 (骨内膜)	3.74E - 16	1.53E - 16	7.97E-17	3.21E - 17	1.93E - 17	1.66E - 17	1.73E - 17	2.29E - 17	3.11E - 17	6.13E - 17	9.48E-17	1.53E - 16	2.10E - 16	2.65E - 16	3.17E - 16	4.12E - 16	4.99E - 16	6.86E - 16	8.41E-16	1.10E - 15	1.33E - 15	1.54E - 15	1.74E - 15	2.13E - 15	2.52E - 15	
臓器I 大腿骨, 線源:	標的	AM (活性骨髄)																										
D:29 上半分 海綿質	組織	TM50 (骨内膜)	5.03E - 16	2.31E - 16	1.39E - 16	7.68E - 17	5.65E - 17	4.84E-17	4.51E - 17	4.51E - 17	4.87E - 17	6.80E - 17	9.48E - 17	1.51E - 16	2.07E - 16	$2.60\mathrm{E}\!-\!16$	3.11E - 16	4.04E - 16	$4.90\mathrm{E}{-16}$	6.72E - 16	8.25E-16	1.09E - 15	1.32E - 15	1.54E - 15	1.75E - 15	2.17E - 15	2.60E - 15	
臓器 I 大腿骨, 線源:	標的	AM (活性骨髄)	6.16E - 16	$2.60 \mathrm{E} - 16$	1.40E - 16	6.16E - 17	3.84E-17	3.07E - 17	$2.89 \mathrm{E} - 17$	3.28E - 17	4.08E - 17	6.63E - 17	9.48E - 17	1.51E - 16	2.07E - 16	$2.60 \mathrm{E} - 16$	3.11E - 16	4.04E - 16	4.90 E - 16	6.72E-16	8.25E - 16	1.09 E - 15	1.32E - 15	1.54E - 15	1.75E - 15	2.17E - 15	2.60E - 15	
D:27 盖 海綿質	組織	TM ₅₀ (骨内膜)	5.78E - 16	2.58E - 16	1.50E - 16	7.57E - 17	5.48E - 17	4.74E - 17	4.51E - 17	4.71E - 17	5.37E - 17	7.10E - 17	9.50E - 17	1.48E - 16	2.03E - 16	2.54E - 16	3.04E - 16	3.95E - 16	4.78E - 16	$6.56\mathrm{E}\!-\!16$	8.08E - 16	1.07E - 15	1.31E - 15	1.54E - 15	1.76E - 15	2.22E - 15	$2.69 \mathrm{E} - 15$	
藏器 I 意	標的	AM (活性骨髄)	6.21E - 16	2.67E - 16	1.48E - 16	6.75E - 17	4.44E - 17	3.63E - 17	3.40E - 17	3.66E - 17	4.39E - 17	6.66E - 17	9.50E - 17	1.48E - 16	2.03E - 16	2.54E - 16	3.04E - 16	3.95E - 16	4.78E - 16	$6.56\mathrm{E}\!-\!16$	8.08E - 16	1.07E - 15	1.31E - 15	1.54E - 15	1.76E - 15	2.22E - 15	$2.69 \mathrm{E} - 15$	
D:25 骨 海綿質	組織	TM50 (骨内膜)	5.81E - 16	2.62E - 16	1.55E-16	8.32E - 17	$6.03\mathrm{E}\!-\!17$	5.14E - 17	4.80E - 17	4.87E - 17	5.37E - 17	7.21E - 17	9.48E - 17	1.51E-16	2.07E-16	2.61E - 16	3.12E - 16	4.06E - 16	4.91E - 16	$6.74\mathrm{E}-16$	8.28E - 16	$1.09\mathrm{E}-15$	1.32E - 15	1.54E - 15	1.75E - 15	2.17E - 15	$2.59\mathrm{E}-15$	
臓器I 線 線派:	標的	AM (活性骨髄)	6.14E - 16	2.58E - 16	1.38E - 16	6.00E - 17	3.71E - 17	2.95E - 17	2.78E - 17	3.18E - 17	3.99E - 17	6.55E-17	9.48E - 17	1.51E-16	2.07E - 16	2.61E - 16	3.12E - 16	4.06E - 16	4.91E - 16	6.74E-16	8.28E - 16	1.09E - 15	1.32E - 15	1.54E - 15	1.75E - 15	2.17E - 15	2.59E - 15	
D:23 と手 海綿質	組織	TM50 (骨内膜)	5.15E - 16	2.39E - 16	1.47E - 16	8.36E-17	6.33E - 17	5.49E - 17	5.16E - 17	5.13E-17	5.48E-17	7.15E-17	9.49E - 17	1.51E - 16	2.07E - 16	2.60E - 16	3.11E - 16	4.05E - 16	4.90E - 16	6.73E - 16	8.26E-16	1.09E - 15	1.32E - 15	1.54E - 15	1.75E - 15	2.17E - 15	2.60E - 15	
臟器 1 湯 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二	標的	AM (活性骨髄)																										
光	エネルギー (MeV)		0.010	0.015	0.020	0.030	0.040	0.050	0.060	0.080	0.10	0.15	0.20	0.30	0.40	0.50	09.0	0.80	1.0	1.5	2.0	3.0	4.0	5.0	6.0	8.0	10.0	

4 資	21.3	ΓM ₅₀ 忭内膜)	5E - 16	7E-16	4E - 16	1E-17	7E-17	9E-17	0E - 17	7E-17	7E-17	2E-17	7E-17	$1\mathrm{E}-16$	7E-16	$0\mathrm{E}-16$	1E-16	5E-16	0E-16	2E-16	6E - 16	9E-15	2E-15	$4\mathrm{E}-15$	5E-15	7E-15	0E-15
日』: 電機	的組織		6 6.1	6 2.7	6 1.6	7 8.6	7 6.1	7 5.1	7 4.8	74.7	7 5.1	7 7.1	7 9.4	6 1.5	62.0	6 2.6	63.1	6 4.0	64.9	6 6.7.	68.2	5 1.0	5 1.3	5 1.5	5 1.7	5 2.1	5 2.6
讔 惑 毛 思	標	AM (活性骨髓	6.18E - 1	2.62E - 1	1.42E - 1	6.29E - 1	3.95E - 1	3.16E - 1	2.96E - 1	3.33E-1	4.12E - 1	6.76E - 1	9.47E - 1	1.51E - 1	2.07E - 1	2.60E - 1	3.11E-1	4.05E - 1	4.90E - 1	6.72E - 1	8.26E - 1	1.09E - 1	1.32E-1	1.54E - 1	1.75E - 1	2.17E - 1	2.60E - 1
):42 盤 睡綿質	且織	TM50 (骨内膜)	5.13E - 16	2.35E - 16	L. 39E-16	7.48E-17	5.45E - 17	1.63E - 17	4.30E-17	1.24E - 17	₫.58E-17	5.71E - 17).47E-17	1.51E - 16	2.07E - 16	2.61E - 16	3.12E-16	1.06E - 16	1.91E - 16	5.74E - 16	3.28E - 16	1.09E - 15	L.32E-15	1.54E - 15	1.75E - 15	2.16E - 15	2.59E - 15
臓器 ID 通 線源:泳	標的希	AM (活性骨髄)	6.16E - 165	2.60E - 16	1.40E - 16	6.15E - 17	3.84E-17	3.06E - 17	2.88E-17	3.26E-17	4.06E - 17	6.61E - 17	9.47E - 17	1.51E - 16	$2.07E - 16 _{2}$	2.61E - 16	3.12E - 16	4.06E - 16	4.91E - 16	6.74E - 16 e	8.28E-16	1.09E - 15	1.32E - 15	1.54E - 15	1.75E - 15	2.16E - 15	2.59E - 15
D:40 頁骨 海綿質	組織	TM ₅₀ (骨内膜)	5.56E - 16	2.54E-16	1.51E - 16	8.16E-17	5.94E - 17	5.06E - 17	4.70E - 17	4.68E - 17	5.10E - 17	7.17E - 17	9.47E - 17	1.52E-16	$2.08\mathrm{E}\!-\!16$	2.61E - 16	3.12E-16	4.07E - 16	4.92E - 16	6.76E - 16	8.30E - 16	1.09E - 15	1.32E - 15	1.54E - 15	1.75E-15	$2.16\mathrm{E}\!-\!15$	2.58E-15
藏器 I 海瑞 演 示 場	標的	AM (活性骨髄)	6.14E - 16	2.58E - 16	1.39E - 16	6.02E - 17	3.72E-17	2.96E - 17	2.79E - 17	3.19E - 17	4.00E - 17	$6.56\mathrm{E}\!-\!17$	9.47E - 17	1.52E-16	2.08E-16	2.61E - 16	3.12E - 16	4.07E - 16	4.92E - 16	6.76E - 16	8.30E - 16	1.09E - 15	1.32E - 15	1.54E - 15	1.75E-15	$2.16\mathrm{E}\!-\!15$	2.58E - 15
D:38 と足 海道	組織	TM50 (骨内膜)	5.11E - 16	2.35E - 16	1.42E - 16	7.90E - 17	5.96E - 17	5.17E-17	4.87E-17	4.90E - 17	5.32E - 17	7.12E-17	9.49E - 17	1.51E - 16	2.07E - 16	2.61E - 16	3.11E-16	4.05E - 16	4.90E - 16	6.73E - 16	8.27E - 16	1.09E - 15	1.32E - 15	1.54E - 15	1.75E - 15	2.17E - 15	2.59E - 15
臓器I 減 減 : 二	標的	AM (活性骨髄)																									
D:36 嘎骨 髓腔	組織	TM50 (骨内膜)	4.38E-16	1.79E - 16	9.35E - 17	3.76E - 17	2.25E - 17	1.94E - 17	2.03E - 17	2.69E - 17	3.53E - 17	6.30E - 17	9.48E-17	1.53E - 16	2.10E - 16	2.65E - 16	3.17E - 16	4.12E - 16	4.99E - 16	6.86E - 16	8.41E - 16	1.10E - 15	1.33E - 15	1.54E - 15	1.74E - 15	2.13E - 15	2.52E - 15
職 上 記 初 記 記 記 記	標的	AM (活性骨髄)																									
D:35 退骨 海綿質	組織	TM ₅₀ (骨内膜)	4.57E - 16	2.10E - 16	1.27E - 16	7.10E - 17	5.30E - 17	4.61E - 17	4.34E - 17	4.38E - 17	4.83E-17	6.84E - 17	9.49E - 17	1.51E - 16	2.08E - 16	2.61E - 16	3.12E - 16	4.06E - 16	4.92E - 16	6.75E - 16	8.29E - 16	1.09E - 15	1.32E - 15	1.54E - 15	1.75E-15	2.16E - 15	2.58E - 15
職 市 振 減 :	標的	AM (活性骨髄)																									
D:33 下半分 : 髄腔	組織	TM50 (骨内膜)	3.74E - 16	1.53E-16	7.97E-17	3.21E-17	1.93E-17	1.66E - 17	1.73E-17	2.29E - 17	3.11E-17	6.13E - 17	9.48E - 17	1.53E - 16	2.10E - 16	2.65E - 16	3.17E-16	4.12E - 16	4.99E - 16	6.86E - 16	8.41E-16	1.10E - 15	1.33E-15	1.54E - 15	1.74E - 15	2.13E - 15	2.52E - 15
藤器1 大腿骨, 線源:	標的	AM (活性骨髄)																									
光 子	エネルギー (MeV)		0.010	0.015	0.020	0.030	0.040	0.050	0.060	0.080	0.10	0.15	0.20	0.30	0.40	0.50	0.60	0.80	1.0	1.5	2.0	3.0	4.0	5.0	6.0	8.0	10.0

表 D.1 (つづき)

光 子	職器1 職品 意:	D:46 甲骨 海綿質	臟器 I 藥 類 驗沉:	D:48 椎 海綿質	藏 器 減 減:	D:50 椎 海綿質	> 職業I 業 機 減 : 二、	D:52 椎 海綿質	藏 線 第 二 二 二 二	D:54 骨 海綿質): 56 一 命綿質
エネルギー (MeV)	標的	組織	標的	組織	標的	組織	標的	組織	標的	組織	標的	組織
	AM (活性骨髄)	TM50 (骨内膜)	AM (活性骨髄)	TM50 (骨内膜)	AM (活性骨髄)	TM ₅₀ (骨内膜)	AM (活性骨髄)	TM ₅₀ (骨内膜)	AM (活性骨髄)	TM50 (骨内膜)	AM (活性骨髄)	TM ₅₀ (骨内膜)
0.010	6.16E - 16	5.74E - 16	6.19E - 16	5.96E - 16	6.16E - 16	6.04E - 16	6.17E - 16	5.65E - 16	6.17E - 16	5.44E - 16	6.16E - 16	5.73E-16
0.015	2.60E - 16	2.63E - 16	2.64E - 16	2.71E - 16	2.60E - 16	2.74E - 16	2.61E - 16	2.57E - 16	2.61E - 16	$2.47\mathrm{E}-16$	2.60E - 16	2.61E - 16
0.020	1.40E - 16	1.57E - 16	1.44E - 16	1.61E - 16	1.41E - 16	1.62E - 16	1.41E - 16	1.51E - 16	1.41E - 16	1.45E-16	1.41E - 16	1.54E - 16
0.030	6.16E - 17	8.61E-17	6.43E-17	8.56E - 17	6.18E - 17	8.57E-17	6.20E - 17	8.01E-17	6.22E - 17	7.69 E - 17	6.18E - 17	8.08E-17
0.040	3.85E-17	6.29E-17	4.09E - 17	6.15E - 17	3.86E-17	6.11E-17	3.88E-17	5.75E - 17	3.89E - 17	5.47E - 17	3.86E - 17	5.76E - 17
0.050	3.07E - 17	5.37E-17	3.28E-17	5.18E - 17	3.08E - 17	5.14E - 17	3.10E - 17	4.82E - 17	3.11E-17	4.61E - 17	3.08E - 17	4.84E - 17
0.060	2.89E - 17	4.99E - 17	3.08E-17	4.76E - 17	2.89E - 17	4.73E - 17	2.91E - 17	4.44E - 17	2.92E - 17	$4.26\mathrm{E}-17$	2.89E - 17	4.47E - 17
0.080	3.27E-17	4.94E - 17	3.42E-17	4.69 E - 17	3.27E - 17	4.68E - 17	3.28E-17	4.39E - 17	3.29E - 17	4.21E - 17	3.27E - 17	4.43E - 17
0.10	4.07E - 17	5.33E-17	4.18E-17	5.05E - 17	4.06E - 17	5.07E - 17	4.07E-17	4.75E - 17	4.08E - 17	4.57E - 17	4.06E - 17	4.79 E - 17
0.15	6.61E-17	7.24E-17	6.68E - 17	7.01E-17	6.60E - 17	7.07E-17	6.61E-17	6.64E - 17	6.62E - 17	6.73E - 17	6.59E - 17	6.70E - 17
0.20	9.48E - 17	9.48E-17	9.47E - 17	9.47E - 17	9.46E - 17	9.46E - 17	9.46E-17	9.46E - 17	9.47E - 17	9.47E - 17	9.46E - 17	9.46E - 17
0.30	1.51E - 16	1.51E - 16	1.50E - 16	1.50E - 16	1.51E - 16	1.51E - 16	1.51E - 16	1.51E - 16	1.51E - 16	1.51E - 16	1.51E - 16	1.51E - 16
0.40	2.06E - 16	2.06E - 16	2.06E - 16	2.06E - 16	2.07E - 16	2.07E - 16	2.07E - 16	2.07E - 16	2.07E - 16	2.07E-16	2.07E - 16	2.07E - 16
0.50	2.60E - 16	2.60E - 16	2.59E - 16	2.59E - 16	2.61E - 16	2.61E - 16	2.60E - 16	2.60E - 16	2.60E - 16	2.60E - 16	2.61E - 16	2.61E - 16
0.60	3.10E - 16	3.10E-16	3.09E - 16	3.09E - 16	3.11E-16	3.11E - 16	3.11E-16	3.11E-16	3.11E-16	3.11E-16	3.12E-16	3.12E-16
0.80	4.04E - 16	4.04E - 16	4.02E - 16	4.02E - 16	4.05E - 16	4.05E - 16	4.05E - 16	4.05E - 16	4.04E - 16	4.04E - 16	4.06E - 16	4.06E - 16
1.0	4.89E - 16	4.89E - 16	4.87E-16	4.87E - 16	4.91E - 16	4.91E - 16	4.91E - 16	4.91E - 16	4.90E - 16	$4.90\mathrm{E}-16$	4.92E - 16	4.92E - 16
1.5	6.71E - 16	6.71E-16	6.68E - 16	6.68E - 16	6.73E - 16	6.73E - 16	6.73E - 16	6.73E - 16	6.72E-16	6.72E-16	6.74E - 16	6.74E - 16
2.0	8.24E - 16	8.24E-16	8.21E-16	8.21E - 16	8.28E - 16	8.28E - 16	8.27E-16	8.27E - 16	8.26E - 16	8.26E - 16	8.29 E - 16	8.29 E - 16
3.0	1.09E - 15	1.09E - 15	1.08E - 15	1.08E - 15	1.09E - 15	1.09E - 15	1.09E - 15	1.09E - 15	1.09E - 15	1.09 E - 15	1.09E - 15	1.09E - 15
4.0	1.32E - 15	1.32E - 15	1.32E-15	1.32E - 15	1.32E - 15	1.32E - 15	1.32E - 15	1.32E - 15	1.32E - 15	1.32E - 15	1.32E - 15	1.32E - 15
5.0	1.54E - 15	1.54E - 15	1.54E - 15	1.54E - 15	1.54E - 15	1.54E - 15	1.54E - 15	1.54E - 15	1.54E - 15	1.54E - 15	1.54E - 15	1.54E - 15
6.0	1.75E - 15	1.75E - 15	1.76E - 15	1.76E - 15	1.75E - 15	1.75E - 15	1.75E - 15	1.75E - 15	1.75E - 15	1.75E - 15	1.75E - 15	1.75E - 15
8.0	2.17E - 15	2.17E-15	2.18E - 15	2.18E - 15	2.17E - 15	2.17E - 15	2.17E-15	2.17E - 15	2.17E - 15	2.17E - 15	2.16E - 15	2.16E - 15
10.0	2.61E - 15	2.61E - 15	2.62E - 15	2.62E - 15	2.59E - 15	2.59E - 15	2.60E - 15	2.60E - 15	2.60E - 15	$2.60\mathrm{E}-15$	$2.59\mathrm{E}{-15}$	2.59E - 15
* 6.16E	-16 /t 6.16>	<10 ⁻¹⁶ を示し	., 一は該当る	¢L (NA∶nc	ot applicabile)	を示す。						

ICRP Publication 116

ー吸収係数 /ァ)の比	D:21 范骨 髄腔	CH	TM/MM	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	D:32 下半公	1 十2	C H	TM/SP	0.368	0.339	0.324	0.322	0.359	0.433	0.533	0.729	0.856	0.972	1.000
量エネルギ- (MEAC, μ _{en}	職	MEA	AM/SP												 - 職場 II 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	く感見、濃濃に、濃濃に、	MEA	AM/SP	I										
しに対する質 、一吸収係数	D:20 范骨 海綿質	AC HC	TM/SP	0.368	0.339	0.324	0.322	0.359	0.433	0.533	0.729	0.856	0.972	1.000	D:30 占半公	上十つ 調腔	LC HC	TM/MM	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
海綿質 (SP) 質量エネルギ	I 議器 I 前唐 義河:	MEA	AM/SP												臓器 I 十四点	く隠し、線道:	MEA	AM/MM											
骨髄 (AM) の かに対する	D:18 下半分 : 簡腔	AC HC	TM/MM	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	D:29 L 半公	エナル海綿質	AC HC	TM/SP	0.399	0.371	0.356	0.353	0.385	0.453	0.546	0.732	0.856	0.971	0.999
した, 活性骨 M)のいずれ		ME/	AM/MM												聽調	人感言, 線源:	ME/	AM/SP	0.522	0.492	0.475	0.467	0.491	0.545	0.621	0.774	0.876	0.972	0.995
数として表 骨髄髄質 (MI	D:17 下半分 海綿質	AC HC	TM/SP	0.368	0.339	0.324	0.322	0.359	0.433	0.533	0.729	0.856	0.972	1.000	$\mathrm{D}:27$ \pm	间 海綿質	AC HC	TM/SP	0.370	0.343	0.329	0.326	0.355	0.419	0.509	0.699	0.834	0.966	0.999
cルギーの関 綿質またはf	職器 I 上版 一, 旅源:	MEA	AM/SP					I							 臓器 I	_运 線源:	ME^{A}	AM/SP	0.463	0.434	0.418	0.411	0.435	0.489	0.567	0.733	0.851	0.967	0.995
トに光子エネ F(TM)の海	D:15 上半分 : 髄腔	AC HC	TM/MM	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	D:25 連	」 海綿質	AC HC	TM/SP	0.370	0.342	0.328	0.325	0.355	0.420	0.511	0.703	0.837	0.967	0.999
の骨部位ご。 よび骨髄全体	■ 職器 I 上随骨, 線源	ME/	AM/MM												臓器 I	a 線源:	ME/	AM/SP	0.472	0.443	0.427	0.420	0.443	0.497	0.575	0.739	0.855	0.967	0.995
男性 (成人) /ø) の比, お,	D:14 上半分 海綿質	AC EE	TM/SP	0.318	0.293	0.280	0.277	0.304	0.364	0.452	0.649	0.800	0.958	0.998	D:23 \t ≠	C → 海綿質	AC H	TM/SP	0.368	0.339	0.324	0.322	0.359	0.433	0.533	0.729	0.856	0.972	1.000
CRP の標準 MEAC, μ _{en}		MEA	AM/SP	0.399	0.372	0.357	0.351	0.373	0.426	0.504	0.681	0.816	0.958	0.995			ME	AM/SP											
表 D.2	王 光 子 ル チ ル デー	(MeV)		0.010	0.015	0.020	0.030	0.040	0.050	0.060	0.080	0.10	0.15	0.20	1	光 ナ エネルギー	(MeV)		0.010	0.015	0.020	0.030	0.040	0.050	0.060	0.080	0.10	0.15	0.20

ID:44 骨 : 海綿質	AC EL	TM/SP	0.413	0.385	0.371	0.366	0.393	0.452	0.536	0.715	0.842	0.967	0.998	. 56	0C · 向	。 毎綿質	組織	TM/SP	0.798	0.781	0.771	0.769	0.790	0.828	0.871	0.936	0.969	0.995	1.000	
臓 線 器 武 源	ME	AM/SP	0.456	0.428	0.413	0.407	0.430	0.485	0.563	0.730	0.850	0.967	0.996	11 品類	息合 TI 昭 昭	線源::	標的	AM/SP	0.882	0.867	0.859	0.854	0.865	0.888	0.915	0.957	0.978	0.995	0.998	
D:42 盤 海綿質	AC HC	TM/SP	0.443	0.415	0.400	0.396	0.426	0.491	0.579	0.753	0.868	0.974	0.999			Ц.		4/SP	.869	.858	.852	.852	.867	.893	.921	.963	.982	.997	.000	
臓器] 線 線 源:	ME/	AM/SP	0.532	0.503	0.487	0.479	0.503	0.557	0.632	0.783	0.882	0.974	0.996	は 型・U1 品類	反信 ID・2	開 局 東源:海綿	標的組織	SP TN	30 0	53 0	18 0	45 0	49 0	58 0	38 0	34 0	92 0	0 26	99 1	
:40 冒 毛綿質	거	TM/SP	0.301	0.276	0.264	0.261	0.287	0.345	0.431	0.630	0.786	0.954	0.998			· · · · · · · · · · · · · · · · · · ·		AM/	0.96	0.95	0.94	0.94	0.9^{4}	0.95	0.96	36.0	0.99	0.99	0.99	-
臓器 ID 下顎(線源:液	MEAC	AM/SP	0.376	0.349	0.335	0.329	0.351	0.403	0.480	0.660	0.802	0.955	0.995	0 · E0	7C・CI	海綿質	1組織	TM/SP	0.513	0.485	0.470	0.465	0.493	0.553	0.634	0.790	0.889	0.978	0.999	-
5:38 4 元 幕續	포이	TM/SP	0.368	0.339	0.324	0.322	0.359	0.433	0.533	0.729	0.856	0.972	1.000	四型	() 	線源:	標的	AM/SP	0.567	0.538	0.523	0.516	0.540	0.594	0.667	0.808	0.897	0.978	0.997	
臟器 足前。 線源:沙	MEA	AM/SP												. 50	. oc .	綿質	巤	TM/SP	0.630	0.604	0.590	0.586	0.613	0.669	0.739	0.860	0.929	0.986	0.999	
D:36 見骨 : 髄腔	C H	TM/MM	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	職別 II	藏邙 IU 瑉 本	加。 線源:海	標的組	AM/SP	0.696	0.671	0.656	0.650	0.671	0.718	0.776	0.879	0.938	0.987	0.998	
I 指示	ME^A	AM/MM													~	Ţ		I/SP /	740	719	708	705	728	774	828	913	957	992	000	
5:35 骨 電綿質	ਸ਼	TM/SP	0.368	0.339	0.324	0.322	0.359	0.433	0.533	0.729	0.856	0.972	1.000	部 TD ・ 10	(茚 IID・48 图 新	」。 源:海綿了	標的組織	T TN	8	.0	.0 .0	0.0	.0 .0	0	0	.0 	.0 .0	0.0	.1.	
職時 上職 一場 一部 一部 一部	MEA(AM/SP												#	1	一		AM/S	0.81	0.79	0.78	0.78	0.79	0.83	0.87	0.93	0.96	0.99	0.99	e) を示す
: 33 下半分 髄腔	포	[M/MM]	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	21.0	レ・40 中卓	海綿質	組織	TM/SP	0.340	0.314	0.300	0.297	0.325	0.387	0.476	0.671	0.815	0.961	0.999	ot applicabil
藏器 ID 大腿骨, 線源:4	MEAC	AM/MM												工品型	顺后 I 同日	。 線源:	標的	AM/SP	0.425	0.397	0.382	0.375	0.398	0.452	0.530	0.703	0.831	0.962	0.995	L (NA : no
光子子	(MeV)		0.010	0.015	0.020	0.030	0.040	0.050	0.060	0.080	0.10	0.15	0.20		1 ;	光 ナ エネレギー	(MeV)	1	0.010	0.015	0.020	0.030	0.040	0.050	0.060	0.080	0.10	0.15	0.20	

付属書 D 骨格のフルエンスから線量への応答関数:光子 187

ICRP Publication 116

吸収係数 2比	:21 雪 創腔	권	TM/MM	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	: 32 7 # G	- 十 JJ 綿質	포	TM/SP	0.347	0.317	0.302	0.300	0.335	0.407	0.506	0.706	0.841	0.968	0.999
≣エネルギー AC, μ _{en} /ρ) 0	臓器 ID 前腕骨 線源:骨	MEAC	AM/SP												臓器 ID 十四点 -	人题目, 線源:海	MEAC	AM/SP											
に対する質量 収係数 (ME	0:20 公司 金綿質	C H	TM/SP	0.347	0.317	0.302	0.300	0.335	0.407	0.506	0.706	0.841	0.968	0.999): 30 1 半公	山十万 髄腔	C H	TM/MM	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
毎綿質 (SP) エネルギー図	職部 目 題 続 続 。 後	MEA	AM/SP												臓器 II 十四点	人殿间, 線源:	MEA	AM/MM											
- [題 (AM) の) - 対する質量:	D:18 下半分 調腔	CH	TM/MM	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	D:29 L 半公	上十万 海綿質	CH	TM/SP	0.611	0.581	0.565	0.561	0.594	0.659	0.736	0.863	0.932	0.987	0.999
った,活性骨 のいずれかに	上 朦朧: 終词:	MEA	AM/MM												臓器 I 十四点	人感"月, 線源:	MEA	AM/SP	0.788	0.760	0.743	0.733	0.748	0.785	0.832	0.910	0.953	0.988	0.996
数として表(骨髄 (MM) 0	D:17 下半分 海綿質	C H	TM/SP	0.347	0.317	0.302	0.300	0.335	0.407	0.506	0.706	0.841	0.968	0.999	D:27 素	甸 海綿質	C H	TM/SP	0.282	0.258	0.245	0.242	0.266	0.322	0.405	0.604	0.767	0.948	0.996
ルギーの関端質または	臓器I 上腕骨, 線源:	MEA	AM/SP												臓器 I ^画	。 線源:	MEA	AM/SP	0.352	0.326	0.311	0.305	0.326	0.375	0.451	0.633	0.782	0.948	0.993
トに光子エネ本(TM)の海	D:15 上半分 : 髄腔	C H	TM/MM	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	D:25 Ja	」 海綿質	CH	TM/SP	0.318	0.292	0.278	0.275	0.302	0.362	0.450	0.649	0.799	0.957	0.997
の骨部位ごと よび骨髄全(MEA	AM/MM												臓器 I 総	_到 線源:	MEA	AM/SP	0.406	0.377	0.362	0.354	0.376	0.429	0.506	0.682	0.817	0.957	0.994
女性(成人) ~)の比,お	D:14 上半分 海綿質	NC HL	TM/SP	0.325	0.298	0.285	0.281	0.309	0.370	0.458	0.656	0.804	0.958	0.997	D:23 ⊾ #	「十一」	AC HC	TM/SP	0.347	0.317	0.302	0.300	0.335	0.407	0.506	0.706	0.841	0.968	0.999
CRP の標準 MEAC, ^{μen}		MEA	AM/SP	0.414	0.385	0.369	0.362	0.384	0.436	0.514	0.689	0.821	0.959	0.994			MEA	AM/SP	Ι										
表 D.3 「	エ 光 エネルギー	(MeV)		0.010	0.015	0.020	0.030	0.040	0.050	0.060	0.080	0.10	0.15	0.20	1	光 ナ エネレギー	(MeV)		0.010	0.015	0.020	0.030	0.040	0.050	0.060	0.080	0.10	0.15	0.20

MeV) MEAC μ MEAC μ MEAC μ M MM/M TM/SP TM/SP M/M M	下腿骨 線源:髄腔	た自と、 線源:海	場 質	下顎- 線源:海	导 E綿質	線 一一 後演:	海 御 御 御 御 御	赢命 助 線源:	D:# 海 第 資
AM/MM TM/MM AM/SP TM/SP AM/MSP AM/NSP AM/SP AM/NSP AM/SP	MEAC H	MEAC	ૠ	MEAC	ਸ਼	MEA	C H	ME/	LC HC
010 $-$ 1.0 $ 0.347$ $-$ 015 $ 1.0$ $ 0.317$ $-$ 020 $ 1.0$ $ 0.317$ $-$ 030 $ 1.0$ $ 0.302$ $-$ 050 $ 1.0$ $ 0.302$ $-$ 060 $ 1.0$ $ 0.305$ $ 0.80$ $ 1.0$ $ 0.335$ $ 0.80$ $ 1.0$ $ 0.305$ $ 0.80$ $ 1.0$ $ 0.305$ $ 0.80$ $ 1.0$ $ 0.305$ $ 0.80$ $ 1.0$ $ 0.365$ $ 0.10$ $ 1.0$ $ 0.968$ $ 0.80$ $ 1.0$ $ 0.968$ $ 0.80$ $-$	MM TM/MM	AM/SP 7	LM/SP	AM/SP	TM/SP	AM/SP	TM/SP	AM/SP	TM/SP
015 1.0 0.317 020 1.0 0.302 030 1.0 0.302 050 1.0 0.305 060 1.0 0.305 080 1.0 0.305 010 1.0 0.305 010 1.0 0.305 020 1.0 0.305 15 1.0 0.365 15 1.0 0.366 15 1.0 0.366 15 1.0 0.366 15 1.0 0.366 - 15	- 1.0		0.347	0.409	0.328	0.556	0.463	0.620	0.561
020 1.0 0.302 030 1.0 0.302 040 1.0 0.302 050 1.0 0.305 060 1.0 0.407 080 1.0 0.506 080 1.0 0.506 15 1.0 0.641 15 1.0 0.963 16 0.964 0.964 16 0.964 0.474 0.427 010 0.508 0.406 0.474 0.427 020 0.456 0.377 0.457 0.411 030 0.474 0.388 0.474 0.427 040 0.528 0.474 0.433	- 1.0		0.317	0.380	0.301	0.524	0.433	0.591	0.532
030 $-$ 1.0 $-$ 0.335 $-$ 040 $ 1.0$ $ 0.335$ $-$ 050 $ 1.0$ $ 0.335$ $-$ 060 $ 1.0$ $ 0.356$ $-$ 080 $ 1.0$ $ 0.506$ $ 10$ $ 1.0$ $ 0.506$ $ 10$ $ 1.0$ $ 0.361$ $ 10$ $ 1.0$ $ 0.361$ $ 1.0$ $ 1.0$ $ 0.963$ $ 1.0$ $ 1.0$ $ 0.963$ $ 1.0$ $ 1.0$ $ 0.963$ $ 1.0$ $ 1.0$ $ 0.963$ $ 1.0$ $ 0.963$ 0.474 0.427 0.411 0.474 0.352	- 1.0		0.302	0.365	0.287	0.507	0.417	0.575	0.517
040 $-$ 1.0 $-$ 0.335 $-$ 050 $-$ 1.0 $-$ 0.407 $-$ 060 $-$ 1.0 $-$ 0.407 $-$ 080 $-$ 1.0 $-$ 0.506 $-$ 15 $-$ 1.0 $-$ 0.506 $-$ 15 $-$ 1.0 $-$ 0.506 $-$ 20 $-$ 1.0 $-$ 0.968 $ \mu \neq \mu \approx \pi \approx $	- 1.0		0.300	0.358	0.283	0.499	0.413	0.567	0.511
050 $-$ 1.0 $ 0.407$ $-$ 060 $ 1.0$ $ 0.506$ $-$ 080 $ 1.0$ $ 0.506$ $ 15$ $ 1.0$ $ 0.706$ $ 15$ $ 1.0$ $ 0.841$ $ 10$ $ 1.0$ $ 0.841$ $ 10$ $ 1.0$ $ 0.968$ $ 1.0$ $ 1.0$ $ 0.941$ $ 1.0$ $ 1.0$ $ 0.999$ $ 1.0$ $ 1.0$ $ 0.941$ $ 1.1.0$ $ 1.0$ $ 0.999$ $ 1.1.0$ $ 1.0$ 0.999 $ 1.1.0$ 0.930 0.416 0.438 0.427 0.115 0.478 0.474	- 1.0		0.335	0.380	0.310	0.522	0.443	0.590	0.539
060 $-$ 1.0 $-$ 0.506 $-$ 080 $-$ 1.0 $-$ 0.706 $-$ 15 $-$ 1.0 $-$ 0.506 $-$ 15 $-$ 1.0 $-$ 0.506 $-$ 20 $-$ 1.0 $-$ 0.968 $ \mu$ μ μ $-$ 0.999 $ \mu$ μ μ μ μ $ \mu$ μ <td< td=""><td>- 1.0</td><td> </td><td>0.407</td><td>0.432</td><td>0.371</td><td>0.576</td><td>0.507</td><td>0.642</td><td>0.598</td></td<>	- 1.0		0.407	0.432	0.371	0.576	0.507	0.642	0.598
080 $-$ 1.0 $-$ 0.706 $-$ 15 $-$ 1.0 $-$ 0.841 $-$ 20 $-$ 1.0 $-$ 0.841 $-$ 20 $-$ 1.0 $-$ 0.968 $-$ 20 $-$ 1.0 $-$ 0.999 $ \mu k$ μk μk μk $-$ 0.999 $ \mu k$ μk μk μk μk $-$ 0.999 $ \mu k$ μk μk μk μk $-$ 0.999 $ \mu k$ μk μk μk μk μk $ \mu k$ μk μk μk μk μk $ \mu k$ μk μk μk μk $ \mu k$ μk μk μk $ -$	- 1.0		0.506	0.510	0.458	0.649	0.594	0.710	0.676
10 $-$ 1.0 $-$ 0.841 $-$ 15 $-$ 1.0 $-$ 0.968 $-$ 20 $-$ 1.0 $-$ 0.968 $-$ 21 $ 0.999$ $ 0.968$ $ \mu \chi^2$ $\mu \chi^2$ 0.999 $ \mu \chi^2$ $\mu \chi^2$	- 1.0		0.706	0.685	0.654	0.795	0.765	0.837	0.819
15 $-$ 1.0 $-$ 0.968 $-$ 20 $ 1.0$ $ 0.968$ $ 7$ \overline{m} \overline{m} 0.999 $ \Gamma$ \overline{m} \overline{m} \overline{m} \overline{m} \overline{m} Γ \overline{m} \overline{m} \overline{m} \overline{m} \overline{m} \overline{m} \overline{m} Γ \overline{m} \overline	- 1.0		0.841	0.819	0.803	0.889	0.874	0.914	0.906
20 $-$ 1.0 $-$ 0.999 $-$ 千 顧器: ID: 46 顧器: ID: 48 10 48 10 48 10	- 1.0		0.968	0.958	0.957	0.975	0.975	0.981	0.981
平 職器 ID: 46 職器 ID: 48 動置 48 D_{-+} - 48 48 48 48 48 M	- 1.0		0.999	0.994	0.997	0.996	0.998	0.997	0.999
子 ルギー (eV) 順甲骨 線源:海綿質 頸 線源:海綿質 動 線源:海綿質 動 線源:海綿質 feV) 標的組織 標的組織 標的組織 70.0 feV) 一種的組織 標的組織 70.0 010 0.508 0.406 0.504 0.456 015 0.476 0.377 0.474 0.427 020 0.451 0.357 0.457 0.411 030 0.451 0.357 0.457 0.411 030 0.451 0.357 0.457 0.411 030 0.451 0.357 0.457 0.411 030 0.451 0.357 0.457 0.413 000 0.474 0.388 0.474 0.433 050 0.528 0.474 0.433 0.556 0.600 0.605 0.746 0.746 0.746 0.880 0.727 0.763 0.746 0.746 0.980 0.852 0.870 0.862 0.746	臓器 ID	: 50	臓器 II	0:52	9	義器 ID:54		臓器 ID	: 56
ルギー 線源:海綿質 線源:海綿質 feV) 標的組織 標的組織 feV) 標的組織 標的組織 AM/SP TM/SP $7M/SP$ $7M/SP$ 010 0.508 0.406 0.504 0.456 015 0.476 0.377 0.474 0.427 020 0.451 0.357 0.457 0.411 030 0.451 0.357 0.457 0.411 030 0.451 0.357 0.457 0.411 030 0.451 0.357 0.457 0.413 040 0.474 0.388 0.474 0.433 050 0.528 0.453 0.528 0.493 060 0.604 0.543 0.605 0.576 080 0.762 0.727 0.763 0.746 0 0.863 0.870 0.862 0.746	胸相	隹	腰	椎		仙骨		胸	efine
feV) 標的組織 標的組織 feV) 標的組織 標的組織 AM/SP TM/SP AM/SP TM/SP 010 0.508 0.406 0.504 0.456 015 0.476 0.377 0.474 0.427 020 0.451 0.357 0.457 0.411 030 0.451 0.357 0.457 0.411 030 0.451 0.357 0.457 0.411 030 0.474 0.388 0.474 0.433 040 0.474 0.388 0.474 0.433 050 0.528 0.473 0.528 0.493 060 0.604 0.543 0.605 0.576 080 0.762 0.727 0.763 0.746 0 0.868 0.852 0.746 0.862	線源:海	綿質	線源:	海綿質	· 「 「 「 「 「 「 「 「 「 「 」	3 源:海綿學	1	線源:海	綿質
AM/SP TM/SP TM/SP <th< td=""><td>標的組</td><td>織</td><td>標的</td><td>組織</td><td></td><td>標的組織</td><td></td><td>標的剎</td><td> 縦</td></th<>	標的組	織	標的	組織		標的組織		標的剎	縦
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	AM/SP	TM/SP	AM/SP	TM/SP	AM/	SP TN	I/SP /	AM/SP	TM/SP
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.649	0.587	0.441	0.399	0.80	0 0.	724	0.679	0.614
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.621	0.559	0.412	0.371	0.77	8	701	0.651	0.587
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.605	0.544	0.397	0.356	0.76	.0	688	0.636	0.572
040 0.474 0.388 0.474 0.433 050 0.528 0.453 0.528 0.493 060 0.604 0.543 0.528 0.493 080 0.762 0.727 0.763 0.746 10 0.868 0.852 0.870 0.862	0.597	0.538	0.390	0.351	0.75	9 0.	684	0.629	0.566
050 0.528 0.453 0.528 0.493 060 0.604 0.543 0.605 0.493 080 0.762 0.727 0.763 0.746 10 0.868 0.852 0.870 0.862	0.620	0.566	0.413	0.377	0.77	6 0.	708	0.650	0.594
060 0.604 0.543 0.605 0.576 080 0.762 0.727 0.763 0.746 10 0.868 0.852 0.870 0.862	0.670	0.624	0.467	0.435	0.81	1 0.	756	0.698	0.651
.080 0.762 0.727 0.763 0.746 .10 0.868 0.852 0.870 0.862	0.735	0.699	0.545	0.518	0.85	4 0.	813	0.759	0.723
10 0.868 0.852 0.870 0.862	0.853	0.834	0.715	0.700	0.92	A 0.	904	0.868	0.850
	0.923	0.915	0.839	0.832	0.96	.0	953	0.932	0.923
15 0.970 0.969 0.971 0.971	0.983	0.983	0.964	0.964	0.99	0.	166	0.985	0.985
20 0.995 0.998 0.996 0.998	0.997	0.999	0.995	0.997	0.99	8 1.	000	0.997	0.999

ICRP Publication 116

Ч С	臓器 ID:21 前腕骨	祿源: 龍腔 趰 64 24 34	悰 的 組 織	AM TM ⁵⁰ (活性骨髄) (骨内膜)	- 1.0	- 1.0	- 1.0	- 1.0	— 1.0	— 1.0	- 1.0	- 1.0	- 1.0	— 1.0	- 1.0	臟器 ID:32 大腿骨,下半分 %运、下%。	禄退;港桶 貨	標的組織	AM TM ⁵⁰ (活性骨髄) (骨内膜)	- 1.20	- 1.34	- 1.52	- 1.93	- 2.23	- 2.27	- 2.13	— 1.72	- 1.45	- 1.11	
増加ファクタ):20	● 希 頃 □ 森	出 術賞	TM ₅₀ (骨内膜)	1.09	1.20	1.37	1.75	2.03	2.07	1.93	1.55	1.30	1.05	1.00):30 上半分	観腔	且織	TM ₅₀ (骨内膜)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	-
M ^{so})の線量:	調 記 記 記 記 記 記 記 記 記 記 記 記 記 記 記 記 記 記	凝源: {	综的条	AM (活性骨髄)												臓器 II 大腿骨, 偽派,	一般课:	標的衤	AM (活性骨髄)											
と骨内膜(T	D:18 下半分	: 御腔	和戚	TM ₅₀ (骨内膜)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	D:29 上半分 法指示	海柿貨	組織	TM ₅₀ (骨内膜)	1.03	1.14	1.28	1.63	1.88	1.94	1.83	1.50	1.26	1.04	
骨髓 (AM)	上 該 (一 (一) (一)	機場	综氏	AM (活性骨髄)												臓器1 大腿骨,	一条法:	標的	AM (活性骨髄)	1.00	1.01	1.01	1.03	1.04	1.05	1.05	1.05	1.03	1.02	
した、活性骨	D:17 下半分	海綿質	組織	TM ₅₀ (骨内膜)	1.07	1.19	1.37	1.74	2.03	2.07	1.93	1.55	1.29	1.06	1.00	D:27 諧 光信郎	滞 補貨	組織	TM ₅₀ (骨内膜)	1.14	1.21	1.32	1.53	1.76	1.84	1.79	1.55	1.38	1.09	
数として表	職器 I 上腕骨,	凝源:	係乃	AM (活性骨髄)												臟器 1 調 。	一般课:	標的	AM (活性骨髄)	1.01	1.03	1.07	1.13	1.21	1.25	1.24	1.17	1.11	1.02	
トルギーの関	D:15 上半分	: 御腔 44 444	組織	TM50 (骨内膜)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	D:25 骨 光始盛	滞 柿貨	組織	TM50 (骨内膜)	1.16	1.26	1.39	1.72	1.96	2.02	1.92	1.61	1.39	1.10	
とに光子エイ		凝源	係乃	AM (活性骨髄)												臟器 1 意。 道	一般课:	標的	AM (活性骨髄)	1.00	1.00	1.00	1.00	1.01	1.01	1.01	1.02	1.01	1.01	
1 骨部位で	D:14 上半分	() () () () () () () () () () () () () (租職	TM50 (骨内膜)	1.10	1.21	1.36	1.70	1.97	2.02	1.92	1.58	1.34	1.08	1.00	D:23 と手 ざき	滞 柿貨	組織	TM ₅₀ (骨内膜)	1.17	1.31	1.51	1.96	2.29	2.33	2.17	1.73	1.43	1.09	
表 D.4	臓器 I 上腕骨,	凝源: 種品	德的	AM (活性骨髄)	1.00	1.00	1.00	1.00	1.00	1.00	1.01	1.01	1.01	1.01	1.00	臟器 [一 一 一 一	線場:	標的	AM (活性骨髄)											
	۲ ب	し ナ エネルギー	(MeV)		0.010	0.015	0.020	0.030	0.040	0.050	0.060	0.080	0.10	0.15	0.20	년 문		T = T = T = T (MeV)		0.010	0.015	0.020	0.030	0.040	0.050	0.060	0.080	0.10	0.15	

	■ 職器 □ 大腿骨、	D:33 下半分	■ 職器 I 下題	D:35 ^良 语	職器] 下]	D:36 退骨	- 臓器 I 原音	D:38 と足	臓器 II 下顎): 40 语	臓器 L 一一一一一	D:42 撤	臓器 I 肋	D:44 遭
光 子 子	線源:	髄腔	線源:	海綿質	線源	:髄腔	線源:	海綿質	線源:消		線源:	海綿質	線源:	海綿質
エネルキー (MeV)	標的	組織	標的	組織	標氏	ı組織	標的	組織	標的希	且織	標的	組織	標氏	組織
	AM (活性骨髄)	TM50 (骨内膜)	AM (活性骨髄)	TM50 (骨内膜)	AM (活性骨髄)	TM50 (骨内膜)	AM (活性骨髄)	TM50 (骨内膜)	AM (活性骨髄)	TM50 (骨内膜)	AM (活性骨髄)	TM50 (骨内膜)	AM (活性骨髄)	TM50 (骨内膜)
0.010		1.0		1.08		1.0		1.16	1.00	1.09	1.00	1.00	1.01	1.09
0.015		1.0		1.16		1.0		1.29	1.00	1.20	1.01	1.07	1.01	1.17
0.020		1.0		1.31		1.0		1.46	1.00	1.33	1.01	1.18	1.02	1.29
0.030		1.0		1.66		1.0		1.85	1.01	1.65	1.03	1.46	1.05	1.57
0.040		1.0		1.92		1.0		2.16	1.01	1.90	1.04	1.69	1.07	1.81
0.050		1.0		1.96		1.0		2.20	1.02	1.97	1.05	1.76	1.08	1.89
0.060		1.0		1.83		1.0		2.05	1.02	1.87	1.05	1.68	1.08	1.82
0.080		1.0		1.48		1.0		1.65	1.02	1.55	1.04	1.39	1.06	1.55
0.10		1.0		1.24		1.0		1.38	1.01	1.31	1.03	1.18	1.05	1.32
0.15		1.0		1.05		1.0		1.09	1.01	1.10	1.01	1.03	1.04	1.09
0.20		1.0		1.00		1.0		1.00	1.00	1.00	1.00	1.00	1.00	1.00
	臓器	ID:46		臓器 ID:45		臓器 ID	: 50	臓器	ID:52		臓器 ID:54		臓器 ID	: 56
下 十	信	百日 · 海復歴	\$	頸 椎 3)运、治体B		· 》 。 》	推。	調整	長 椎 · 海嶺麻	*	仙 骨	4	· 》 。 》	目
- デードー	짽你	· (业 	死////・ (世 和 j		飛びが・位	# 770月	짽伽	・(#1)加貝	78	死(房・ (準祚) 」		飛びい・供	: 神貝
(MeV)	標	的組織		標的組織		標的維	1縦	標[的組織		標的組織		標的維	織
	AM (活性骨髄)	TM30 (骨内膜	。 (活性信)	A 計随) (骨	M ₅₀ 内膜) (抗	AM 舌性骨髓)	TM ₅₀ (骨内膜)	AM (活性骨髄)	TM50 (骨内膜)	AN (活性†	A T 骨簡) (骨	M ₅₀ 内膜) (注	AM 舌性骨髄)	TM ₅₀ (骨内膜)
0.010	1.00	1.13	1.0	1	.06	1.00	1.07	1.00	1.00	1.0	0 1	00.	1.00	1.02
0.015	1.01	1.24	1.0	1	.15	1.01	1.16	1.01	1.09	1.0	1	.04	1.01	1.10
0.020	1.01	1.38	1.0	4 1	.27	1.02	1.28	1.02	1.19	1.0	2 1	.14	1.02	1.21
0.030	1.03	1.74	1.0	8	.56	1.03	1.56	1.04	1.46	1.0	4	.40	1.03	1.47
0.040	1.04	2.02	1.1	1	.80	1.05	1.79	1.06	1.68	1.0	6 1	.60	1.05	1.69
0.050	1.05	2.09	1.1	3 1	.88	1.06	1.87	1.06	1.75	1.0	7 1	.68	1.06	1.76
0.060	1.05	1.98	1.1	2	.81	1.06	1.80	1.06	1.69	1.0	7 1	.62	1.06	1.70
0.080	1.04	1.63	1.0	9 1	.52	1.04	1.52	1.05	1.42	1.0	5 1	.36	1.04	1.43
0.10	1.03	1.37	1.0	6 1	.29	1.03	1.30	1.03	1.21	1.0	4 1	.17	1.03	1.22
0.15	1.01	1.11	1.0	3	.07	1.01	1.08	1.01	1.02	1.0	2	. 03	1.01	1.03
0.20	1.00	1.00	1.0	0 1	00.	1.00	1.00	1.00	1.00	1.0	0 1	.00	1.00	1.00
— は該当	をし (NA:1	not applica	ibile) を示す	°										

(E1) 付属書 Dで、フルエンスから線量への応答関数の概念を提示した。この関数により、ICRP 標準ファントムにおいて、骨格の光子照射による活性骨髄と骨内膜の吸収線量を計算することができる。この付属書では、骨格組織の中性子照射について、同様の線量応答関数を提示する。これらの関数は、10⁻³ eV から 150 MeV のエネルギー範囲に対して与えられる。これらの関数では、各骨部位の骨梁と髄腔の両方にわたり、反跳陽子の輸送を明確に考慮している。10⁻³ eV から 20 MeV のエネルギー範囲では、水素との衝突のみに由来する反跳陽子を考慮し、20 MeV から 150 MeV の中性子エネルギーでは、すべての骨格組織の原子核との衝突に由来する陽子を考慮している。陽子以外の反跳核については、中性子が相互作用した場所で局所的にエネルギーを沈着すると仮定している(すなわちカーマ近似)。150 MeV を超えると、均質な海綿質の吸収線量は、活性骨髄の吸収線量(誤差 <1%)と骨内膜の吸収線量(誤差 <5%)の両方の合理的な推定値であることが示されている。

E.1 骨部位別の中性子骨格線量評価のための応答関数

(**E2**) 骨部位*x*においてエネルギー*E*_nの中性子によってもたらされる骨部位別の骨格組 織の吸収線量を評価するための応答関数*R*は,以下のように与えられる(Kerr と Eckerman, 1985; Bahadori ら, 2011)。

$$R(r_{\mathrm{T}} \leftarrow r_{\mathrm{S}}, x, E_{\mathrm{n}}) = \frac{D(r_{\mathrm{T}}, x)}{\varPhi(E_{\mathrm{n}}, r_{\mathrm{S}}, x)}$$
(E.1)

$$=\sum_{j}\frac{\lambda}{m(r_{\mathrm{T}},x)}\frac{N_{\mathrm{A}}}{A_{j}}\sum_{r}f_{j}(r)m(r,x)\sum_{i}\int_{0}^{\infty}\phi(r_{\mathrm{T}}\leftarrow r,T_{i},x)\sigma_{i,j}^{\mathrm{prod}}(E_{\mathrm{n}})T_{i}n_{i,j}(T_{i},E_{\mathrm{n}})\mathrm{d}T_{i}$$
(E. 2)

ここで、xはファントム内の様々な骨部位のインデックス(大腿骨上部、頭蓋、その他;長骨 については、海綿質領域と髄腔領域は異なる骨部位と見なす)、 $r_{\rm T}$ は線量評価における標的組 織のインデックス(活性骨髄または骨内膜)、 $r_{\rm S}$ は中性子フルエンスが記録される骨部位xの 線源組織のインデックス(海綿質または骨髄髄質)、rは海綿質の構成組織のインデックス (骨梁骨、活性骨髄または不活性骨髄)、 λ は適切な単位を得るための換算係数、 $N_{\rm A}$ はアボガ ドロ数、 A_i は核種jの原子質量、 $f_j(r)$ は線源領域rにおける核種jの質量百分率で表した存

在割合, E_n は骨部位 x の海綿質を通過し, その中で相互作用する可能性のある中性子のエネ ルギー, m(r, x) は骨部位 x の構成組織 r の質量, $m(r_T, x)$ は骨部位 x の標的組織 r_T の質 量, i は考慮している中性子の相互作用の種類を示すインデックス, T_i は中性子の相互作用の 種類 i によって構成組織 r において解放される二次荷電粒子のエネルギー, $\phi(r_T \leftarrow r, T_i, x)$ は骨部位 x の構成組織 r において解放される二次荷電粒子エネルギー T_i のうち, 骨部位 x の 標的組織 r_T に付与される割合, $\sigma_{i,j}^{prod}(E_n)$ は核種 j の二次粒子 i に対する二次荷電粒子生成断 面積, そして $n_{i,j}(T_i, E_n)$ d T_i は相互作用の種類 i で, エネルギー E_n の中性子により核種 j で 解放される $T_i \geq T_i + dT_i$ の間のエネルギーの二次荷電粒子の数である。

(E3) 本報告書では、式(E.2) を Bahadori ら(2011) によって示された方法を使って評価した。陽子の吸収割合のデータは、40歳の男性の遺体の骨格にて 32 の骨部位のマイクロコンピュータ断層撮影画像から取得した、直線行路長分布(linear pathlength distributions) を用いた連続減速近似(CSDA)輸送法から得た(Jokisch ら, 2011a, b)。式(E.2) から得られた骨部位別の線量応答関数の値を、表形式で表 E.1 に示す。

(E4) したがって、骨部位 *x* における組織 r_{T} の骨部位別吸収線量 $D(r_{T}, x)$ は、骨部位別 のエネルギー依存中性子フルエンス $\phi(E_{n}, r_{S}, x)$ と、骨部位別のエネルギー依存線量応答関数 $R(r_{T} \leftarrow r_{S}, x, E_{n})$ の積の積分として決定される。

$$D(r_{\mathrm{T}}, x) = \int_{E_{\mathrm{n}}} \Phi(E_{\mathrm{n}}, r_{\mathrm{S}}, x) R(r_{\mathrm{T}} \leftarrow r_{\mathrm{S}}, x, E_{\mathrm{n}}) \mathrm{d}E_{\mathrm{n}}$$
(E.3)

(E5) フルエンス評価法は、付属書 D の式 (D.4a) と式 (D.4b) に示した。エネルギー *E*_nは、骨格組織を通過し、その中で相互作用する可能性がある中性子のエネルギーであり、 コンピュータファントムの外表面に入射する中性子のエネルギーではないことに注意すべきで ある。

E.2 骨格平均中性子吸収線量

(E6) 骨部位別の吸収線量推定値は,臨界事故あるいはホウ素中性子捕捉療法のような, 骨格が部分的に照射される場合には重要になり得る。しかし,放射線防護と実効線量の計算の 目的のためには,活性骨髄と骨内膜の骨格平均吸収線量が必要となる。そこで,骨格平均吸収 線量を骨部位別の吸収線量の質量加重平均として求める。

$$D_{\text{skel}}(\boldsymbol{r}_{\text{T}}) = \sum_{\boldsymbol{x}} \frac{m(\boldsymbol{r}_{\text{T}}, \boldsymbol{x})}{m(\boldsymbol{r}_{\text{T}})} D(\boldsymbol{r}_{\text{T}}, \boldsymbol{x})$$
(E.4)

ここで, $m(r_T, x)$ は骨部位 x における標的組織 r_T の質量, $m(r_T)$ は骨格全体を通じた標的組織 r_T の全質量, そして $D(r_T, x)$ は式 (E.3) によって与えられる骨部位別吸収線量である。 ICRP の標準男性と標準女性ファントム (成人) の骨格組織の質量は,本報告書の 3.4 節にま

表 E.1	CRP Publi	cation 11C	つの標準コン	ノピュータフ	アントムの	骨部位でとい	こ中性子エン	ネルギーの関	数として表	じた, 活性	骨髄 (AM)	と骨内膜
J	(TM50) の中	性子フルエン	ンスあたりの)骨部位別吸4	又線量 (単位	ξ : Gγ·m²)						
	職器 1	D:14	顺器 I	D:15	臓器L	D: 17	臓器I	D:18	臓器I	D:20	臓器I	D:21
中性子	上腕骨, 線源:	上半分 海綿質	上脱骨, 線源:	上半分 : 髄腔	上腕骨, 線源:	下半分 海綿質	上腕骨, 線源:	下半分 髄腔	· 前 源 源 道 。	龟骨 海綿質	- - - - - - - - - - - - - - - - - - -	记 髄腔
エネルギー	標的	組織	標的	組織	標的	組織	標的	組織	標的	組織	標的	組織
(ev)	AM	TM_{50}	AM	TM_{50}	AM	TM_{50}	AM	TM_{50}	AM	TM_{50}	AM	TM ₅₀
	(活性官阀)	(管内限)	(活性(1))	(覚内胰)	(活性())	((活性常髄)	(覚内腺)	(活性情髄)	(覚内胰)	(活性官髄)	(背内限)
1.00E - 03	3.08E - 17	1.25E - 17		6.86E - 18		6.33E - 18		6.86E - 18		6.33E - 18		6.86E - 18
1.50E - 03	3.10E - 17	1.25E - 17		6.90E - 18		6.37E - 18		6.90E - 18		6.37E - 18		6.90E - 18
2.00E - 03	3.12E-17	1.26E - 17		6.94E - 18		6.40E - 18		6.94E - 18		6.40E - 18		6.94E - 18
3.00E - 03	3.15E - 17	1.27E-17		7.01E - 18		6.46E - 18		7.01E - 18		6.46E - 18		7.01E - 18
4.00E - 03	3.17E-17	1.28E-17		7.06E - 18		6.51E - 18		7.06E - 18		6.51E - 18		7.06E - 18
5.00E - 03	3.19E - 17	1.29E-17		7.09E - 18		6.54E - 18		7.09E - 18		6.54E - 18		7.09 E - 18
6.00E - 03	3.20E - 17	1.29E - 17		7.12E - 18		6.57E - 18		7.12E - 18		6.57E - 18		7.12E - 18
8.00E - 03	3.20E - 17	1.29E-17		7.13E-18		6.58E - 18		7.13E - 18		6.58E - 18		7.13E-18
1.00E - 02	3.19E - 17	1.29E - 17		7.11E-18		6.55E - 18		7.11E-18		6.55E-18		7.11E-18
1.50E - 02	3.09E - 17	1.25E-17		6.88E - 18		6.34E - 18		6.88E - 18		6.34E - 18		6.88E - 18
2.00E - 02	2.92E - 17	1.18E-17		6.50E - 18		5.99E - 18		6.50E - 18		5.99E - 18		6.50E - 18
3.00E - 02	2.50E - 17	1.01E-17		5.56E - 18		5.13E - 18		5.56E - 18		5.13E - 18		5.56E - 18
4.00E - 02	2.18E - 17	8.79E-18		4.85E - 18		4.47E - 18		4.85E - 18		4.47E - 18		4.85E - 18
5.00E - 02	1.94E - 17	7.85E-18		4.32E-18		3.99E - 18		4.32E - 18		3.99 E - 18		4.32E - 18
6.00E - 02	1.77E - 17	7.13E-18		3.93E - 18		3.63E - 18		3.93E - 18		3.63E - 18		3.93E - 18
8.00E - 02	1.53E - 17	6.19E - 18		3.41E-18		3.15E - 18		3.41E - 18		3.15E - 18		3.41E - 18
1.00E - 01	1.37E-17	5.53E - 18		3.05E - 18		2.81E - 18		3.05E - 18		2.81E - 18		3.05E - 18
1.50E - 01	1.12E - 17	4.53E-18		2.50E - 18		2.31E - 18		2.50E - 18		2.31E - 18		2.50E - 18
2.00E - 01	9.72E - 18	3.93E-18		2.16E - 18		2.00E - 18		2.16E - 18		2.00E - 18		2.16E - 18
3.00E - 01	7.91E-18	3.20E-18		1.76E - 18		1.63E - 18		1.76E - 18		1.63E - 18		1.76E - 18
4.00E - 01	6.86E - 18	2.78E-18		1.53E - 18		1.41E - 18		1.53E - 18		1.41E - 18		1.53E - 18
5.00E - 01	6.14E - 18	2.48E-18		1.37E-18		1.27E - 18		1.37E - 18		1.27E - 18		1.37E - 18
6.00E - 01	5.61E - 18	2.27E-18		1.25E - 18		1.16E - 18		1.25E - 18		1.16E - 18		1.25E - 18
8.00E - 01	4.87E - 18	1.97E-18		1.09E - 18		1.01E - 18		1.09E - 18		1.01E - 18		1.09E - 18
1.00E + 00	4.34E - 18	1.76E - 18		9.76E - 19		9.02E - 19		9.76E - 19		9.02E - 19		9.76E - 19
1.50E + 00	3.56E - 18	1.45E-18		8.08E-19		7.46E - 19		8.08E - 19		7.46E - 19		8.08E - 19
2.00E + 00	3.08E - 18	1.26E - 18		7.07E-19		6.54E - 19		7.07E - 19		6.54E - 19		7.07E - 19
3.00E + 00	2.53E - 18	1.04E-18		5.93E - 19		5.49E - 19		5.93E - 19		5.49E - 19		5.93E - 19
4.00E + 00	2.20E - 18	9.21E-19		5.30E - 19		4.93E - 19		5.30E - 19		4.94E - 19		5.30E - 19
5.00E + 00	1.98E - 18	8.38E-19		4.90E - 19		4.58E-19		4.90E - 19		4.58E - 19		4.90E - 19

195

しづく)

付属書 E 骨格のフルエンスから線量への応答関数:中性子

ICRP Publication 116

					¥		- U					
		D:14 L 歩八		D:15 L # 7	-	D:17 七半八	臓端 I 「豚」	D:18 七半八	臧 皓 [] 法 <u>表</u>	D:20 許屈	腻 出 一 記 一 記 二 記 二 記 二 二 二):21 :
中性子	上腕(司, 線源:	上十分海綿質	- 「NN」 - 「NN」	「上十分」	上版(司, 線源:	「キグ海綿質	上购(司, 線源:	「十分」	問 想源:	⁰ () 海綿質	問 線源::	J肎 髄腔
エネルギー	標的	組織	標的	組織	標的	組織	標的	組織	標的	組織	標的為	組織
(ev)	AM (活性骨髄)	TM ₅₀ (骨内膜)	AM (活性骨髄)	TM ₅₀ (骨内膜)	AM (活性骨髄)	TM ₅₀ (骨内膜)	AM (活性骨髓)	TM ₅₀ (骨内膜)	AM (活性骨髄)	TM50 (骨内膜)	AM (活性骨髄)	TM ₅₀ (骨内膜)
6.00E + 00	1.82E-18	7.80E - 19		4.64E - 19		4.35E - 19		4.64E - 19		4.35E - 19		4.64E - 19
8.00E + 00	1.60E - 18	7.07E-19		4.35E-19		4.10E - 19		4.35E - 19		4.10E - 19		4.35E - 19
1.00E + 01	1.45E - 18	6.62E-19		4.21E-19		4.00E - 19		4.21E - 19		$4.00 \mathrm{E} - 19$		4.21E - 19
1.50E + 01	1.24E - 18	6.17E-19		4.24E-19		4.09E - 19		4.24E - 19		4.09 E - 19		4.24E - 19
2.00E + 01	1.13E-18	6.10E - 19		4.50E - 19		4.38E - 19		4.50E - 19		4.38E - 19		$4.50 \mathrm{E} - 19$
3.00E + 01	1.03E-18	6.46E - 19		5.26E - 19		5.19E - 19		5.26E - 19		$5.20 \mathrm{E} - 19$		5.26E - 19
4.00E + 01	1.01E-18	7.13E-19		6.20E - 19		6.17E - 19		6.20E - 19		6.18E - 19		6.20E - 19
5.00E + 01	1.01E-18	7.92E-19		7.21E-19		7.21E - 19		7.21E - 19		7.22E - 19		7.21E - 19
6.00E + 01	1.04E - 18	8.80E-19		8.26E-19		8.29E - 19		8.26E - 19		8.30E - 19		8.26E - 19
8.00E + 01	1.13E-18	1.07E - 18		1.04E - 18		1.05E - 18		1.04E - 18		1.05E - 18		1.04E - 18
1.00E + 02	1.23E-18	1.26E - 18		1.26E - 18		1.28E - 18		1.26E - 18		1.28E - 18		1.26E - 18
1.50E + 02	1.55E - 18	1.78E - 18		1.83E-18		1.85E - 18		1.83E - 18		1.86E - 18		1.83E - 18
2.00E + 02	1.91E - 18	2.30E - 18		2.40E - 18		2.43E - 18		2.40E - 18		2.44E - 18		2.40E - 18
3.00E + 02	2.64E - 18	3.36E-18		3.55E-18		3.60E - 18		3.55E - 18		3.61E - 18		3.55E - 18
4.00E + 02	3.39E - 18	4.44E - 18		4.71E-18		4.77E - 18		4.71E - 18		4.78E - 18		4.71E - 18
5.00E + 02	4.14E - 18	5.51E - 18		5.87E-18		5.93E - 18		5.87E - 18		5.94E - 18		5.87E - 18
6.00E + 02	4.90E - 18	6.58E - 18		7.02E-18		7.09E - 18		7.02E - 18		7.11E - 18		7.02E - 18
8.00E + 02	6.40E - 18	8.73E-18		9.33E-18		9.40E - 18		9.33E - 18	I	9.42E - 18		9.33E-18
	職器	D:23	顺器 I	D: 25	臓器I	D:27	臓器 11	D:29	臓器 II	D:30	臓器 II): 32
中性子	() () () () () () () () () () () () () (と手 海綿質	鎖 練源:	骨海綿質	頭 練源:	茜 海綿質	大腿骨, 線源:	上半分 海綿質	大腿骨, 線源:	上半分 髄腔	大腿骨, 線源:沙	下半分 毎綿質
エネルギー (aV)	標的	組織	標的	組織	標的	組織	標的	組織	標的	組織	標的為	組織
	AM (活性骨髄)	TM ₅₀ (骨内膜)	AM (活性骨髄)	TM ₅₀ (骨内膜)	AM (活性骨髄)	TM30 (骨内膜)	AM (活性骨髄)	TM ₅₀ (骨内膜)	AM (活性骨髄)	TM ₃₀ (骨内膜)	AM (活性骨髄)	TM ₅₀ (骨内膜)
1.00E - 03		6.33E-18	3.08E-17	1.44E - 17	3.08E-17	1.56E - 17	3.08E-17	1.25E - 17		6.86E - 18		6.33E-18
1.50E - 03		6.37E-18	3.10E-17	1.45E - 17	3.10E - 17	1.57E - 17	3.10E - 17	1.25E - 17		6.90E - 18		6.37E - 18
2.00E - 03		6.40E - 18	3.12E-17	1.46E - 17	3.12E-17	1.58E - 17	3.12E - 17	1.26E - 17		6.94E - 18		6.40E - 18
3.00E - 03		6.46E - 18	3.15E-17	1.47E - 17	3.15E - 17	1.60E - 17	3.15E - 17	1.27E - 17		7.01E - 18		6.46E - 18
4.00E - 03		6.51E-18	3.17E-17	1.48E-17	3.17E-17	1.61E-17	3.17E-17	1.28E-17		7.06E - 18		6.51E - 18
5.00E - 03		6.54E - 18	3.19E-17	1.49E - 17	3.19E - 17	1.62E-17	3.19E-17	1.29E - 17		7.09 E - 18		6.54E - 18
6.00E - 03		6.57E-18	3.20E-17	1.50E - 17	3.20E - 17	1.62E-17	3.20E-17	1.29E - 17		7.12E - 18		6.57E - 18

表 E.1 (つづき)

6.58E - 18	0 L L L L L L L	0.33E-10 6 34E-18	5 99F-18	5.13E - 18	4.47E - 18	3.99 E - 18	3.63E - 18	3.15E - 18	2.81E - 18	2.31E - 18	2.00E - 18	1.63E - 18	1.41E - 18	1.27E - 18	1.16E - 18	1.01E - 18	9.02E - 19	7.46E - 19	6.54E - 19	5.49E - 19	4.93E - 19	4.57E - 19	4.34E - 19	4.10E - 19	4.00E - 19	4.09E - 19	4.37E - 19	5.19E - 19	6.16E - 19	7.20E - 19	8.28E-19	1.05E - 18	1.28E - 18	1.85E - 18	2.43E - 18	3.60E - 18	4.76E - 18	5.92E - 18	7.08E - 18	9.39E - 18	(うづく)
7.13E-18	7 1115 10	6.88F - 18	6.50F18	5.56E - 18	4.85E - 18	4.32E - 18	3.93E - 18	3.41E - 18	3.05E - 18	2.50E - 18	2.16E - 18	1.76E - 18	1.53E - 18	1.37E - 18	1.25E - 18	1.09 E - 18	9.76E - 19	8.08E - 19	7.07E - 19	5.93E - 19	5.30E - 19	4.90E - 19	4.64E - 19	4.35E - 19	4.21E-19	4.24E - 19	4.50E - 19	5.26E - 19	6.20E - 19	7.21E - 19	8.26E - 19	1.04E - 18	1.26E-18	1.83E - 18	2.40E - 18	3.55E - 18	4.71E - 18	5.87E - 18	7.02E - 18	9.33E - 18	
											I											I			I	I		I													
1.29E - 17	1 00E 1	1.29E - 1/	1.23E 17 1 18E-17	1.01E - 17	8.79E-18	7.85E - 18	7.13E - 18	6.19E - 18	5.53E - 18	4.53E - 18	3.93E - 18	3.20E - 18	2.78E - 18	2.48E - 18	2.27E - 18	1.97E - 18	1.76E - 18	1.45E - 18	1.26E - 18	1.05E - 18	9.23E - 19	8.41E - 19	7.84E - 19	7.12E - 19	6.68E - 19	6.26E - 19	6.23E - 19	6.66E - 19	7.39E - 19	8.25E - 19	9.19E - 19	1.12E-18	1.33E - 18	1.87E-18	2.43E - 18	3.55E - 18	4.68E - 18	5.81E - 18	6.93E - 18	9.18E-18	
3.20E-17	2 1010	3.19E-1/ 3.00F-17	2 92E-17	2.50E - 17	2.18E - 17	1.94E - 17	1.77E-17	1.53E - 17	1.37E-17	1.12E - 17	9.72E - 18	7.91E-18	6.86E - 18	6.14E-18	5.61E-18	4.87E-18	4.34E - 18	3.56E - 18	3.09E - 18	2.53E - 18	2.21E - 18	1.98E - 18	1.82E-18	1.60E - 18	1.46E - 18	1.25E - 18	1.15E - 18	1.06E - 18	1.04E-18	1.06E - 18	1.09E - 18	1.19E-18	1.31E - 18	1.68E-18	2.07E-18	2.88E-18	3.71E-18	4.55E - 18	5.38E-18	7.04E - 18	
1.63E-17	1 202 1	1.02E - 1/	1 48E-17	1.27E - 17	1.10E - 17	9.86E - 18	8.96E - 18	7.77E-18	6.94E - 18	5.69E - 18	4.93E - 18	4.02E-18	3.48E-18	3.12E-18	2.85E-18	2.48E - 18	2.21E-18	1.82E-18	1.58E - 18	1.30E - 18	1.15E - 18	1.04E - 18	9.65E - 19	8.68E-19	8.07E-19	7.38E-19	7.18E-19	7.40E - 19	7.99E-19	8.75E-19	9.61E - 19	1.15E-18	1.35E - 18	1.87E-18	2.41E - 18	3.50E-18	4.60E-18	5.70E-18	6.80E - 18	9.00E - 18	
3.20E-17	21010	3.19E-1/ 3.00E-17	2 92E-17	2.50E - 17	2.18E - 17	1.94E - 17	1.77E-17	1.53E - 17	1.37E-17	1.12E - 17	9.72E - 18	7.91E-18	6.86E - 18	6.14E-18	5.61E-18	4.87E-18	4.35E - 18	3.56E - 18	3.09E - 18	2.53E - 18	2.21E - 18	1.99E - 18	1.83E-18	1.62E-18	1.47E - 18	1.28E - 18	1.18E - 18	1.11E-18	1.11E-18	1.14E - 18	1.19E - 18	1.33E-18	1.49E - 18	1.94E - 18	2.41E - 18	3.40E-18	4.41E-18	5.42E-18	6.44E-18	8.46E-18	
1.50E - 17	1 4015 17	1.49E-1/ 1.45E-17	1 37F-17	1.17E - 17	1.02E - 17	9.09E - 18	8.26E-18	7.17E-18	6.40E - 18	5.25E - 18	4.55E - 18	3.70E-18	3.21E-18	2.87E-18	2.63E-18	2.28E - 18	2.04E - 18	1.68E - 18	1.46E - 18	1.20E - 18	1.06E - 18	9.62E - 19	8.94E-19	8.06E - 19	7.51E-19	6.91E - 19	6.76E - 19	7.02E-19	7.63E-19	8.40E-19	9.25E - 19	1.11E-18	1.31E - 18	1.82E-18	2.35E - 18	3.42E-18	4.50E - 18	5.58E - 18	6.66E - 18	8.81E-18	
3.20E - 17	0 10E 17	3.19E-1/ 3.00F-17	2. 92E-17	2.50E - 17	2.18E - 17	1.94E - 17	1.77E - 17	1.53E - 17	1.37E - 17	1.12E - 17	9.72E - 18	7.91E-18	6.86E - 18	6.14E - 18	5.61E - 18	4.87E - 18	4.34E - 18	3.56E - 18	3.09E - 18	2.53E - 18	2.21E - 18	1.98E - 18	1.82E-18	1.61E - 18	1.46E - 18	1.26E - 18	1.16E - 18	1.07E - 18	1.05E - 18	1.07E - 18	1.11E-18	1.22E-18	1.35E - 18	1.73E - 18	2.14E - 18	2.99E - 18	3.86E - 18	4.73E - 18	5.60E - 18	7.34E - 18	
6.58E - 18	C 221	0.33E-10 6 34E-18	5 99F-18	5.13E - 18	4.47E - 18	3.99E - 18	3.63E - 18	3.15E-18	2.81E - 18	2.31E - 18	2.00E - 18	1.63E - 18	1.41E - 18	1.27E - 18	1.16E - 18	1.01E - 18	9.02E - 19	7.46E - 19	6.54E - 19	5.49E - 19	4.93E - 19	4.58E - 19	4.35E - 19	4.10E - 19	4.00E - 19	4.09E - 19	4.38E - 19	5.19E - 19	6.17E - 19	7.21E-19	8.29E - 19	1.05E - 18	1.28E - 18	1.85E - 18	2.43E - 18	3.60E - 18	4.77E - 18	5.93E - 18	7.09E - 18	9.40E - 18	
8.00E-03	1 00 00	1.00E-02	2 00F-02	3.00E - 02	4.00E - 02	5.00E - 02	6.00E - 02	8.00E - 02	1.00E - 01	1.50E - 01	2.00E - 01	3.00E - 01	4.00E - 01	5.00E - 01	6.00E - 01	8.00E - 01	1.00E+00	1.50E + 00	2.00E + 00	3.00E + 00	4.00E + 00	5.00E + 00	6.00E + 00	8.00E + 00	1.00E + 01	1.50E + 01	2.00E + 01	3.00E + 01	4.00E + 01	5.00E + 01	6.00E + 01	8.00E+01	1.00E + 02	1.50E + 02	2.00E + 02	3.00E + 02	4.00E + 02	5.00E + 02	6.00E + 02	8.00E + 02	

臓器 ID:44 肋 骨 線源:海綿質	標的組織	AM (活性骨髄) (骨内膜)	3.08E-172.35E-17	3.10E - 17 2.36E - 17	3.12E-172.38E-17	3.15E - 17 2.40E - 17	3.17E - 17 2.41E - 17	3.19E - 172.43E - 17	3.20E - 17 2.44E - 17	9.20E – 11 2.44E – 11	3.19E - 17 2.43E - 17	3.09E - 17 2.35E - 17	2.92E - 17 2.22E - 17	2.50E - 17 1.90E - 17	2.18E - 17 1.66E - 17	1.94E - 17 1.48E - 17	1.77E - 17 1.34E - 17	1.53E - 17 1.17E - 17	1.37E-17 1.04E-17	1.12E-178.55E-18	9.72E-18 7.40E-18	7.91E-18 6.03E-18	6.86E - 18 5.23E - 18	6.14E-184.68E-18	0.01E-18 4.2/E-18	4.012-10 0.112-10	4.35E-18 3.31E-18	3.56E-18 2.72E-18	3.09E - 18 2.36E - 18	2.53E - 18 1.94E - 18	2.21E-18 1.70E-18	1.99E-18 1.53E-18	1.83E-18 1.41E-18	1.025-101.205-10
臓器 ID:42 骨 盤 線源:海綿質	標的組織	AM TM50 性骨髄)(骨内膜)	8E-171.81E-17	0E - 17 1.82E - 17	2E - 17 1.83E - 17	5E - 17 1.85E - 17	7E-17 1.86E-17	9E - 17 1.87E - 17	0E - 17 1.88E - 17 0E - 17 0	UE-1/ 1.00E-1/	9E - 17 1.87E - 17	9E - 17 1.81E - 17 0.000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.000000 0.0000000 0.00000000	2E - 17 1.71E - 17	0E - 17 1.46E - 17	8E-17 1.28E-17	4E - 17 1.14E	7E-17 1.04E-17	3E - 17 8.99E - 18	7E-17 8.03E-18	2E - 17 6.58E - 18	2E - 18 5.70E - 18	1E-184.64E-18	6E - 18 4.03E - 18	4E - 18 3.60E - 18 4E - 18 4	TE-18 3.29E-18	12-10 2.002-10	5E-18 2.55E-18	6E - 18 2.10E - 18	9E-18 1.82E-18	3E - 18 1.50E - 18	1E - 18 1.32E - 18	9E - 18 1.19E - 18	3E-18 1.10E-18	7E-10/9.00E-19
臓器 ID:40 下顎骨 線源:海綿質	標的組織	AM TM ₅₀ 性骨髄) (骨内膜) (活	8E - 17 1.56E - 17 3.0	0E - 17 1.57E - 17 3.1	2E - 17 1.58E - 17 3.1	5E - 17 1.60E - 17 3.1	7E-17 1.61E-17 3.1	9E - 17 1.62E - 17 3.1	0E - 17 1.62E - 17 3.2	0E - 1/ 1.03E - 1/ 3.2	9E - 17 1.62E - 17 3.1	9E - 17 1.57E - 17 3.0	2E - 17 1.48E - 17 2.9	0E - 17 1.27E - 17 2.5	8E - 17 1.10E - 17 2.1	4E - 17 9.85E - 18 1.9	7E-17 8.96E-18 1.7	3E - 17 7.77E - 18 1.5	7E - 17 6.94E - 18 1.3	2E - 17 5.69E - 18 1.1	2E - 18 4.93E - 18 9.7	1E - 18 4.01E - 18 7.9	6E - 18 3.48E - 18 6.8	4E - 18 3.12E - 18 6.1	TE 18 2.85E - 18 5.0	1 E - 10 7.41 E - 10 4.0	4E-182.21E-184.3	6E - 18 1.82E - 18 3.5	9E - 18 1.58E - 18 3.0	3E - 18 1.30E - 18 2.5	1E - 18 1.14E - 18 2.2	9E - 18 1.04E - 18 1.9	3E-18 9.62E-19 1.8	1E-100.00E-191.0
臓器 ID:38 足首と足 線源:海綿質	標的組織	AM TM ₅₀ 註骨髄)(骨内膜)(活	— 6.33E-18 3.0	— 6.37E-18 3.1	— 6.40E-18 3.1	- 6.46E -18 3.1	- 6.51E-18 3.1	- 6.54E $-$ 18 3.1	- [6.57E $-$ 18]3.2	0.001 - 200.0	- 6.55E -18 3.1	$ \left \frac{6.34 \text{E} - 18}{2.0} \right \frac{3.0}{2.0}$	— 5.99E—18 2.9	- 5.13E $-$ 18 2.5	— 4.47E—18 2.1	- 3.99E -18].9	3.63E-18 1.7	- 3.15E -18]1.5	- 2.81E-18 1.3	2.31E-18 1.1	- 2.00E -18 9.7	- 1.63E -18 7.9	- 1.41E -18 6.8	- $1.27E - 18 6.1$	1.10E-18 5.0	1.015-10 4.0	— 9.02E-19 4.3	- 7.46E -19 3.5	- 6.54E $-$ 19 3.0	- 5.49E $-$ 19 2.5	- 4.93E $-$ 19 2.2	- [4.57E-19]1.9		
ID:36 寢骨 : 髄腔	り組織	TM ₅₀ (骨内膜) (活性	6.86E - 18	6.90E - 18	6.94E - 18	7.01E - 18	7.06E - 18	7.09 E - 18	7.12E-18	1.135-10	7.11E-18	6.88E - 18	6.50E - 18	5.56E - 18	4.85E - 18	4.32E - 18	3.93E-18	3.41E - 18	3.05E - 18	2.50E - 18	2.16E - 18	1.76E - 18	1.53E - 18	1.37E - 18	1.25E-18	1.035-10	9.76E - 19	8.08E - 19	7.07E - 19	5.93E - 19	5.30E - 19	4.90E - 19	4.64E-19	4.30E-19
臟緣	標的	AM (活性骨髄)	I																															
D:35 退骨 海綿質	1組織	TM50 (骨内膜)	6.33E - 18	6.37E - 18	$6.40 \mathrm{E} - 18$	6.46E - 18	6.51E - 18	6.54E - 18	6.57E-18	0.305-10	6.55E - 18	6.34E - 18	5.99 E - 18	5.13E - 18	4.47E - 18	3.99E - 18	3.63E-18	3.15E - 18	2.81E - 18	2.31E - 18	2.00E - 18	1.63E - 18	1.41E - 18	1.27E - 18	1.10E-18	01 _ 7110.1	9.02E - 19	7.46E - 19	6.54E - 19	5.50E - 19	4.94E - 19	4.58E-19	4.35E-19	4.115-19
 	標的	AM (活性骨髄)	I																														l	
D:33 下半分 : 髄腔	組織	TM ₅₀ (骨内膜)	6.86E - 18	6.90E - 18	6.94E-18	7.01E - 18	7.06E - 18	7.09 E - 18	7.12E-18	1.135-10	7.11E-18	6.88E - 18	6.50E - 18	5.56E - 18	4.85E - 18	4.32E - 18	3.93E-18	3.41E - 18	3.05E - 18	2.50E - 18	2.16E - 18	1.76E - 18	1.53E - 18	1.37E - 18	1.25E-18	1.035-10	9.76E - 19	8.08E - 19	7.07E - 19	5.93E - 19	5.30E - 19	4.90E - 19	4.64E-19	4.335-19
藏器1 大腿骨, 線源	標的	AM (活性骨髄)																																
子 到 中	エネルギー (aV)		1.00E - 03	1.50E - 03	2.00E - 03	3.00E - 03	4.00E - 03	5.00 E - 03	6.00E-03	0.00E-00	1.00E - 02	1.50E - 02	2.00E - 02	3.00E - 02	4.00E - 02	5.00E - 02	6.00E - 02	8.00E - 02	1.00E - 01	1.50E - 01	2.00E - 01	3.00E - 01	4.00E - 01	5.00E - 01	0.00E-01	0.00E_01	1.00E + 00	1.50E + 00	2.00E + 00	3.00E + 00	4.00E + 00	5.00E+00	6.00E+00	8.UUE+W

表 E.1 (つづき)

8 1.15E-18 8 1.02E-18 8 9.62E-19 8 9.55E-19 8 9.65E-19 8 1.02E-18 8 1.02E-18 8 1.02E-18 8 1.02E-18 8 1.26E-18 8 1.26E-18 8 1.26E-18 8 1.26E-18 8 3.50E-18 8 5.65E-18 8 5.65E-18 8 6.73E-18 8 6.73E-18 8 8.888E-18	D:56 语 演 給 道 組織 TM ₃₀ (曹内膜)	$\begin{array}{c} 2.35E-17\\ 2.36E-17\\ 2.36E-17\\ 2.40E-17\\ 2.41E-17\\ 2.43E-17\\ 2.43E-17\\ 2.43E-17\\ 2.43E-17\\ 2.44E-17\\ 2.44E-17\\ 2.44E-17\\ 1.90E-17\\ 1.90E-17\\ 1.90E-17\\ 1.48E-17\\ 1.48E-17\\$
19 1.48E 19 1.28E 19 1.14E 19 1.11E 19 1.15E 19 1.20E 18 1.30E 18 1.50E 18 1.50E 18 1.50E 18 1.50E 18 1.50E 18 1.45E 18 1.45E 18 1.45E 18 1.45E 18 1.55E 18 1.65E 18 1.65E 18 1.65E 18 1.65E 18 1.65E 18 1.65E	職器 I 胸 海 線流: 線道: 標的 人 石M (活件電窗)	$\begin{array}{c} 3.08E - 17\\ 3.10E - 17\\ 3.12E - 17\\ 3.15E - 17\\ 3.15E - 17\\ 3.15E - 17\\ 3.19E - 17\\ 3.20E - 17\\ 1.9E - 17\\ 1.94E - 17\\ 1.94E - 17\\ 1.53E - 17\\ 1.53E - 17\\ \end{array}$
	D:54 语 演编算 組織 TM ₃₀ (唱内賬)	2.37E-17 2.39E-17 2.40E-17 2.44E-17 2.44E-17 2.44E-17 2.44E-17 2.46E-17 2.46E-17 2.46E-17 2.46E-17 2.46E-17 2.46E-17 2.46E-17 1.68E-17 1.92E-17 1.68E-17 1.68E-17 1.68E-17 1.68E-17 1.68E-17 1.86E-17 1.8
$\begin{array}{c} \text{E} = -19 \\ 1.10 \\ \text{E} = -19 \\ 1.10 \\ \text{E} = -19 \\ 1.10 \\ \text{E} = -18 \\ 1.32 \\ \text{E} = -18 \\ 1.32 \\ \text{E} = -18 \\ 1.32 \\ \text{E} = -18 \\ 1.37 \\ \text{E} = -18 \\$	藤器 II 減 線 源: 標的 (活件會醬)	3.08E-17 3.10E-17 3.12E-17 3.15E-17 3.15E-17 3.19E-17 3.19E-17 3.20E-17 3.20E-17 3.20E-17 3.09E-17 3.09E-17 2.18E-17 1.94E-17 1.94E-17 1.94E-17 1.53E-17
$\begin{array}{c} 47E - 18 \\ 27E - 18 \\ 7.35 \\ 17E - 18 \\ 7.35 \\ 09E - 18 \\ 7.35 \\ 00E - 18 \\ 7.35 \\ 00E - 18 \\ 7.35 \\ 00E - 18 \\ 7.35 \\ 10E - 18 \\ 1.15 \\ 15E - 18 \\ 1.15 \\ 15E - 18 \\ 1.18 \\ 1.18 \\ 1.18 \\ 1.25 \\ 0.57 \\ 1.8 \\ 1.$	D:52 椎 海綿質 組織 TM ₃₀ (骨内膜)	$\begin{array}{c} 2.35E-17\\ 2.36E-17\\ 2.36E-17\\ 2.40E-17\\ 2.41E-17\\ 2.43E-17\\ 2.44E-17\\ 2.44E-17\\ 2.44E-17\\ 2.44E-17\\ 2.44E-17\\ 2.44E-17\\ 1.48E-17\\ 1.90E-17\\ 1.48E-17\\ 1.48E-17\\ 1.48E-17\\ 1.34E-17\\ 1.34E-17\\ 1.17E-17\\ \end{array}$
$\begin{array}{c} \begin{array}{c} 1.000000000000000000000000000000000000$	臓器I 臓 酸源: 線約: 標的 合MI (活在會醬)	3.08E-17 3.10E-17 3.12E-17 3.15E-17 3.15E-17 3.19E-17 3.19E-17 3.20E-17 3.20E-17 3.09E-17 3.09E-17 3.09E-17 2.18E-17 1.94E-17 1.94E-17 1.94E-17 1.53E-17
	D:50 維 海綿質 組織 TM ₃₀ (骨内膜)	$\begin{array}{c} 2.35E-17\\ 2.36E-17\\ 2.36E-17\\ 2.40E-17\\ 2.41E-17\\ 2.41E-17\\ 2.44E-17\\ 2.44E-17\\ 2.44E-17\\ 2.44E-17\\ 2.44E-17\\ 2.44E-17\\ 1.46E-17\\ 1.90E-17\\ 1.48E-17\\ 1.48E-17\\$
4.21E-19 4.24E-19 4.50E-19 5.26E-19 6.20E-19 6.20E-19 1.04E-18 1.24E-18 1.24E-18 1.24E-18 1.24E-18 1.24E-18 2.47E-18 3.54E-18 3.54E-18 3.54E-18 3.54E-18 3.54E-18 3.54E-18 3.54E-18 3.54E-18 3.54E-18 1.2	臓器I 脑 胸 線顶: 標的 石M (活在卓蕾)	$\begin{array}{c} 3.08E - 17\\ 3.10E - 17\\ 3.12E - 17\\ 3.15E - 17\\ 3.15E - 17\\ 3.19E - 17\\ 3.20E - 17\\ 1.9E - 17\\ 1.9E - 17\\ 1.94E - 17\\ 1.94E - 17\\ 1.53E - 17\\ 1.53E - 17\\ 1.53E - 17\\ \end{array}$
01 01	D:48 維 海綿噴 組織 TM ₈₀ (曡内膜)	$\begin{array}{c} 2.35E - 17\\ 2.36E - 17\\ 2.36E - 17\\ 2.40E - 17\\ 2.41E - 17\\ 2.44E - 17\\ 1.90E - 17\\ 1.90E - 17\\ 1.48E - 17\\$
4.01E 4.10E 4.10E 4.39E 5.22E 6.20E 7.25E 8.33E 8.33E 1.06E 1.28E 1.06E 1.28E 8.33E 7.25E 7.13E 7.13E	職器 II 職 職 線源:: 線的: 標的: AM	$\begin{array}{c} 3.08E - 17\\ 3.10E - 17\\ 3.12E - 17\\ 3.15E - 17\\ 3.15E - 17\\ 3.17E - 17\\ 3.19E - 17\\ 3.20E - 17\\ 1.9E - 17\\ 1.94E - 17\\ 1.94E - 17\\ 1.94E - 17\\ 1.53E - 17\\ 1.53E - 17\\ \end{array}$
111 1111 1111):46 1-晋 1-晉 1-晉 1-晉 1-晉 1-1-1 1-1 1-1	$\begin{array}{c} 1.56E-17\\ 1.57E-17\\ 1.57E-17\\ 1.58E-17\\ 1.60E-17\\ 1.61E-17\\ 1.62E-17\\ 1.62E-17\\ 1.62E-17\\ 1.63E-17\\ 1.63E-17\\ 1.63E-17\\ 1.57E-17\\ 1.57E-18\\ 8.96E-18\\ 8.96E-18\\ 8.96E-18\\ 8.96E-18\\ 7.77E-18\\ \end{array}$
9.10 9.10	職器 II 順平 線演: 標約 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	$\begin{array}{c} 3.08E - 17\\ 3.10E - 17\\ 3.12E - 17\\ 3.15E - 17\\ 3.15E - 17\\ 3.19E - 17\\ 3.20E - 17\\ 1.9E - 17\\ 1.94E - 17\\ 1.94E - 17\\ 1.94E - 17\\ 1.53E - 17\\ 1.53E - 17\\ \end{array}$
$\begin{array}{c} 1.00E+01\\ 1.50E+01\\ 2.00E+01\\ 3.00E+01\\ 5.00E+01\\ 6.00E+01\\ 8.00E+02\\ 1.50E+02\\ 1.50E+02\\ 3.00E+02\\ 5.00E+02\\ 5.00E+02\\ 8.00E+02\\ 8.00E+02\\$	中性子 エネルギー (eV)	$\begin{array}{c} 1.\ 00E-03\\ 1.\ 50E-03\\ 2.\ 00E-03\\ 3.\ 00E-03\\ 5.\ 00E-03\\ 6.\ 00E-03\\ 8.\ 00E-02\\ 1.\ 50E-02\\ 3.\ 00E-02\\ 3.\ 00E-02\\ 6.\ 00E-02\\ 8.\ 00E-02\\ 6.\ 00E-02\\ 8.\ 00E-02\\$

:46 冒		臓器 II 邇): 48 椎	臓器 1 胸	D:50 椎	臓器 1 腰	D:52 椎	臓器 11 血	D:54 骨	臓器 11 胸):56 骨
流	ī 綿質	線源:氵	毎綿質	線源:	海綿質	線源:	海綿質	線源:	海綿質	線源:注	
l織		標的新	組織	標的	組織	標的	組織	標的	組織	標的繪	且織
ΕĒ	`M ₅₀ ·内膜)	AM (活性骨髄)	TM50 (骨内膜)	AM (活性骨髄)	TM ₅₀ (骨内膜)	AM (活性骨髄)	TM ₅₀ (骨内膜)	AM (活性骨髄)	TM ₅₀ (骨内膜)	AM (活性骨髄)	TM50 (骨内膜)
3.9	4E - 18	1.37E-17	1.04E - 17	1.37E-17	1.04E - 17	1.37E-17	1.04E - 17	1.37E - 17	1.05E - 17	1.37E-17	1.04E - 17
5.69	E-18	1.12E - 17	8.54E - 18	1.12E - 17	8.55E - 18	1.12E - 17	8.55E-18	1.12E - 17	8.64E - 18	1.12E - 17	8.54E-18
4.93	E-18	9.72E - 18	7.40E - 18	9.72E-18	7.40E - 18	9.72E - 18	7.40E - 18	9.72E - 18	7.48E - 18	9.72E - 18	7.40E - 18
4.01	E-18	7.91E-18	6.03E-18	7.91E-18	6.03E - 18	7.91E-18	6.03E - 18	7.91E-18	6.09 E - 18	7.91E - 18	6.02E - 18
3.48	E – 18	6.86E - 18	5.23E - 18	6.86E-18	5.23E - 18	6.86E - 18	5.23E - 18	6.86E - 18	5.29 E - 18	6.86E - 18	5.23E-18
7 L	9 9 18	6.14E-18	4.68E-18	6.14E-18	4.68E-18	6.14E-18	4.68E-18	6.14E-18	4.73E - 18	6.14E-18	4.67E-18
2.47	E-18	4.87E - 18	4.2/E-10 3.71E-18	0.01E-10 4.87E-18	4.2/E-10 3.71E-18	2.01E-10 4.87E-18	$\frac{4.21E - 10}{3.71E - 18}$	4.87E - 18	$\frac{4.32E - 10}{3.75E - 18}$	4.87E - 18	4.2/E-10 3.71E-18
2.2	E-18	4.35E-18	3.31E-18	4.35E - 18	3.31E-18	4.35E - 18	3.31E-18	4.35E-18	3.35E - 18	4.35E-18	3.31E-18
1.82	2E-18	3.56E-18	2.72E - 18	3.56E - 18	2.72E - 18	3.56E - 18	2.72E - 18	3.56E - 18	$2.75\mathrm{E}\!-\!18$	$3.56\mathrm{E}{-18}$	2.72E - 18
1.5	SE-18	$3.09 \mathrm{E} - 18$	2.36E - 18	3.09 E - 18	2.36E - 18	3.09E - 18	2.36E - 18	3.09E - 18	2.38E - 18	$3.09 \mathrm{E} - 18$	2.36E - 18
<u>1</u> .3	0E - 18	2.53E - 18	1.94E - 18	2.53E-18	1.94E - 18	2.53E - 18	1.94E - 18	2.53E-18	1.96E - 18	2.53E-18	1.94E - 18
1. J	4E-18	2.21E - 18	1.70E - 18	2.21E-18	1.70E - 18	2.21E - 18	1.70E - 18	2.21E - 18	1.71E - 18	2.21E - 18	1.69E - 18
1.0	4E-18	1.99E - 18	1.53E - 18	1.99E - 18	1.53E - 18	1.99E - 18	1.53E - 18	1.99E - 18	1.55E - 18	1.99E - 18	1.53E - 18
9.6	IE - 19	1.83E - 18	1.41E - 18	1.83E - 18	1.41E - 18	1.83E - 18	1.41E - 18	1.83E - 18	1.42E - 18	1.83E - 18	1.41E - 18
٥́ «	4E-19	1.62E - 18	1.26E - 18	1.62E - 18	1.26E - 18	1.62E - 18	1.26E - 18	1.62E - 18	1.27E - 18	1.62E - 18	1.25E - 18
8.0	1E - 19	1.48E - 18	1.15E - 18	1.48E - 18	1.15E - 18	1.48E - 18	1.15E - 18	1.48E - 18	1.16E - 18	1.48E - 18	1.15E - 18
N. 3	0E - 19	1.28E - 18	1.02E - 18	1.28E-18	1.02E-18	1.28E-18	1.02E - 18	1.28E - 18	1.02E - 18	1.28E - 18	1.01E - 18
20.7	SE-19	1.19E - 18	9.61E - 19	1.19E - 18	9.62E - 19	1.19E - 18	9.63E - 19	1.19E - 18	9.60 E - 19	1.19E - 18	9.48E - 19
1.23	E-19	1.11E - 18	9.34E - 19	1.11E-18	9.35E - 19	1.11E - 18	9.37E - 19	1.11E-18	9.27E - 19	1.11E - 18	9.14E - 19
1.1.1	Έ-19 19	1.11E-18	9.65E-19	1.11E-18	9.66E-19	1.11E-18	9.68E-19	1.11E-18	9.52E - 19	1.11E-18	9.38E-19
9.28	五 - 19 王 - 19	1.13E - 10 1.20E - 18	1.02E-10	1.20E - 18	1.02E - 10 1.09E - 18	1.20E - 18	1.10E - 18	1.13E - 10 1.20E - 18	1.00E - 10 1.07E - 18	1.13E - 10 1.20E - 18	9.0/Е-19 1.05Е-18
1.10	E-18	1.34E - 18	1.26E - 18	1.34E - 18	1.26E - 18	1.34E - 18	1.26E - 18	1.34E - 18	1.22E - 18	1.34E-18	1.20E - 18
1.2)E-18	1.50E-18	1.44E-18	1.50E - 18	1.44E - 18	1.50E - 18	1.44E - 18	1.50E - 18	1.39 E - 18	1.50E - 18	1.37E-18
1.75)E−18	1.96E - 18	1.93E - 18	1.96E - 18	1.93E - 18	1.96E - 18	1.94E - 18	1.96E - 18	1.86E - 18	1.96E - 18	1.83E-18
ຕ. ເ	0E - 18	2.45E - 18	2.45E - 18	2.45E-18	2.45E - 18	2.45E - 18	2.46E - 18	2.45E - 18	2.35E - 18	2.44E - 18	2.31E-18
თ. ძ თ. ძ	4E - 18 9E - 18	3.46E-18 4.40E-18	3.50E-18 4.57E-18	3.45E-18 4.48E-18	3.50E-18 4.58E-18	3.40E - 18 4.48E - 18	3.52E-18 4.60E-18	3.45E-18 4.48E-18	3.30E-18 4.38E-18	3.45E-18 4.48E-18	3.30E-18 4.31E-18
: _ [¬] .	44E - 18	5.52E - 18	5.65E - 18	5.51E - 18	5.65E - 18	5.52E - 18	5.68E - 18	5.51E - 18	5.41E - 18	5.51E - 18	5.32E - 18
	48E - 18	6.56E - 18	6.73E - 18	6.55E - 18	6.73E - 18	6.55E-18	6.76E - 18	$6.55\mathrm{E}\!-\!18$	$6.43\mathrm{E}-18$	6.54E - 18	6.34E - 18
~	58E-18	8.63E-18	8.88E-18	8.62E-18	8.88E-18	8.63E-18	8.92E-18	8.62E-18	8.48E-18	8.61E-18	8.36E-18

表 E.1 (つづき)

200

D: 21	宛骨	:髄腔	組織	TM50 (骨内膜)	1.16E - 17	1.74E - 17	2.30E - 17	3.43E - 17	4.55E - 17	5.66E - 17	6.75E - 17	8.87E-17	1.09 E - 16	1.59E - 16	2.07E - 16	2.95E - 16	3.74E - 16	4.45E - 16	5.12E - 16	6.36E - 16	7.41E-16	$9.60 \mathrm{E} - 16$	1.14E - 15	1.42E - 15	1.67E - 15	1.83E - 15	2.00E - 15	2.31E - 15	2.63E - 15	$3.09 \mathrm{E} - 15$	3.52E - 15	4.30E - 15	4.87E - 15	(うづく)
臓器]	前	線源	標的	AM (活性骨髄)	I																												I	
D: 20	范语	海綿質	組織	TM50 (骨内膜)	1.17E - 17	1.74E - 17	$2.29 \mathrm{E} - 17$	3.38E - 17	4.44E - 17	$5.49 \mathrm{E} - 17$	6.53E - 17	8.63E-17	1.07E - 16	1.60E - 16	2.08E-16	$2.96\mathrm{E}\!-\!16$	3.76E - 16	4.49 E - 16	5.17E - 16	6.37E - 16	7.42E - 16	9.58E - 16	1.13E - 15	1.41E - 15	1.67E - 15	1.83E - 15	1.99E - 15	2.28E - 15	2.60E - 15	3.01E - 15	3.36E - 15	3.95E - 15	4.30E - 15	
臓器 I	町	線源:	標的	AM (活性骨髄)	I																												l	
D: 18	下半分	髄腔	組織	TM50 (骨内膜)	1.16E - 17	1.74E - 17	2.30E - 17	3.43E - 17	4.55E - 17	5.66E - 17	6.75E - 17	8.87E-17	1.09E - 16	1.59E - 16	2.07E - 16	2.95E-16	3.74E - 16	4.45E - 16	5.12E - 16	6.36E - 16	7.41E - 16	9.60E - 16	1.14E - 15	1.42E - 15	1.67E - 15	1.83E - 15	2.00E - 15	2.31E - 15	2.63E - 15	3.09E - 15	3.52E - 15	4.30E - 15	4.87E-15	
臓器 I	上腕骨,	線源:	標的	AM (活性骨髄)																														
D: 17	下半分	海綿質	組織	TM ₅₀ (骨内膜)	1.17E - 17	1.73E - 17	2.29E - 17	3.38E-17	4.44E - 17	5.49E - 17	6.54E - 17	8.63E-17	1.08E - 16	1.60E - 16	2.08E - 16	2.96E - 16	3.76E - 16	4.49E - 16	5.17E - 16	6.36E - 16	7.42E - 16	9.58E - 16	1.13E - 15	1.41E - 15	1.67E - 15	1.82E - 15	1.99E - 15	2.28E - 15	2.60E - 15	3.02E - 15	3.37E - 15	3.98E-15	4.36E-15	
臓器 11	上腕骨,	線源:	標的	AM (活性骨髄)																	I												I	
D:15	上半分	髄腔	組織	TM50 (骨内膜)	1.16E - 17	1.74E - 17	2.30E - 17	3.43E - 17	4.55E - 17	5.66E - 17	6.75E - 17	8.87E-17	1.09E - 16	1.59E - 16	2.07E - 16	2.95E-16	3.74E - 16	4.45E - 16	5.12E - 16	6.36E - 16	7.41E - 16	9.60E - 16	1.14E - 15	1.42E - 15	1.67E - 15	1.83E - 15	2.00E - 15	2.31E - 15	2.63E - 15	3.09E - 15	3.52E - 15	4.30E-15	4.87E-15	
臓器 I	上腕骨,	線源:	標的	AM (活性骨髄)																													I	
):14	上半分	毎綿質	組織	TM50 (骨内膜)	1.09E - 17	1.62E - 17	2.16E - 17	3.22E - 17	4.28E - 17	5.33E - 17	6.36E - 17	8.40E-17	1.04E - 16	1.54E - 16	2.00E - 16	2.85E - 16	3.63E - 16	4.35E - 16	5.01E - 16	6.17E - 16	7.16E - 16	9.23E - 16	1.10E - 15	1.38E - 15	1.64E - 15	1.79E - 15	1.95E - 15	2.23E - 15	2.58E - 15	2.96E - 15	3.31E - 15	3.88E-15	4.24E-15	
臓器 11	上腕骨,	線源: 1	標的	AM (活性骨髄)	7.89E - 18	1.15E - 17	1.50E - 17	2.18E - 17	2.81E-17	3.43E - 17	4.04E - 17	5.24E - 17	6.44E - 17	9.41E - 17	1.21E - 16	1.71E - 16	2.16E - 16	2.57E - 16	2.95E - 16	3.60E - 16	4.17E - 16	5.35E - 16	6.30E - 16	7.90E - 16	9.72E - 16	1.02E - 15	1.11E - 15	1.32E - 15	1.67E - 15	2.04E - 15	2.52E - 15	3.32E-15	3.93E-15	
	中州之	「王子」	$- + \lambda + -$		1.00E + 03	1.50E + 03	2.00E + 03	3.00E + 03	4.00E + 03	5.00E + 03	6.00E + 03	8.00E + 03	1.00E + 04	1.50E + 04	2.00E + 04	3.00E + 04	4.00E + 04	5.00E + 04	6.00E + 04	8.00E + 04	1.00E + 05	1.50E + 05	2.00E + 05	3.00E + 05	4.00E + 05	5.00E + 05	6.00E + 05	8.00E + 05	1.00E+06	1.50E+06	2.00E + 06	3.00E + 06	4.00E + 06	

	職器 I	D:14	- 職部 I	D:15		D: 17	職器 I	D:18 七歩2	臓器 I	D:20	臓器 II 水):21 . E
中住子	上版"百, 線源:	「モンプ	上版"百, 。 。 》 》	11 一一 一一 一一 一 一	上版"百, 線源:	「 干 が 海綿質	上版"百, 線源::	「十万」	则 想 線源:	uri 海綿質	問 施源:	u有 髄腔
I = I = I = I	標的	組織	標的	組織	標的	組織	標的	組織	標的	組織	標的	組織
	AM (活性骨髄)	TM ₅₀ (骨内膜)	AM (活性骨髄)	TM ₅₀ (骨内膜)	AM (活性骨髄)	TM ₅₀ (骨内膜)	AM (活性骨髄)	TM ₅₀ (骨内膜)	AM (活性骨髄)	TM50 (骨内膜)	AM (活性骨髄)	TM ₅₀ (骨内膜)
5.00E + 06	4.15E - 15	4.26E - 15		5.00E - 15		4.35E - 15		5.00E - 15		4.28E - 15		5.00E - 15
6.00E + 06	4.38E - 15	4.48E - 15		5.30E - 15		4.58E - 15		5.30E-15		$4.49\mathrm{E}\!-\!15$		5.30E - 15
8.00E + 06	5.00E - 15	5.08E - 15		5.96E - 15		5.18E - 15		5.96E-15		5.07E - 15		5.96E - 15
1.00E + 07	5.43E - 15	5.46E - 15		6.33E - 15		5.51E - 15		6.33E - 15		5.41E - 15		6.33E - 15
1.50E + 07	6.26E - 15	6.44E-15		7.30E - 15		6.52E - 15		7.30E - 15		6.40E - 15		7.30E - 15
2.00E + 07	6.62E - 15	7.02E-15		7.80E - 15		7.11E-15		7.80E - 15		6.97E - 15		7.80E - 15
3.00E + 07	7.09E - 15	7.57E-15		8.29E - 15		7.69E - 15		8.29E-15		7.55E - 15		8.29 E - 15
4.00E + 07	7.52E - 15	7.94E - 15		8.63E - 15		8.09E - 15		8.63E - 15		7.95E - 15		8.63E - 15
5.00E + 07	7.76E - 15	8.15E-15		8.78E - 15		8.31E-15		8.78E - 15		8.15E - 15		8.78E - 15
6.00E + 07	8.02E - 15	8.38E-15		8.95E - 15		8.53E-15		8.95E - 15		8.35E - 15		8.95E - 15
8.00E + 07	8.68E-15	9.05E - 15		9.62E - 15		9.23E-15		$9.62\mathrm{E}\!-\!15$		9.01E - 15		9.62E - 15
1.00E + 08	9.40E - 15	9.91E - 15	I	1.03E - 14		1.01E - 14		1.03E - 14		9.85E - 15		1.03E - 14
1.50E + 08	1.26E - 14	1.35E - 14		1.40E - 14	Ι	1.39E - 14	I	1.40E - 14	I	1.35E - 14		1.40E - 14
	11-144 ELT T	00.4	T- HA HU	10.0	1.11k R.H.T	- 0-	т цл 1:14 дл т	00.0	11-144 R.U. T.		1.14k R.H. T	00
1	顺命 I 手首	レ・Z3 と手	蒙部 T 戦	C2.①	臧命 I 頭	D · 2/ 購	퉳命」 大腿骨,	D:29 上半分	顺命 L 大腿骨,	U:30 上半分	顺命 II 大腿骨,	7.32 下半分
中性子	線源:	海綿質	線源:	海綿質	線源:	海綿質	線源:	海綿質	線源:	髄腔	線源:	毎綿質
$L \neq U \neq U$	標的	組織	標的	組織	標的	組織	標的	組織	標的	組織	標的	組織
) /	AM (活件骨髓)	TM ₅₀ (骨内膜)	AM (活件骨髓)	TM ₅₀ (骨内膜)	AM (活件骨髄)	TM30 (骨内膜)	AM (活件骨髓)	TM ₅₀ (骨内膜)	AM (活件骨髓)	TM50 (骨内膜)	AM (活件骨髓)	TM ₅₀ (骨内膜)
1.00E + 03		1.17E-17	9.05E - 18	1.09E - 17	1.05E - 17	1.12E - 17	8.69E-18	1.14E - 17		1.16E - 17		1.17E - 17
1.50E + 03		1.73E-17	1.32E - 17	1.62E - 17	1.55E - 17	1.66E - 17	1.27E - 17	1.69E - 17		1.74E - 17		1.73E - 17
2.00E + 03		2.29E - 17	1.73E - 17	2.15E - 17	2.03E - 17	2.20E - 17	1.66E - 17	2.24E - 17		2.30E - 17		2.29 E - 17
3.00E + 03		3.38E-17	2.50E - 17	3.18E - 17	2.99E - 17	3.25E - 17	2.40E - 17	3.31E - 17		3.43E - 17		3.37E - 17
4.00E + 03		4.44E - 17	3.23E - 17	4.19E - 17	3.91E - 17	4.29E - 17	3.11E - 17	4.36E - 17		4.55E - 17		4.43E - 17
5.00E + 03		5.49E - 17	3.94E-17	5.19E - 17	4.82E - 17	5.31E-17	3.79E - 17	5.40E - 17		5.66E - 17		5.48E - 17
6.00E + 03		6.54E - 17	4.64E - 17	6.18E - 17	5.72E - 17	6.33E-17	4.46E - 17	6.42E - 17		6.75E - 17		6.52E - 17
8.00E + 03		8.63E-17	6.01E-17	8.17E-17	7.50E - 17	8.35E-17	5.78E - 17	8.46E - 17		8.87E-17		8.61E-17

表 E.1 (つづき)

1.07E - 16	1.59E - 16	2.08E - 16	2.96E - 16	3.76E - 16	4.49 E - 16	5.16E - 16	6.36E-16	7.41E-16	9.57E - 16	1.13E - 15	1.41E - 15	1.66E - 15	1.82E - 15	1.99E - 15	2.28E - 15	2.59E - 15	3.01E - 15	3.37E - 15	3.98E - 15	4.36E - 15	4.36E - 15	4.58E - 15	5.18E - 15	5.52E - 15	6.53E - 15	7.12E - 15	7.72E - 15	8.11E-15	8.33E - 15	8.55E - 15	9.24E - 15	1.01E - 14	1.39E - 14	しづく
			I		I																				I		I		I				I	
$1.09 \mathrm{E} - 16$	1.59 E - 16	2.07E - 16	2.95E - 16	3.74E - 16	4.45E - 16	5.12E - 16	$6.36\mathrm{E}-16$	7.41E - 16	9.60E - 16	1.14E - 15	1.42E - 15	1.67E - 15	1.83E - 15	2.00E - 15	2.31E - 15	2.63E - 15	3.09E - 15	3.52E - 15	4.30E - 15	4.87E - 15	5.00E-15	5.30E-15	$5.96\mathrm{E}-15$	6.33E-15	7.30E - 15	7.80E - 15	8.29E - 15	8.63E - 15	8.78E - 15	8.95E - 15	$9.62 \mathrm{E} - 15$	1.03E - 14	1.40E - 14	
1.05E - 16	1.55E - 16	2.01E - 16	2.87E - 16	3.65E-16	4.37E - 16	5.03E-16	$6.20\mathrm{E}{-16}$	7.23E - 16	9.35E - 16	1.11E - 15	1.39E - 15	1.64E - 15	1.79E - 15	1.95E - 15	2.23E-15	2.55E - 15	2.93E - 15	$3.29 \mathrm{E} - 15$	3.87E - 15	4.26E - 15	4.28E - 15	4.49E - 15	5.06E - 15	5.41E - 15	6.37E - 15	6.93E-15	7.50E - 15	7.91E - 15	8.15E - 15	8.40E - 15	9.09E - 15	9.98E - 15	1.37E-14	
7.10E - 17	1.03E - 16	1.33E - 16	1.86E - 16	2.34E - 16	2.78E - 16	3.18E - 16	3.88E - 16	4.50E - 16	5.75E - 16	6.75E-16	8.40E - 16	1.03E - 15	1.08E - 15	1.18E - 15	1.38E - 15	1.71E - 15	2.08E - 15	2.54E - 15	3.30E - 15	3.89E - 15	4.10E - 15	4.31E - 15	4.91E - 15	5.35E-15	$6.16\mathrm{E}\!-\!15$	6.58E - 15	7.11E - 15	7.54E - 15	7.77E - 15	8.03E - 15	8.72E - 15	9.52E - 15	1.28E - 14	
1.04E - 16	1.53E - 16	1.99E - 16	2.84E - 16	3.60E - 16	4.31E - 16	4.95E - 16	6.11E - 16	7.12E - 16	9.19E - 16	1.08E - 15	1.35E - 15	1.60E - 15	1.73E - 15	1.89E - 15	2.17E - 15	2.50E - 15	2.85E - 15	3.17E - 15	3.70E - 15	4.02E - 15	3.96E - 15	4.06E - 15	4.48E - 15	4.72E - 15	5.48E - 15	6.06E - 15	6.70E - 15	7.19E - 15	7.51E - 15	7.86E - 15	8.63E - 15	9.71E - 15	1.37E - 14	
9.26E - 17	1.36E - 16	1.76E - 16	2.48E - 16	3.13E - 16	3.72E - 16	4.26E - 16	5.21E-16	6.03E - 16	7.69E - 16	8.98E - 16	1.10E - 15	1.31E - 15	1.38E - 15	1.49E - 15	1.71E - 15	2.03E - 15	2.35E - 15	2.75E - 15	3.42E - 15	3.92E - 15	4.05E - 15	4.18E - 15	4.61E - 15	4.90E - 15	5.53E - 15	5.94E - 15	6.48E - 15	6.96E - 15	7.26E - 15	7.60E - 15	8.36E - 15	9.36E - 15	1.30E - 14	
1.02E - 16	1.51E - 16	1.97E - 16	2.81E - 16	3.58E - 16	4.29E - 16	4.94E - 16	6.09E - 16	7.10E-16	9.21E - 16	1.09E - 15	1.38E - 15	1.64E - 15	1.78E-15	1.95E - 15	2.25E - 15	2.58E - 15	2.96E - 15	3.30E - 15	3.83E-15	4.16E - 15	4.11E - 15	4.25E - 15	4.76E - 15	5.09E - 15	5.98E - 15	6.49E - 15	7.04E - 15	7.43E-15	7.63E - 15	7.85E-15	8.45E-15	9.25E - 15	1.26E - 14	
7.37E-17	1.07E - 16	1.38E - 16	1.94E - 16	2.44E - 16	2.90E - 16	3.32E-16	4.05E - 16	4.69E - 16	5.99E - 16	7.02E-16	8.71E-16	1.06E - 15	1.11E - 15	1.21E - 15	1.42E - 15	1.76E-15	2.13E-15	2.60E - 15	3.39E - 15	3.99E - 15	4.23E - 15	4.46E - 15	5.04E - 15	5.45E - 15	6.19E - 15	6.52E - 15	6.91E - 15	7.24E - 15	7.39E - 15	7.59E-15	8.19E-15	8.96E-15	1.20E - 14	
1.08E - 16	1.60E - 16	2.08E - 16	2.96E - 16	3.76E - 16	4.49E - 16	5.17E - 16	6.36E - 16	7.42E - 16	9.58E - 16	1.13E - 15	1.41E - 15	1.67E - 15	1.82E - 15	1.99E - 15	2.28E - 15	2.60E - 15	3.02E - 15	3.37E - 15	3.98E - 15	4.36E - 15	4.35E - 15	4.58E - 15	5.18E - 15	5.51E-15	6.52E - 15	7.10E - 15	7.69E - 15	8.09E - 15	8.31E-15	8.53E-15	9.23E - 15	1.01E-14	1.39E - 14	
										I																								
1.00E + 04	1.50E + 04	2.00E + 04	3.00E + 04	4.00E + 04	5.00E + 04	6.00E + 04	8.00E + 04	1.00E + 05	1.50E + 05	2.00E + 05	3.00E + 05	4.00E + 05	5.00E + 05	6.00E + 05	8.00E + 05	1.00E+06	1.50E + 06	2.00E + 06	3.00E + 06	4.00E + 06	5.00E + 06	6.00E + 06	8.00E + 06	1.00E + 07	1.50E + 07	2.00E + 07	3.00E + 07	4.00E + 07	5.00E + 07	6.00E + 07	8.00E + 07	1.00E+08	1.50E + 08	

臓器 ID:44 肋 骨 線源:海綿質	標的組織	AM TM ₅₀ (活性骨髄) (骨内膜)	1.07E - 17 1.10E - 17	1.58E-17 1.63E-17	2.09E - 17 2.16E - 17	3.08E - 17 $3.19E - 17$	4.06E - 17 4.21E - 17	5.03E - 17 5.21E - 17	5.98E-17 6.21E-17	7.88E-178.19E-17	9.78E - 17 1.02E - 16	1.45E-16 1.51E-16	1.88E-16 1.96E-16	2.67E-162.79E-16	3.39E-163.54E-16	4.05E - 16 4.23E - 16	4.65E - 16 4.87E - 16	5.73E - 16 $5.99E - 16$	6.67E - 16 6.98E - 16	8.61E-169.01E-16	1.02E - 15 1.07E - 15	1.27E-15 1.33E-15	1.52E - 15 1.59E - 15	1.62E-151.71E-15	1.76E-15 1.86E-15	2.02E - 15 2.14E - 15	2.37E - 15 2.48E - 15	2.69E - 15 2.81E - 15	3.08E-153.14E-15	3.75E - 15 3.66E - 15
臓器 ID:42 骨 盤 線源:海綿質	標的組織	AM TM50 活性骨髄) (骨内膜)	.04E-17 1.06E-17	.53E-17 1.57E-17	.02E-172.08E-17	.96E-173.08E-17	.88E-174.06E-17	.79E - 17 5.03E - 17	.69E - 17 5.99E - 17	.46E - 177.93E - 17	.23E-17 9.87E-17	.36E-16 1.47E-16	.76E-16 1.91E-16	.49E-162.73E-16	.15E-163.47E-16	.76E-16 4.14E-16	.31E-16 4.77E-16	.29E - 16 5.89E - 16	.15E-16 6.88E-16	.89E-168.93E-16	.27E-16 1.06E-15	.15E-15 1.32E-15	.37E-15 1.58E-15	.45E-15 1.72E-15	.57E-15 1.88E-15	.81E-152.17E-15	.14E-152.51E-15	.47E-152.90E-15	.88E-153.26E-15	.60E-153.84E-15
臓器 ID:40 下顎骨 線源:海綿質	標的組織	AM TM ₅₀ (活性骨髄) (得內膜) (().72E-18 1.08E-17 1	43E-17 1.61E-17 1	88E-172.13E-172	2.74E - 17 3.16E - 17 2	3.57E - 17 4.17E - 17 3	.38E - 17 5.18E - 17 4	3.18E - 17 6.17E - 17 5	5.78E-17 8.16E-17 7	3.36E - 17 1.01E - 16 9	23E-16 1.51E-16 1	58E-16 1.96E-16 1	2.24E - 16 2.80E - 16 2	2.82E-163.56E-163	3.36E - 16 4.26E - 16 3	3.84E - 16 4.90E - 16 4	L.71E-16 6.05E-16 5	6.46E - 16 7.05E - 16 6	3.98E - 16 9.14E - 16 7	3.19E - 16 1.08E - 15 9	01E - 15 1.36E - 15 1	.22E - 15 1.62E - 15 1	.29E - 15 1.76E - 15 1	.40E - 15 1.92E - 15 1	.62E - 15 2.21E - 15 1	96E-152.55E-152	2.31E - 15 2.94E - 15 2	2.74E - 15 3.29E - 15 2	3.49E - 15 3.85E - 15 3
臓器 ID:38 足首と足 線源:海綿質	標的組織	AM TM50 (骨内膜) ((1) ((1) (1) (1) (1) (1) (1) (1) (1)	- 1.17E-17 9	- 1.73E -17	— 2.29E-17	— 3.37E-17	- 4.43E -17 3	- 5.48E -17	— 6.52E-17 5	8.61E-17	— 1.07E-16	- 1.59E -16	- 2.08E -16	- 2.96E -16	- 3.76E -16	- 4.49E -16 3	- 5.16E-16	- 6.36E -16	7.41E-16	- 9.57E $-16 6$	- 1.13E-15	- 1.41E-15 1	- 1.66E -15 1	- 1.82E -15	- 1.99E -15	— 2.28E-15	- 2.59E $-$ 15	- 3.01E -15	— 3.37E-15	— 3.98E-15
器 ID:36 下腿骨 {源:髓腔	票的組織	TM50 (前) 髄) (骨内膜) (衍	1.16E - 17	1.74E - 17	2.30E - 17	3.43E - 17	4.55E - 17	5.66E - 17	6.75E - 17	8.87E-17	$1.09 \mathrm{E} - 16$	1.59E - 16	2.07E - 16	2.95E - 16	3.74E - 16	4.45E - 16	5.12E - 16	6.36E - 16	7.41E - 16	9.60E - 16	1.14E - 15	1.42E - 15	1.67E - 15	1.83E - 15	2.00E - 15	2.31E - 15	$2.63\mathrm{E}\!-\!15$	3.09E - 15	3.52E - 15	4.30E - 15
·: 35 職 骨 手 新賀 参	1織	TM ₅₀ AM (骨内膜) (活性骨	.17E-17 —	.74E-17 —	.30E-17 —	.38E-17 —	.44E-17 —	.48E-17 —	.52E-17 —	.61E-17 —	.07E-16 —	.59E-16 —	.08E-16 —	.96E-16 —	.76E-16 —	.49E-16 —	.16E-16 —		.40E-16 —	.56E-16 —	.13E-15 —	.41E-15 —	.66E-15 —	.82E-15 —	.99E-15 —	28E-15 —	.60E-15 —	.02E-15 —	.37E-15 —	98E-15 —
議	標的剎	AM (活性骨髄)				<u>m</u>		<u>נ</u> ו									<u>0</u>		-									<u>m</u>		-
D:33 下半分 : 髄腔	組織	TM ₅₀ (骨内膜)	1.16E - 17	1.74E - 17	2.30E - 17	3.43E - 17	4.55E - 17	5.66E - 17	6.75E - 17	8.87E-17	1.09E - 16	1.59E-16	2.07E - 16	2.95E-16	3.74E - 16	4.45E - 16	5.12E - 16	6.36E - 16	7.41E - 16	9.60E - 16	1.14E - 15	1.42E - 15	1.67E - 15	1.83E - 15	2.00E - 15	2.31E - 15	2.63E - 15	3.09E - 15	3.52E - 15	4.30E - 15
藤器1 大腿骨, 線源:	標的	AM (活性骨髄)																												
中性子	エネルギー (eV)		1.00E + 03	1.50E + 03	2.00E + 03	3.00E + 03	4.00E + 03	5.00E + 03	6.00E + 03	8.00E + 03	1.00E + 04	$1.50E + 04_{ }$	$2.00E + 04_{ }$	$3.00E + 04_{ }$	$4.00E + 04_{ }$	5.00E + 04	6.00E + 04	8.00E + 04	1.00E + 05	1.50E + 05	2.00E + 05	3.00E + 05	$4.00E + 05_{ }$	5.00E + 05	6.00E + 05	8.00E + 05	1.00E + 06	$1.50E + 06_{ }$	2.00E + 06	3.00E + 06

表 E.1 (つづき)

$\begin{array}{c} 15 \\ 15 \\ 4 \\ 03E \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 1$	D:56 中 海綿寶 海織 小組織 TM ₅₀ (唱内膜)	1.04E-17 1.54E-17 2.04E-17 3.02E-17 3.02E-17 3.98E-17 4.94E-17 5.89E-17 7.77E-17 9.66E-17 1.43E-16 1.43E-16 1.86E-16 3.37E-16 4.03E-16 4.03E-16 3.37E-16 4.03E-16 () 3.37E-16 () 3.3
$\begin{array}{c} 15 \\ -15 \\ 4.28E \\ -15 \\ 5.4.44E \\ -15 \\ 5.14E \\ -15 \\ 5.14E \\ -15 \\ 5.50E \\ -15 \\ 6.24E \\ -15 \\ 6.22E \\ -15 \\ 7.07E \\ -15 \\ 7.07E \\ -15 \\ 7.93E \\ -15 \\ 8.56E \\ -15 \\ 9.38E \\ -11 \\ 2.03E \\ -11 \\ -11 \\ 2.03E \\ -11 \\ -11 \\ 2.03E \\ -11 $	職器] 職 總 還 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	1.07E-17 1.58E-17 2.08E-17 3.08E-17 4.05E-17 5.01E-17 5.01E-17 7.86E-17 1.44E-16 1.87E-16 1.87E-16 1.87E-16 3.38E-16 3.38E-16 4.03E-16 3.38E-16 4.03E-16
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	D:54 语 海綿質 海織 工M ₃₀ (骨内膜)	1.05E - 17 1.56E - 17 2.05E - 17 3.03E - 17 3.03E - 17 3.98E - 17 4.93E - 17 5.87E - 17 7.75E - 17 7.75E - 17 9.66E - 17 1.44E - 16 1.87E - 16 3.40E - 16 3.40E - 16 4.06E - 16
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	藤器 II 減 線 源 源 (活件雪簡)	1.07E-17 1.58E-17 2.09E-17 3.08E-17 4.06E-17 5.02E-17 5.02E-17 7.88E-17 7.88E-17 1.45E-16 1.45E-16 3.39E-16 4.05E-16 4.05E-16
$\begin{array}{c} 0.000 \\$	 52 進 進 一 第 (量 内膜) 	1.11E-17 1.64E-17 2.16E-17 3.19E-17 4.20E-17 5.19E-17 5.19E-17 6.18E-17 8.16E-17 8.16E-17 1.01E-16 1.96E-16 1.96E-16 1.96E-16 3.53E-16 4.21E-16 4.21E-16
$\begin{array}{c} \textbf{1.36E} - \textbf{15} \\ \textbf{1.36E} - \textbf{15} \\ \textbf{1.58E} - \textbf{15} \\ \textbf{1.58E} - \textbf{15} \\ \textbf{1.58E} - \textbf{15} \\ \textbf{1.518E} - \textbf{15} \\ \textbf{5.52E} - \textbf{15} \\ \textbf{5.53E} - \textbf{15} \\ \textbf{6.55E} - \textbf{15} \\ \textbf{6.55E} - \textbf{15} \\ \textbf{6.58E} \\ \textbf{12E} - \textbf{15} \\ \textbf{6.58E} \\ 6.5$	職器 II 職 總源:線 標的: 合M (活件骨簡)	1.07E-17 1.58E-17 2.09E-17 3.08E-17 4.06E-17 5.03E-17 5.03E-17 7.89E-17 7.89E-17 1.45E-16 1.45E-16 3.39E-16 4.05E-16 3.39E-16
	D:50 椎 海綿質 油織 TM ₃₀ (骨内膜)	1.10E-17 1.63E-17 2.16E-17 3.20E-17 4.21E-17 5.22E-17 6.22E-17 8.19E-17 8.19E-17 1.02E-16 1.95E-16 1.95E-16 1.95E-16 3.52E-16 4.20E-16 4.20E-16
4.87E 5.00E 5.30E 5.96E 5.96E 6.33E 6.33E 7.30E 8.23E 8.33E 8.33E 8.33E 9.62E 9.62E 1.03E 1.03E	職器 II 崩 線源: 標的: 石MI (活件骨簡)	1.07E-17 1.58E-17 2.09E-17 3.08E-17 4.06E-17 5.02E-17 5.02E-17 7.88E-17 7.88E-17 1.45E-16 3.39E-16 3.39E-16 4.04E-16 4.04E-16
	D:48 推 海綿質 組織 TMso (曡内膜)	$\begin{array}{c} 1.10E-17\\ 1.63E-17\\ 2.16E-17\\ 3.19E-17\\ 4.21E-17\\ 5.21E-17\\ 5.21E-17\\ 8.19E-17\\ 8.19E-17\\ 1.02E-16\\ 1.95E-16\\ 1.95E-16\\ 3.53E-16\\ 3.53E-16\\ 4.22E-16\\ 4.22E-16\\ 3.53E-16\end{array}$
4.36E 4.36E 4.36E 4.59E 5.20E 5.20E 6.58E 6.58E 7.17E 8.15E 8.36E 8.36E 8.36E 9.25E 1.01E	職器 II 適 換源: : 標的; 有M (活件唱簡)	1.07E-17 1.58E-17 2.09E-17 3.09E-17 4.07E-17 5.03E-17 5.03E-17 5.99E-17 7.90E-17 7.90E-16 1.45E-16 1.45E-16 3.40E-16 4.06E-16 4.06E-16
77E - 15 77E - 15 76E - 15 66E - 15 66E - 15 75 91E - 15 92E - 15 88E - 15 88E - 15 7 25E - 15 7 25E - 15 7 20E - 14 7 00E - 15 7 20E - 14 7 00E - 15 7 20E - 15 7 20	D:46 1-13 通給館 商総議 TMss (昰内膜)	$\begin{array}{c} 1.07E-17\\ 1.58E-17\\ 2.10E-17\\ 3.11E-17\\ 4.11E-17\\ 5.10E-17\\ 5.10E-17\\ 6.08E-17\\ 8.05E-17\\ 8.05E-17\\ 1.00E-16\\ 1.94E-16\\ 1.94E-16\\ 3.52E-16\\ 4.20E-16\\ 4.20E-16\\ 4.20E-16\end{array}$
1.0 1.0 1.0 1.0 1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0	職器工 周年 線源:: 標節; 標的; 人M	1.01E-17 1.48E-17 1.95E-17 2.85E-17 3.73E-17 3.73E-17 5.43E-17 7.10E-17 5.43E-17 7.10E-17 1.29E-16 1.29E-16 2.34E-16 2.34E-16 3.52E-16 3.52E-16
4.00E+06 5.00E+06 6.00E+06 8.00E+06 1.00E+07 1.50E+07 3.00E+07 3.00E+07 4.00E+07 5.00E+07 8.00E+07 1.00E+08 1.00E+08	中性子 エネルギー (eV)	$\begin{array}{c} 1.\ 00E + 03\\ 1.\ 50E + 03\\ 2.\ 00E + 03\\ 3.\ 00E + 03\\ 4.\ 00E + 03\\ 5.\ 00E + 03\\ 6.\ 00E + 04\\ 1.\ 50E + 04\\ 1.\ 50E + 04\\ 3.\ 00E + 04\\ 5.\ 00E + 04\\ 6.\ 00E + 04\\ 00E + 04\\ 6.\ 00E + 04\\$

ID:56 1 借	:海綿質	的組織	TM ₅₀ (骨内膜)	5.73E-16	6.69E-16	3 8.69E-16	5 1.03E-15	5 1.29E-15	5 1.68E-15	1.83E-15	5 2.11E-15	5 2.48E-15	5 2.85E-15	3.22E-15	3.79E-15	5 4.20E-15	5 4.30E-15	4.49E - 15	5 5.09E - 15	5.49E-15	6.40E-15	5 6.89E-15	5 7.42E-15	5 7.82E-15	5 8.04E-15	5 8.30E-15	5 8.96E-15	9.82E-15	1.33E-14	1
藏器	線源	標印	AM (活性骨髄)	5.70E - 16	6.64E - 16	8.57E-16	1.01E - 15	1.26E-15	1.61E-15	1.75E - 15	2.01E-15	2.36E-15	2.69E - 15	3.08E - 15	3.77E - 15	4.32E - 15	4.51E - 15	4.71E-15	5.28E-15	5.68E - 15	6.47E - 15	6.87E - 15	7.33E - 15	7.72E-15	7.93E - 15	8.20E - 15	8.85E-15	9.67E-15	1.30E - 14	
D:54 連	海綿質)組織	TM50 (骨内膜)	5.78E - 16	6.75E - 16	8.79E - 16	1.04E - 15	1.31E-15	1.69E - 15	1.85E - 15	2.13E - 15	2.47E - 15	2.82E - 15	3.18E - 15	3.76E - 15	4.15E - 15	4.23E - 15	4.39E - 15	4.94E - 15	5.32E - 15	$6.29 \mathrm{E} - 15$	6.80E - 15	7.31E - 15	7.72E - 15	7.95E - 15	8.22E - 15	8.88E-15	9.77E - 15	1.33E - 14	
臓器 I	線源:	標的	AM (活性骨髄)	5.73E - 16	6.68E - 16	8.62E - 16	1.02E - 15	1.27E-15	1.62E - 15	1.76E - 15	2.02E - 15	2.38E - 15	2.70E - 15	3.09E - 15	3.77E - 15	4.31E - 15	4.49E - 15	4.67E - 15	5.22E - 15	5.60E - 15	6.35E - 15	6.74E - 15	7.21E - 15	7.60E - 15	7.82E-15	8.09E - 15	8.75E - 15	9.59E - 15	1.29E - 14	
D:52 椎	海綿質	組織	TM ₅₀ (骨内膜)	5.96E-16	6.96E - 16	9.03E - 16	1.07E - 15	1.33E-15	1.70E - 15	1.85E - 15	2.12E - 15	2.47E - 15	2.80E - 15	3.11E - 15	3.62E - 15	3.99E - 15	4.03E - 15	4.19E - 15	4.75E - 15	5.15E - 15	6.03E - 15	6.51E - 15	7.03E - 15	7.41E - 15	7.61E - 15	7.85E - 15	8.48E - 15	9.30E - 15	1.26E - 14	
	線源:	標的	AM (活性骨髄)	5.74E - 16	6.68E - 16	8.63E - 16	1.02E - 15	1.27E-15	1.62E - 15	1.76E - 15	2.02E - 15	2.38E - 15	2.70E - 15	3.08E - 15	3.74E - 15	4.25E - 15	4.40E - 15	4.57E - 15	5.08E - 15	5.43E - 15	6.17E - 15	6.55E - 15	6.99E - 15	7.37E - 15	7.57E - 15	7.82E - 15	8.44E-15	9.24E - 15	1.24E - 14	
D:50	海綿質	組織	TM ₅₀ (骨内膜)	5.97E - 16	6.96E - 16	9.02E - 16	1.07E - 15	1.33E-15	1.71E - 15	1.86E - 15	2.14E - 15	2.48E - 15	2.82E - 15	3.15E - 15	3.69 E - 15	4.09 E - 15	4.17E - 15	4.35E - 15	4.96E - 15	5.38E - 15	6.30E - 15	6.81E - 15	7.35E - 15	7.76E - 15	7.98E - 15	8.24E - 15	8.89E-15	9.75E - 15	1.32E - 14	1
 	線源:	標的	AM (活性骨髄)	5.72E - 16	6.67E - 16	8.61E-16	1.02E - 15	1.27E-15	1.62E - 15	1.76E - 15	2.02E - 15	2.38E - 15	2.70E - 15	3.09E - 15	3.77E - 15	4.31E - 15	4.49E - 15	4.68E - 15	5.24E - 15	5.63E - 15	6.40E - 15	6.79E - 15	7.25E - 15	7.64E-15	7.85E - 15	8.11E-15	8.76E - 15	9.58E - 15	1.29E - 14	
D:48 椎	海綿質	組織	TM ₅₀ (骨内膜)	5.98E - 16	6.97E - 16	9.02E - 16	1.07E - 15	1.33E-15	1.71E - 15	1.86E - 15	2.13E - 15	2.48E - 15	2.80E - 15	3.13E - 15	3.66E - 15	4.04E - 15	4.09E - 15	4.25E - 15	4.80E - 15	5.19E - 15	6.06E - 15	6.57E - 15	7.11E-15	7.53E - 15	7.77E-15	8.05E - 15	8.72E-15	9.63E - 15	1.31E - 14	(AT A .
臓器 II 癰	線源:	標的	AM (活性骨髄)	5.75E - 16	6.69E - 16	8.64E - 16	1.02E - 15	1.27E-15	1.62E - 15	1.77E - 15	2.02E - 15	2.38E - 15	2.70E - 15	3.07E - 15	3.73E - 15	4.24E - 15	4.39E - 15	4.55E - 15	5.05E - 15	5.39E - 15	6.11E - 15	6.51E - 15	6.98E - 15	7.40E - 15	7.63E - 15	7.91E - 15	8.58E-15	9.44E - 15	1.28E - 14	し そ ハン オティー
D:46 1-唱	海綿質	組織	TM ₅₀ (骨内膜)	5.97E - 16	6.97E - 16	9.05E - 16	1.07E - 15	1.34E-15	1.74E - 15	1.90E - 15	2.18E - 15	2.53E - 15	2.92E - 15	3.28E - 15	3.86E - 15	4.26E - 15	4.28E - 15	4.46E - 15	5.01E - 15	5.38E - 15	6.26E - 15	6.77E - 15	7.32E - 15	7.72E - 15	7.94E - 15	8.18E - 15	8.85E - 15	9.73E - 15	1.33E - 14	101 + 101
」 職器 同日	線源:	標的	AM (活性骨髄)	4.94E - 16	5.73E - 16	7.32E-16	8.58E-16	1.06E-15	1.34E - 15	1.45E - 15	1.67E-15	2.00E - 15	2.34E-15	2.76E - 15	3.48E-15	4.04E-15	4.23E-15	4.44E - 15	5.02E - 15	5.41E - 15	6.19E - 15	6.57E-15	7.03E-15	7.43E-15	7.63E-15	7.89E-15	8.56E-15	9.36E - 15	1.26E - 14	
	中本	$-+\sqrt{+}$		8.00E + 04	1.00E + 05	1.50E + 05	2.00E+05	3.00E+05	5.00E+05	6.00E + 05	8.00E+05	1.00E + 06	1.50E + 06	2.00E + 06	3.00E + 06	4.00E+06	5.00E+06	6.00E + 06	8.00E + 06	1.00E + 07	1.50E + 07	2.00E+07	3.00E+07	4.00E+07	5.00E+07	6.00E+07	8.00E+07	1.00E + 08	1.50E + 08	

206 -

表 E.1 (つづき)

とめられている。

E.3 海綿質の線量を用いた骨格標的組織線量の近似

(E7) 中性子に対する線量応答関数の骨格平均値を,活性骨髄,骨髄全体および海綿質の カーマ係数とともに図 E.1 に示す。カーマ係数と活性骨髄および骨内膜の線量応答関数の間 の相対差を,海綿骨と骨髄髄質へ入射する中性子エネルギーの関数として図 E.2 に示す。1 eV 未満の中性子エネルギーでは,海綿質カーマは,活性骨髄の吸収線量を約 30%過小評価す

図 E.1 ICRP 標準コンピュータファントムの骨格平均中性子線量応答関数 (DRF) とカーマ係数 AM:活性骨髄,TM:全骨髄,TM₅₀:骨内膜, SP:海綿質

図 E.2 中性子カーマ係数と骨格における活性骨髄(AM)標的および骨内膜 (TM₅₀)標的の線量応答関数の間の相対差

ることが分かる。この相対差は、中性子エネルギーが増加するにつれて減少し、30 eV では 20%未満にまで、300 eV では 10%未満にまで、60 keV では 5%未満にまで、そして 20 MeV では 1%未満までになる。8 eV 未満の中性子エネルギーでは、海綿質カーマは、骨内膜の吸 収線量を約 45%過大評価することが分かる。この相対差は、8 eV から 1 keV のエネルギー範 囲で減少し、300 keV から 1 MeV のエネルギー範囲では、約 15~20%の間で一定になる。こ の相対差は、中性子エネルギーが増加するにつれて減少し、約 10 MeV を超えると約 3~4% になる。

E.4 参考文献

- Bahadori, A. A., Johnson, P. B., Jokisch, D. W., et al., 2011. Response functions for computing absorbed dose to skeletal tissues from neutron irradiation. *Phys. Med. Biol.* 56, 6873–6897.
- Jokisch, D. W., Rajon, D. A., Bahadori, A. A., et al., 2011a. An image-based skeletal dosimetry model for the ICRP reference adult—specific absorbed fractions for neutron-generated recoil protons. *Phys. Med. Biol.* 56, 6857–6872.
- Jokisch, D. W., Rajon, D. A., Patton, P. W., et al., 2011b. Methods for the inclusion of shallow marrow and adipose tissue in pathlength-based skeletal dosimetry. *Phys. Med. Biol.* 56, 2699–2713.
- Kerr, G. D., Eckerman, K. F., 1985. Neutron and photon fluence-to-dose conversion factors for active marrow of the skeleton. In: Schraube, H., Burger, G., Booz, J. (Eds.), Proceedings of the Fifth Symposium on Neutron Dosimetry. Commission of the European Communities, Luxembourg, pp. 133-145, 17-21 September 1984, Munich, Germany.

付属書 F 眼の水晶体の吸収線量を評価するための特別な考察

(**F1**) ICRP *Publication 103* (ICRP, 2007) には、最近の研究は、眼の水晶体の放射線感 受性が従来考えられていたよりも高い可能性を示唆していることが述べられている。その後、 眼の水晶体の放射線感受性についての詳細な再評価 (ICRP, 2012) により、2007 年勧告 (ICRP, 2007) がリスクを過小評価しているかもしれないと想定するまでに至っている。動物 モデルと被ばくしたヒトの集団からの新しいデータは、水晶体の混濁が、白内障を引き起こす と一般に考えられているよりもはるかに低い線量で起こることを示唆している。これらの知見 は、(1) 低い吸収線量でしきい値が存在する、あるいは(2) しきい線量値が全くない、のど ちらかと一致する。放射線誘発白内障に対するしきい線量は、現在、急性被ばくと分割被ばく の両方についておよそ 0.5 Gy であると考えられており、これは様々な最近の疫学的研究と一 致している。その結果、眼の水晶体の職業上の年等価線量限度は、150 mSv から、定められ た5年間の平均として 20 mSv に引き下げ、単年では 50 mSv を上回らない線量にすることが 勧告された (ICRP, 2012)。

(F2) 眼の水晶体の年線量限度は,等価線量 H_T で与えられている。そして,定義上,こ の値は,水晶体の体積にわたって平均された平均吸収線量 D_{T,R} に基づく。ICRP 第1専門委 員会は,今後も白内障誘発に関わる幹細胞の位置の評価を継続していくが,この付属書の線量 評価では,眼の水晶体の平均吸収線量を引き続き使用する。

(F3) しかし,眼の水晶体の組織内で,白内障誘発に関して電離放射線被ばくに対する感度に大きな違いがあることはよく知られている(CharlesとBrown, 1975)。1955年という早い時期においてでさえ,ICRPは最初の一般的勧告(ICRP, 1955)において,「臓器における放射線の空間分布が非常に不均一な場合には,物理的線量の平均値は,身体全体としての正常な生理的機能に関連した臓器の潜在的損傷を必ずしも示すことにはならない。したがって,そのような場合には,線量が最も高い臓器内の局所的な体積を考慮する必要がある。これは,重要な体積と呼ばれるかもしれない……。眼の水晶体にとっての重要な体積は,細胞核がある体積である」ということを述べた。この知見が,いくつかのグループが,水晶体内の感受性の高い細胞集団の線量という課題を,特に電子(Behrensら, 2009, 2010; Behrensと Dietze, 2010, 2011a; Nogueira ら, 2011)や低エネルギー光子(Behrens と Dietze, 2011b)のような眼の水晶体内で急な線量勾配を有する弱透過性放射線に対して,より深く追求する動機となった。最近では中性子に対する水晶体の線量評価の課題が研究されている(Manger ら, 2011)。

(F4) 標準コンピュータファントム (ボクセルサイズは,男性で2.137×2.137×8 mm³, 女性で1.775×1.775×4.84 mm³) では,眼の水晶体が比較的低いレベルの解像度で表されて いる。このため,課題グループは,急な線量勾配をもたらす照射に対する線量換算係数を評価 するために,電子,光子および中性子に対して,眼と水晶体の様式化されたモデルを採用する ことを決めた。Behrens ら (2009) の眼モデルは,Charles と Brown (1975) の推奨データに 基づいており,このモデルを光子,電子および中性子照射に対して採用した (図 F.1)。電子 照射については,裸眼モデルの被ばくを仮定した (図 F.2 左)。光子と中性子照射の計算 (Behrens と Dietze, 2011b; Manger ら, 2011) では,その眼のモデルを,光子では Adam と Eva (Kramer ら, 1982) を平均した数学モデルの頭部 (図 F.2 右) に組み入れ,中性子では UF-ORNL 数学ファントム (Han ら, 2006) に組み入れた。

図 F.1 モンテカルロ計算で, Behrens ら (2009) により採用された詳細な様式化され た眼モデル。寸法はすべて mm で示した。*M* は球の中心の *x* 位置を, Ø は対応する直径 を示す。(口絵参照)

図 F.2 モンテカルロ計算でモデル化された眼の三次元図(左)。様式化された 頭部ファントムに組み入れられた眼モデルの側面図(右)(Behrens と Dietze, 2011b)。(カラーは口絵参照)

(**F5**) 様式化されたファントムのより精緻な水晶体ジオメトリーにおける線量換算係数は, 以下の照射条件について計算した。光子は,前方-後方(AP),後方-前方(PA),側方 (LAT) および回転(ROT) ジオメトリーで5keV から10MeV,電子はAPジオメトリーで 100keV から12MeV,そして,中性子はAP,LAT およびROT ジオメトリーで0.001eV から10MeV である。

(F6) 眼の水晶体の基準データセットは、以下のように定めた。すなわち、(1) 光子では 10 keV から 2 MeV までのエネルギーで AP, PA, LAT および ROT ジオメトリー, (2) 電 子では 100 keV から 10 MeV までのエネルギーで AP ジオメトリー, そして (3) 中性子では 0.001 eV から 4 MeV のエネルギーで AP, LAT および ROT ジオメトリー。眼の水晶体の線 量換算係数は、図 F.1 と図 F.2 に示した様式化された眼モデルのファントムを使った計算か ら評価した。他のすべてのエネルギー,照射ジオメトリーおよび他の放射線タイプ(すなわ ち,陽電子,陽子,ミュー粒子,パイ中間子,ヘリウムイオン)に対しては、男性と女性の標 準コンピュータファントム内の眼の水晶体の換算係数の平均として,基準換算係数を評価し た。電子のデータを除いて,基準データは、両眼の平均として評価した。電子については、片 眼の裸眼でシミュレーションを行った。LAT ジオメトリーにおける換算係数は、左右のLAT ジオメトリーにおける換算係数の算術平均値である。

F.1 光 子

(**F7**) Behrens と Dietze (2011b) は、様式化された頭部ファントム [様式化された Adam と Eva ファントム (Kramer ら、1982)の頭部の平均サイズ] における眼の照射シミ ュレーションを、AP、PA、LAT および ROT ジオメトリーで入射する単一エネルギー光子 の幅広い平行ビームに対して行った。図 F.2 に詳細な様式化されたモデルを示す。計算は、 モンテカルロコード EGSnrc で行われた。この研究では、眼の水晶体の平均吸収線量に加え

図 F.3 男性および女性標準コンピュータファントムと様式化された眼モ デル(Behrens と Dietze, 2011b)を使って計算した前方 - 後 方(AP),側方(LAT),回転(ROT)照射に対するフルエンス あたりの眼の水晶体の吸収線量(単位:pGy・cm²)。感受性の高 い領域のデータも示している。すべての換算係数は,両眼の平均値であ る。実線の曲線は基準データを示す。

て、水晶体の感受性の高い領域の平均吸収線量も考慮された。図 F.3 には、AP, LAT および ROT ジオメトリーについて、Behrens と Dietze のデータを、標準コンピュータファントムを用いて計算した水晶体の線量とともに示す。すべての換算係数は、左右の眼の換算係数の 算術平均値として評価した。

(F8) 図F.3から, APジオメトリーに対して約20keV 未満の, それ以外のジオメトリー に対しては50keV 未満の光子エネルギーを除き,およそ2MeV までは,様式化されたモデ ルを使って Behrens と Dietze により評価された水晶体線量と,標準コンピュータファントム で計算した水晶体線量は良く一致していることが分かる。2MeV を超えると,様式化された モデルのデータは,標準コンピュータファントムのデータより小さくなる傾向がある。さら に,図F.3から,1MeV までのエネルギーの光子に対して,水晶体の感受性の高い領域の吸 収線量は,基準値によって適切に表されることが分かる。

(**F9**) 保守的なアプローチをとるために、2 MeV までのエネルギーでは、様式化されたモ デルからのデータを AP, PA, LAT および ROT ジオメトリーにおける基準換算係数に採用 した。その他のすべての状況では、基準水晶体換算係数は、男性および女性標準コンピュータ ファントムの水晶体線量換算係数の平均として評価した。平滑化処理した眼の水晶体の吸収線 量の基準換算係数を、表 F.1 に示す。

F.2 電 子

(F10) 図 F.4 には、AP ジオメトリーに対し、様式化された眼モデルで Behrens ら (2009, 2010) が計算した水晶体線量換算係数を、標準コンピュータファントムで計算された 水晶体線量換算係数とともに示す。1 MeV 未満では、詳細な様式化された眼モデルの水晶体 線量の方が、標準コンピュータファントムの低解像度の水晶体モデルの線量より著しく小さい ことが分かる。これは、男性標準ファントムの左右それぞれの眼には、ファントムの外表面に 位置し真空と直接接する水晶体ボクセルが1つずつあり、これが実際のジオメトリーと異なる ためである。しかし、1 MeV から 10 MeV の間のエネルギーでは、これらの値には良い一致 が見られる。

(F11) 本報告書で考慮している照射ジオメトリーのなかで、1 MeV 未満の電子エネルギ ーで唯一重要な水晶体の線量は、AP ジオメトリーで入射する電子によって生じる。したがっ て、電子エネルギーが1 MeV 未満では、AP ジオメトリーのデータは、その他のジオメトリ ーにおける線量についても保守的な高めの推定値と見なすことができる。ISO 照射で1 MeV を超えるエネルギー、そして PA 照射ですべてのエネルギーに対して、標準コンピュータファ ントムと詳細な眼モデルの間に有意差がないと予測される。

(F12) 上述の考察の結果として、本報告書に示した AP 照射に対する基準換算係数は、

100 keV から 10 MeV のエネルギーについては、様式化されたモデル(Behrens ら, 2010)の 計算結果を採用した。ISO ジオメトリーで 1 MeV 未満のエネルギーの電子については、AP ジオメトリーと同じ換算係数を使用した。他のすべての状況については、基準データは、標準 コンピュータファントムから得た値の平均として評価した。平滑化処理した眼の水晶体の吸収 線量の基準換算係数を、表F.2 に示す。

F.3 中 性 子

(F13) Manger ら(2011)は、Behrensと Dietze(2011b)の眼モデルを UF-ORNL 成人 ファントム(Han ら, 2006)の頭部に組み入れ、AP, LAT および ROT ジオメトリーで入射 する単一エネルギー中性子の幅広い平行ビームに対して照射シミュレーションを行った。計算 は、0.001 eV から 10 MeV までのエネルギーについて、モンテカルロコード MCNPX バージ ョン 2.6.0(Pelowitz, 2008)で行われた。この研究では、眼の水晶体の平均吸収線量に加え て、水晶体の感受性の高い領域の吸収線量も考慮された。モデル化された眼の三次元図を図 F.1 と図 F.2 に示す。AP, LAT および ROT ジオメトリーにおける水晶体全体と感受性の高 い領域のフルエンスあたりの線量を図 F.5 に示す。Manger らは、すべての中性子エネルギー 範囲およびすべての照射ジオメトリーにわたり、感受性の高い領域の線量は水晶体全体の線量 とほぼ同じであり、最大の差は入射中性子エネルギーが最小の場合の 13% であると結論づけ

ICRP Publication 116

図 F.5 男性および女性標準コンピュータファントムと様式化された眼モデ ル (Manger ら, 2011)を使って計算した,前方-後方 (AP), 側方 (LAT),回転 (ROT) ジオメトリーにおける中性子フルエン スあたりの眼の水晶体の吸収線量(単位:pGy・cm²)。感受性の高 い領域のデータも示している。すべての換算係数は,両眼の平均値であ る。実線の曲線は基準データを示す。

216 付属書 F 眼の水晶体の吸収線量を評価するための特別な考察

た。中性子の入射方向に関係なく,水晶体の感受性の高い領域と水晶体全体の吸収線量に大き な差は見られなかった。このことは,感受性の高い領域と水晶体全体のフルエンスに大きな差 はないことから予測された。

(F14) 図 F.5 には、標準ファントムを使って計算した水晶体の線量換算係数も示してい る。様式化されたモデルを使って評価した水晶体の吸収線量と標準コンピュータファントムで 計算した水晶体の吸収線量は、およそ 20 MeV までは非常に良く一致していることが分かる。 さらに、ほとんどの中性子エネルギーで、水晶体の感受性の高い領域の吸収線量は基準値によ って適切に表されることも分かる。AP と ROT ジオメトリーでの中性子入射において良く一 致していることから、他のすべての照射ジオメトリーについても標準コンピュータファントム を使って計算した換算係数は、水晶体全体と感受性の高い領域のより詳細なモデルについて得 られる換算係数を適切に表すと考えられることが結論づけられた。

(**F15**) したがって、本報告書に示した基準換算係数は、AP, LAT および ROT ジオメト リーでの中性子入射に対し、4 MeV までのエネルギーについては、Manger ら(2011)の結果 を採用した。他のすべての基準水晶体換算係数は、標準コンピュータファントムで計算した男 性と女性の平均値として評価した。平滑化処理した眼の水晶体の吸収線量の基準換算係数を、 表F.3 に示す。

F.4 参考文献

- Behrens, R., Dietze, G., 2010. Monitoring the eye lens: which dose quantity is adequate? *Phys. Med. Biol.* 55, 4047–4062.
- Behrens, R., Dietze, G., 2011a. Corrigendum. Monitoring the eye lens: which dose quantity is adequate? *Phys. Med. Biol.* 56, 511.
- Behrens, R., Dietze, G., 2011b. Dose conversion coefficients for photon exposure of the human eye lens. *Phys. Med. Biol.* 56, 415–437.
- Behrens, R., Dietze, G., Zankl, M., 2009. Dose conversion coefficients for electron exposure of the human eye lens. *Phys. Med. Biol.* 54, 4069–4087.
- Behrens, R., Dietze, G., Zankl, M., 2010. Corrigendum. Dose conversion coefficients for electron exposure of the human eye lens. *Phys. Med. Biol.* 55, 3937–3945.
- Charles, M. W., Brown, N., 1975. Dimensions of the human eye relevant to radiation protection (dosimetry). *Phys. Med. Biol.* 20, 202–218.
- Han, E. Y., Bolch, W. E., Eckerman, K. F., 2006. Revisions to the ORNL series of adult and pediatric computational phantoms for use with the MIRD schema. *Health Phys.* 90, 337–356.
- ICRP, 1955. Recommendations of the International Commission on Radiological Protection. Br. J. Radiol. 28(Suppl. 6), 1–92.
- ICRP, 2007. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 37 (2-4).
- ICRP, 2012. ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs: threshold doses for tissue reactions in a radiation protection context. ICRP Publication 118. *Ann. ICRP* 41(1-3).

- Kramer, R., Zankl, M., Williams, G., et al., 1982. The Calculation of Dose from External Photon Exposures Using Reference Human Phantoms and Monte Carlo Methods. Part I: the Male (Adam) and Female (Eva) Adult Mathematical Phantoms. GSF Report S-885. GSF—National Research Centre for Environment and Health, Neuherberg.
- Manger, R. P., Bellamy, M. B., Eckerman, K. F., 2011. Dose conversion coefficients for neutron exposure to the lens of the human eye. *Radiat. Prot. Dosim.* doi:10.1093/rpd/ncr202.
- Nogueira, P., Zankl, M., Schlattl, H., et al., 2011. Dose conversion coefficients for monoenergetic electrons incident on a realistic human eye model with different lens cell populations. *Phys. Med. Biol.* 56 (21), 6919–6934.
- Pelowitz, D. B. (Ed.), 2008. MCNPX User's Manual, Version 2.6.0. LA-CP-07-1473. Los Alamos National Laboratory, Los Alamos, NM.

エネルギー (MeV)	AP (前方 - 後方)	PA (後方 - 前方)	LAT (側方)	ROT (回転)	ISO (等方)
$\begin{array}{c} 0.01 \\ 0.015 \\ 0.02 \\ 0.03 \\ 0.04 \end{array}$	0.833 1.62 1.35 0.812 0.581	 0.0048 0.0201	0.0762 0.417 0.501 0.422 0.353	$\begin{array}{c} 0.277 \\ 0.657 \\ 0.616 \\ 0.432 \\ 0.336 \end{array}$	0.247 0.393 0.409 0.342 0.282
0.05 0.06 0.07 0.08 0.10	$\begin{array}{c} 0.483 \\ 0.450 \\ 0.455 \\ 0.482 \\ 0.559 \end{array}$	$\begin{array}{c} 0.0328 \\ 0.0417 \\ 0.0504 \\ 0.0590 \\ 0.0780 \end{array}$	$\begin{array}{c} 0.317 \\ 0.312 \\ 0.322 \\ 0.347 \\ 0.416 \end{array}$	$\begin{array}{c} 0.294 \\ 0.285 \\ 0.293 \\ 0.314 \\ 0.376 \end{array}$	$\begin{array}{c} 0.248 \\ 0.244 \\ 0.251 \\ 0.265 \\ 0.313 \end{array}$
$\begin{array}{c} 0.15 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \end{array}$	0.838 1.13 1.74 2.30 2.83	$\begin{array}{c} 0.142 \\ 0.225 \\ 0.427 \\ 0.659 \\ 0.907 \end{array}$	$\begin{array}{c} 0.642 \\ 0.912 \\ 1.45 \\ 1.97 \\ 2.46 \end{array}$	0.580 0.810 1.28 1.75 2.21	$\begin{array}{c} 0.484 \\ 0.686 \\ 1.13 \\ 1.59 \\ 2.04 \end{array}$
$0.6 \\ 0.8 \\ 1.0 \\ 1.5 \\ 2.0$	3.34 4.26 5.06 6.30 7.04	$ \begin{array}{r} 1.17 \\ 1.71 \\ 2.23 \\ 3.49 \\ 4.63 \\ \end{array} $	$2.94 \\ 3.81 \\ 4.62 \\ 6.30 \\ 7.61$	2.65 3.46 4.18 5.65 6.75	$2.46 \\ 3.23 \\ 3.93 \\ 5.27 \\ 6.34$
3.0 4.0 5.0 6.0 8.0	$ \begin{array}{r} 6.93 \\ 6.60 \\ 6.29 \\ 5.96 \\ 5.44 \\ \end{array} $	$ \begin{array}{r} 6.89 \\ 9.07 \\ 10.8 \\ 12.4 \\ 15.6 \end{array} $	$9.85 \\ 11.3 \\ 12.5 \\ 13.4 \\ 15.2$	$8.41 \\ 9.63 \\ 10.6 \\ 11.3 \\ 13.1$	
$ \begin{array}{r} 10.0 \\ 15.0 \\ 20.0 \\ 30.0 \\ 40.0 \\ \end{array} $	5.05 4.82 4.64 4.52 4.58	18.8 26.9 35.8 53.5 69.6	17.0 20.7 23.8 28.8 32.7	14.7 18.6 22.2 28.4 33.7	$ 15.8 \\ 20.4 \\ 23.4 \\ 29.7 \\ 34.6 $
$50.0 \\ 60.0 \\ 80.0 \\ 100 \\ 150$	$ \begin{array}{r} 4.64 \\ 4.68 \\ 4.80 \\ 4.92 \\ 5.22 \end{array} $	83.5 95.7 118 135 162	35.3 37.6 41.1 43.7 48.0	37.9 41.5 47.4 52.4 59.6	$\begin{array}{c} 40.0 \\ 43.4 \\ 51.3 \\ 57.9 \\ 65.6 \end{array}$
200 300 400 500 600	5.39 5.60 5.70 5.80 5.86	180 199 214 224 232	50.8 53.9 56.1 57.4 58.5	64.3 69.7 73.1 75.7 77.6	71.7 81.3 87.5 91.7 95.9
800 1,000 1,500 2,000 3,000	$5.96 \\ 6.01 \\ 6.15 \\ 6.22 \\ 6.28$	243 251 264 273 285	$59.9 \\ 60.6 \\ 62.0 \\ 63.0 \\ 64.0$	80.1 82.0 84.6 86.7 89.2	104 108 115 122 129
4,000 5,000 6,000 8,000 10,000	$ \begin{array}{r} 6.29 \\ 6.29 \\ 6.28 \\ 6.25 \\ 6.22 \end{array} $	293 299 304 313 320	$ \begin{array}{c} 64.8\\ 65.4\\ 66.1\\ 67.0\\ 67.1 \end{array} $	90.9 92.2 93.4 95.6 97.5	$ 137 \\ 143 \\ 146 \\ 148 \\ 149 $

表 F.1 いろいろなジオメトリーで入射する単一エネルギー光子に対するフルエンスあたりの 眼の水晶体の吸収線量(単位:pGy·cm²)

エネルギー (MeV)	AP (前方 - 後方)	PA (後方 - 前方)	ISO (等方)
$0.01 \\ 0.015$			
0.02			
0.03		_	_
0.04			—
0.05			_
0.06	_	_	—
0.08			
0.10	9.4E-4	_	9.4E-4
0.15	0.0017		0.0017
0.2	0.0026		0.0026
0.3	0.0048	7.3E-7	0.0048
0.4	0.0078	1.2E-3 7 3F-5	0.0078
0.5	0.0406	2.6E-4	0.0406
0.7	1 46	6 4E-4	1 46
0.8	9 97	0.0013	9 97
1.0	69.1	0.0026	22.6
1.5	307	0.0070	47.3
2.0	414	0.0141	71.0
3.0	373	0.0312	99.7
4.0	332	0.0592	115
5.0	314	0.114	123
6.0	306	0.171	128
8.0	302	0.375	142
10.0	301	0.675	160
15.0	309	1.98	184
30.0	309	19.0	208
40.0	309	78.3	262
50 0	309	170	277
60.0	309	246	290
80.0	309	300	304
100	309	329	316
150	309	372	330
200	309	401	336
300	309	440	349
400	308	458	365
600	308	472 483	381
800	308	506	305
1 000	308	524	405
1.500	308	559	422
2,000	309	586	434
3,000	308	626	454
4,000	308	657	470
5,000	308	682	477
6,000	308	704	483
8,000	307	740	492
10,000	307	762	498

表 F.2 いろいろなジオメトリーで入射する単一エネルギー電子に対するフルエンスあたりの 眼の水晶体の吸収線量(単位:pGy·cm²)

* 9.4E-4は9.4×10⁻⁴を示す。

エネルギー (MeV)	AP (前方 - 後方)	PA (後方 - 前方)	LAT (側方)	ROT (回転)	ISO (等方)
1.0E-9 1.0E-8 2.5E-8 1.0E-7 2.0E-7	2.32 2.73 2.80 2.87 2.86	0.283 0.329 0.327 0.322 0.331	$\begin{array}{c} 0.735 \\ 0.868 \\ 0.963 \\ 1.14 \\ 1.24 \end{array}$	0.949 1.12 1.20 1.28 1.34	0.786 0.848 0.855 0.863 0.871
5.0E-7 1.0E-6 2.0E-6 5.0E-6 1.0E-5	2.79 2.71 2.63 2.52 2.38	0.356 0.378 0.395 0.406 0.406	1.32 1.35 1.37 1.37 1.34	1.39 1.40 1.40 1.37 1.32	0.890 0.915 0.949 1.00 1.04
2.0E-5 5.0E-5 1.0E-4 2.0E-4 5.0E-4	2.28 2.16 2.06 1.95 1.82	$\begin{array}{c} 0.419 \\ 0.452 \\ 0.472 \\ 0.483 \\ 0.483 \end{array}$	$ \begin{array}{r} 1.31 \\ 1.25 \\ 1.22 \\ 1.18 \\ 1.16 \\ \end{array} $	$1.27 \\ 1.22 \\ 1.15 \\ 1.13 \\ 1.08$	1.07 1.09 1.09 1.08 1.05
$\begin{array}{c} 0.001\\ 0.002\\ 0.005\\ 0.01\\ 0.02 \end{array}$	1.77 1.80 1.97 2.28 2.93	$\begin{array}{c} 0.479 \\ 0.477 \\ 0.465 \\ 0.446 \\ 0.424 \end{array}$	$ \begin{array}{r} 1.13 \\ 1.11 \\ 1.14 \\ 1.27 \\ 1.51 \\ \end{array} $	$ \begin{array}{c} 1.05\\ 1.06\\ 1.10\\ 1.23\\ 1.52 \end{array} $	1.02 1.01 1.04 1.13 1.35
$\begin{array}{c} 0.03 \\ 0.05 \\ 0.07 \\ 0.10 \\ 0.15 \end{array}$	3.59 4.77 5.86 7.29 9.38	$\begin{array}{c} 0.417 \\ 0.420 \\ 0.417 \\ 0.415 \\ 0.423 \end{array}$	$ \begin{array}{r} 1.76 \\ 2.24 \\ 2.71 \\ 3.38 \\ 4.38 \\ \end{array} $	$ \begin{array}{r} 1.77 \\ 2.36 \\ 2.84 \\ 3.49 \\ 4.49 \\ \end{array} $	1.55 1.94 2.29 2.78 3.52
$\begin{array}{c} 0.2 \\ 0.3 \\ 0.5 \\ 0.7 \\ 0.9 \end{array}$	11.1 14.1 18.3 21.5 25.4	$\begin{array}{c} 0.440 \\ 0.493 \\ 0.644 \\ 0.837 \\ 1.07 \end{array}$	5.30 6.95 9.86 12.2 14.4	$5.41 \\ 6.91 \\ 9.47 \\ 11.5 \\ 13.4$	$\begin{array}{r} 4.20 \\ 5.45 \\ 7.64 \\ 9.58 \\ 11.3 \end{array}$
1.0 1.2 1.5 2.0 3.0	$27.0 \\ 29.0 \\ 30.6 \\ 34.2 \\ 40.5$	$ \begin{array}{r} 1.19 \\ 1.47 \\ 1.94 \\ 2.86 \\ 5.02 \\ \end{array} $	15.6 17.5 20.1 23.9 30.1	$14.5 \\ 16.2 \\ 18.2 \\ 21.0 \\ 26.5$	$ \begin{array}{c} 12.2 \\ 13.8 \\ 15.9 \\ 19.2 \\ 24.7 \end{array} $
$\begin{array}{c} 4.0\\ 5.0\\ 6.0\\ 7.0\\ 8.0 \end{array}$	47.0 52.8 57.2 59.2 61.2	7.41 9.88 12.3 14.7 17.0	35.2 38.4 42.0 45.2 47.9	31.836.640.543.446.0	29.2 33.1 36.4 39.4 42.0
9.0 10.0 12.0 14.0 15.0	62.8 64.2 66.2 67.7 68.2	19.2 21.3 25.2 28.7 30.4	50.4 52.6 56.3 59.3 60.6	48.2 50.3 53.8 56.5 57.5	$\begin{array}{r} 44.3 \\ 46.4 \\ 50.1 \\ 53.2 \\ 54.5 \end{array}$
$ \begin{array}{r} 16.0 \\ 18.0 \\ 20.0 \\ 21.0 \\ 30.0 \end{array} $	68.7 69.3 69.4 69.1 62.8	32.0 35.0 37.8 39.1 49.5	$\begin{array}{c} 61.8\\ 63.8\\ 65.5\\ 66.3\\ 70.7 \end{array}$	58.5 59.8 60.7 60.9 60.2	55.8 58.0 59.9 60.8 66.9

表 F.3 いろいろなジオメトリーで入射する単一エネルギー中性子に対するフルエンスあたりの

眼の水晶体の吸収線量(単位:pGy·cm²)

* 1.0E−9は1.0×10⁻⁹を示す。

(つづく)

エネルギー	AP	PA	LAT	ROT	ISO
(MeV)	(前方 - 後方)	(後方 - 前方)	(側方)	(回転)	(等方)
=0.0	10.0	65 5	c= c	co =	54.5
50.0	49.3	65.7	65.6	60.5	74.5
75.0	42.0	79.1	65.2	63.3	79.4
100	39.3	88.7	66.6	66.7	82.3
130	38.2	97.6	69.1	70.7	84.8
150	38.1	103	71.0	73.4	86.0
180	38.3	109	73.8	77.2	87.5
200	38.7	113	75.7	79.6	88.4
300	41.5	130	85.0	90.8	91.6
400	11.0	145	93.4	101	94.1
500	19.1	150	101	101	06.2
300	40.1	155	101	109	90.2
600	51.3	172	108	117	98.1
700	54.4	184	115	124	99.9
800	57.3	195	121	131	102
900	60.2	206	127	137	103
1,000	62.9	217	133	143	105
2,000	84.7	299	177	186	119
5,000	119	431	249	254	157
10,000	138	552	302	300	215

表 F.3 (つづき)

付属書 G 局所皮膚等価線量を評価するための特別な考察

(G1) ICRP Publication 103 (ICRP, 2007) において,委員会は, ICRP Publication 60 (ICRP, 1991) に示した実効線量限度と,皮膚,手/足および眼に関する等価線量限度を維持し,組織反応(確定的影響)の発生防止に適用できる等価線量限度を検討した。また,新たな情報,特に眼に関して進展があれば,更なる考察が必要である旨を注記した。眼の水晶体線量の評価につきその後加わった考察について,読者は,本報告書の付属書Fを参照されたい。

(G2) 放射線防護において,特定の臓器または組織にわたって平均化した吸収線量の平均 値は,確率的影響による損害と関連づけられる。臓器と組織の吸収線量を平均し,様々な臓器 と組織の加重平均線量を合算することは,放射線防護量である「実効線量」の基礎をなすもの である。平均値が臓器または組織のすべての領域の吸収線量をどの程度表しているかは,外部 被ばくの場合,被ばくの均一性と入射放射線の範囲に依存する。極端な部分被ばくの場合は, たとえ組織等価線量や実効線量が線量限度未満であるとしても,組織損傷が生じる可能性があ る。弱透過性放射線(例えば電子)の被ばくによるこのような状況を考慮するために,局所的 な皮膚線量に対して特別な限度が定められている。

(G3) 放射線リスクにさらされる皮膚組織である表皮の基底細胞は、標準ファントムのボ クセルジオメトリーによって表すことができない(ボクセルサイズは、男性で2.137× 2.137×8 mm³、女性で1.775×1.775×4.84 mm³)(ICRP, 2009)。基底細胞層の起伏と細胞の 限定された厚みから、実際上、衣服で保護されずに入射放射線に直接被ばくする皮膚のほとん どの部分に対して、感受性の高い層の深さを指定するには、50 µm から 100 µm(または 5~10 mg/cm²)の範囲が適切であると考えられる。実際の線量評価のために、委員会は、この細胞 層の合理的な平均深さとして 70 µm の深さを使用することを勧告している(ICRP, 1991, 2007)。委員会は、確率的影響の場合には、等価線量は皮膚の全面積で平均することができ、 20 mSv の年実効線量限度が十分な防護を与えると述べている(ICRP, 1991, 2007)。それゆ え、ボクセルファントムでの計算から導出され、本報告書の CD-ROM にある皮膚の換算係数 (フルエンスあたりの線量)は、実効線量の評価に適しており、そして、その年限度 20 mSv とともに用いれば、皮膚の確率的影響の発生を制限するのに十分である。しかし、これらの換 算係数は、組織反応(確定的影響)に関連する局所的な皮膚被ばくに対して指定された等価線 量を評価するための根拠とはならない。等価線量は、名目深さ 70 µm において、被ばくした 面積に関係なく、被ばくした皮膚 1 cm² で平均すべきである。この線量に適用される年限度は 224 付属書 G 局所皮膚等価線量を評価するための特別な考察

500 mSv である (ICRP, 1991, 2007)。

(G4) この付属書では、組織等価スラブに平行ビームで垂直入射する電子とアルファ粒子 の輸送をシミュレーションしたモンテカルロ計算によって導出した、フルエンスあたりの局所 的な皮膚線量のデータを示す。この目的のため、組織等価の立方体(10×10×10 cm³)の表面 中央に直径 7 cm の円状ビームを入射させたシミュレーションを、モンテカルロコード MCNPX バージョン 2.6.0 (Pelowitz, 2008) で行った。吸収線量は、皮膚表面の下 50 µm の 中心に置かれた面積 1 cm² で高さ 50 µm の円柱の体積にわたって平均した(すなわち、 50~100 µm の深さにわたって平均した)。粒子の垂直入射条件が、いかなる角度分布の換算係 数をも包含することを保証している*。換算係数は、表G.1と表G.2に示されており、図G.1 と図 G.2 に図示されている。

(G5) 上述したように、本報告書添付の CD-ROM に収載した皮膚の線量換算係数は、男性と女性のコンピュータファントムのすべての皮膚ボクセルにわたって平均されており、その

エネルギー (MeV)	D/Φ	エネルギー (MeV)	D/Φ
0.01	1.22E - 03	0.40	4.41E+02
0.015	2.80E - 03	0.50	3.82E + 02
0.02	4.73E-03	0.60	3.43E + 02
0.03	8.85E-03	0.80	3.15E + 02
0.04	1.47E - 02	1.0	3.04 E + 02
0.05	2.10E - 02	1.5	2.84E + 02
0.06	1.37E + 01	2.0	2.80 ± 02
0.07	2.15E + 02	3.0	2.64E + 02
0.08	6.62E + 02	4.0	2.59E + 02
0.09	1.08E + 03	5.0	2.59E + 02
0.10	1.40E + 03	6.0	2.59E + 02
0.15	1.21E + 03	8.0	2.67E + 02
0.20	8.41E + 02	10.0	2.62E + 02
0.30	5.38E + 02		

表 G.1 皮膚に垂直に入射する単ーエネルギー電子のフルエンスあたりの局所皮膚吸収線量 (D/Φ)(単位:pGy·cm²)

* 1.22E-3は1.22×10⁻³を示す。

表 G.2 皮膚に垂直に入射する単一エネルギーアルファ粒子のフルエンスあたりの局所皮膚吸収 線量 (D/Φ)(単位:μGy·cm²)

6.5 0.00111 8.5 0.128 6.8 0.0256 9.0 0.150 7.0 0.0420 9.5 0.172	エネルギー (MeV)	D/Φ	エネルギー (MeV)	D/Φ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.5 6.8 7.0 7.5 8.0	0.00111 0.0256 0.0420 0.0752 0.103	8.5 9.0 9.5 10.0	0.128 0.150 0.172 0.180

^{*(}訳注) 70 µm の深さの等価線量は,粒子の入射角度と入射エネルギーに依存し,この文章が意図 する垂直入射の換算係数が最大になる条件は限られている。70 µm 等価線量に対する電子 の入射角度およびエネルギー依存性については,ICRP Publication 74 の (272)-(278) 項 において詳しく検討されている。

図 G.1 皮膚に垂直に入射する単一エネルギー電子のフルエンスあたりの 局所皮膚吸収線量

結果は、実効線量換算係数を導き出すために用いられている。両ファントムのボクセルの厚さ (男性2.137 mm,女性1.775 mm)は、ここでは皮膚表面から50~100 µm にあるとしている 基底細胞層の厚みよりはるかに大きい。本付属書で表にまとめた局所皮膚線量換算係数は、以 下の点で標準ファントムによって計算した皮膚線量換算係数と異なる。すなわち、(1)外側の 226 付属書 G 局所皮膚等価線量を評価するための特別な考察

角質化した皮膚層(50 μm)を考慮し,(2)換算係数は,照射された基底細胞の質量にわたっ て平均している。基底細胞層に到達するだけのエネルギーがない入射電子とヘリウムイオン (アルファ粒子)については,局所皮膚線量換算係数はゼロであり,したがって,コンピュー タファントムのすべての皮膚ボクセルにおけるエネルギー沈着を平均することによって導出し た皮膚線量換算係数よりも数値的には小さくなる。入射粒子が,基底細胞層に到達して透過す るだけのエネルギーがある場合,局所皮膚線量換算係数は,標準ファントムで計算され CD-ROM に収載されている皮膚線量換算係数よりも大きくなる。これは,標準ファントムで 計算した皮膚線量換算係数が,指定された被ばくジオメトリー下で照射されたかどうかにかか わらず,コンピュータファントムのすべての皮膚ボクセルにわたって平均した値だからであ る。これらのエネルギーでは,局所皮膚線量換算係数は,すべての被ばくジオメトリーにおい て,人体で平均された換算係数を上回る。

G.1 参考文献

ICRP, 1991. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. *Ann. ICRP* **21**(1-3).

ICRP, 2007. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 37 (2-4).

ICRP, 2009. Adult reference computational phantoms. ICRP Publication 110. Ann. ICRP 39(2).

Pelowitz, D. B. (Ed.), 2008. MCNPX User's Manual, Version 2.6.0. LA-CP-07-1473. Los Alamos National Laboratory, Los Alamos, NM.

付属書 H 航空機乗務員の線量評価のための 上半球半等方照射の実効線量

(H1) 本報告書では、様々なモンテカルロ放射線輸送コードを使って ICRP/ICRU 成人標 準ファントム(ICRP, 2009)で計算した臓器吸収線量換算係数と実効線量換算係数を与えて いる。理想化された全身照射ジオメトリーである前方 - 後方(AP)、後方 - 前方(PA)、左側 方(LLAT)、右側方(RLAT)、回転(ROT)および等方(ISO)ジオメトリーを考慮してお り、これらのジオメトリーは、ほとんどの職業的に被ばくする人々の場を模擬するために推奨 されている(ジオメトリーの説明は 3.2 節参照)。

(H2) ICRP は、商用ジェット機の運行中における宇宙線による航空機乗務員の被ばくを 職業被ばくと見なすべきであると勧告している(ICRP, 1991, 2007)。2010 年に「航空機乗務 員の宇宙放射線被ばくによる線量の検証のための基準データ(Reference Data for the Validation of Doses from Cosmic Radiation Exposures of Aircraft Crew)」(ICRU, 2010)と題する ICRU/ICRP 共同報告書が出版された。航空機乗務員の年線量評価は、他の研究調査でも、実 効線量率の放射線輸送計算に基づいている。周辺線量当量と実効線量との関係より、周辺線量 当量の値から実効線量を計算することが可能である。

(H3) 航空機の巡航高度では,粒子フルエンス率と航空機乗務員の実効線量に寄与する銀 河宇宙線由来の主要成分は下方向を向いている(Ferrari と Pelliccioni, 2003; Battistoni ら, 2004, 2005; Sato と Niita, 2006; Sato ら, 2008, 2011)。このバイアスが及ぼす影響の大きさ は,航空機の構造による遮蔽の程度にも一部依存する。これは,特に中性子について当てはま る(Ferrari ら, 2004)。しかし,上半球半等方(superior hemisphere semi-isotropic, SS-ISO) 照射, ISO 照射および航空機乗務員の照射を模擬した条件の間の違いは大きくない(Sato ら, 2011)。

(H4) 巡航高度の航空機という場において,周辺線量当量から実効線量を推定するために, ISO または SS-ISO ジオメトリーの換算係数のいずれかを使うことによる不確かさは,測定や 計算におけるその他の不確かさに比べて小さい。ICRU Report 84 (ICRU, 2010) では,周辺 線量当量から SS-ISO 照射に対する実効線量への換算係数が,航空機乗務員の被ばく評価のた めに選ばれている。

(H5) 換算係数は、次のモンテカルロコードを使って決定した。すなわち、光子、電子、 陽電子は EGS4;中性子、陽子は PHITS;ミューマイナス粒子とミュープラス粒子は

228 付属書 H 航空機乗務員の線量評価のための上半球半等方照射の実効線量

FLUKA;パイマイナス中間子とパイプラス中間子は FLUKA と PHITS である。これらのコ ードに関する詳細な情報は、3.3 節を参照。統計的不確かさは、標準的な照射ジオメトリー (AP, PA, その他)で見られた値とほぼ同じであった。それらの値は、4.1 節から 4.6 節で 述べたように、光子、電子/陽電子、中性子および陽子では 5%未満、ミュー粒子とパイ中間 子では 0.5%未満であった。

(H6) SS-ISO 照射に対するフルエンスから実効線量への換算係数は、添付 CD-ROM に収載されている。これらの換算係数は、粒子フルエンスから周辺線量当量への換算係数 (Pelliccioni, 2000)と共に、大気中の粒子フルエンス率と基準条件(Ferrari ら, 2001)、並び に実効線量と周辺線量当量との関係(ICRU, 2010)を確立するために使われた。

(H7) ISO ジオメトリーは、立体角あたりの粒子フルエンスが方向に依存しない放射線場 と定義されていることに注意すべきである。したがって、ISO に対する換算係数 [cc(ISO)] は、以下の式によって SS-ISO の換算係数 [cc(SS-ISO)] と IS-ISO の換算係数 [cc(IS-ISO)] と関連づけられる。

$$cc(ISO) = \frac{cc(SS-ISO) + cc(IS-ISO)}{2}$$
(H.1)

上方向成分の換算係数 [すなわち,下半球半等方 (inferior hemisphere semi-isotropic) cc(IS-ISO)] は,上記の式から導出できる。

H.1 参考文献

- Battistoni, G., Ferrari, A., Pelliccioni, M., et al., 2004. Monte Carlo calculation of the angular distribution of cosmic rays at flight altitudes. *Radiat. Prot. Dosim.* **112**, 331-343.
- Battistoni, G., Ferrari, A., Pelliccioni, M., et al., 2005. Evaluation of the doses to aircrew members taking into consideration the aircraft structures. In: Smart, D. F., Worgul, B. V. (Eds.), Space Life Sciences: Aircraft and Space Radiation Environment. Elsevier Science, Oxford, pp. 1645–1652.
- Ferrari, A., Pelliccioni, M., 2003. On the conversion coefficients for cosmic ray dosimetry. *Radiat. Prot. Dosim.* 104, 211–220.
- Ferrari, A., Pelliccioni, M., Rancati, T., 2001. Calculation of the radiation environment caused by galactic cosmic rays for determining air crew exposure. *Radiat. Prot. Dosim.* 93, 101–114.
- Ferrari, A., Pelliccioni, M., Villari, R., 2004. Evaluation of the influence of aircraft shielding on the aircrew exposure through an aircraft mathematical model. *Radiat. Prot. Dosim.* 108, 91–105.
- ICRP, 1991. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Ann. ICRP 21 (1-3).
- ICRP, 2007. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 37 (2-4).

ICRP, 2009. Adult reference computational phantoms. ICRP Publication 110. Ann. ICRP 39(2).

- ICRU, 2010. Reference Data for the Validation of Doses from Cosmic Radiation Exposures of Aircraft Crew. ICRU Report 84. International Commission on Radiation Units and Measurements, Bethesda, MD.
- Pelliccioni, M., 2000. Overview of fluence-to-effective dose and fluence-to-ambient dose equivalent

conversion coefficients for high energy radiation calculated using the FLUKA code. *Radiat. Prot. Dosim.* **88**, 279–297.

- Sato, T., Endo, A., Zankl, M., et al., 2011. Fluence-to-dose conversion coefficients for aircrew dosimetry based on the new ICRP recommendations. *Prog. Nucl. Sci. Technol.* **1**, 134-137.
- Sato, T., Niita, K., 2006. Analytical functions to predict cosmic-ray neutron spectra in the atmosphere. *Radiat. Res.* **166**, 544–555.
- Sato, T., Yasuda, H., Niita, K., et al., 2008. Development of PARMA: PHITS-based analytical radiation model in the atmosphere. *Radiat. Res.* **170**, 244–259.

付属書 | 基準データの評価に使用した方法

(**I1**) 本報告書に示す線量換算係数の基準データは,表4.1 に挙げたいくつかのグループ が,様々なモンテカルロ放射線輸送コードで計算した線量換算係数を平均化および平滑化する ことで評価された。本付属書では,男性標準ファントムにおける中性子照射に対する副腎の線 量換算係数の評価手順を例にとって,基準データの評価手順を述べる。

(**12**) 男性の副腎について、4つのモンテカルロコード(PHITS, FLUKA, MCNPX およ び GEANT4) によって計算された吸収線量換算係数を図 I.1 に示す。すべてのデータの整合 性を注意深く検討し、データの違いの原因を分析した。もし、その違いがモンテカルロコード で適切でない輸送や相互作用モデルを使用したことに起因する場合には、そのデータは基準デ ータの評価から外した。

図1.1 モンテカルロコードを使って計算された生データ AP:前方-後方

(**I3**) 図 I.1 に示した採用されたすべての生(オリジナル)データから,課題グループ DOCAL によって指定されたエネルギー点での平均値を求めた。次に,図 I.2 に示すように, 様々なスムージング関数を使ってデータフィッティングを行い,中性子エネルギーの関数とし て吸収線量換算係数の滑らかな曲線を得た。データフィッティングに使用した平滑化関数は, 三次スプライン,最小二乗 B スプライン,非一様有理 B スプライン (de Boor, 1978) であ る。平滑化処理により得られたデータ曲線を使って,指定されたエネルギー点での吸収線量換

図 I.2 平均値と三次スプライン平滑化を使って得られたそれらのフィッ ティング曲線。x 軸と y 軸は対数 - 対数目盛に変換されている。AP: 前方 - 後方。

算係数を評価した。

(I4) 評価した値は, 生データと比較して妥当性を確認し (図I.3), 基準データセットとして定めた。

I.1 参考文献

de Boor, C., 1978. A Practical Guide to Splines. Springer-Verlag, New York.

付属書 J CD-ROM ユーザーガイド

(**J1**) 本報告書に添付した CD-ROM は,2007 年勧告(ICRP,2007)に従って,成人の標 準男性と標準女性(ICRP,2002,2007)を表す ICRP/ICRU 標準ファントム(ICRP,2009)を 使って計算した,様々な種類の外部被ばくにおける実効線量と臓器吸収線量の基準換算係数を 提供している。

(J2) CD-ROM は、13 のフォルダから構成されており、すべてのフォルダの内容は ASCII フォーマットで作成されている。フォルダ "Skeletal fluence to dose response functions"は、Microsoft Excel フォーマットでもデータを提供している。

(J3) フォルダ内の表の数値("Skeletal fluence to dose response functions"を除く)は、 実効線量換算係数と臓器線量換算係数の基準値であり、これらは、ICRP/ICRU標準ファント ムと様々なモンテカルロ放射線輸送コードで計算され(3.1節と3.3節参照)、その後に平均 化と平滑化の手法(付属書 I 参照)を適用して導出されたものである。

(J4) フォルダ "Effective" のデータは,光子,電子,陽電子,中性子,陽子,ミューマ イナス粒子とミュープラス粒子,パイマイナス中間子とパイプラス中間子,並びにヘリウムイ オンに対する実効線量換算係数の基準値を示した表である。

- ●換算係数は、以下の全身の理想化された照射ジオメトリーについて示されている。前方 後方(AP)、後方 前方(PA)、左側方(LLAT)、右側方(RLAT)、回転(ROT)および等方(ISO)(ジオメトリーの説明は3.2節参照)。
- フルエンスから実効線量への換算係数は、ICRP Publication 103 (ICRP, 2007) で記述されている手順に従い、臓器線量換算係数、放射線加重係数 w_R および組織加重係数 w_T から導出された。
- ●実効線量は、入射粒子フルエンスで規格化し、pSv・cm²の単位で表されている。10 MeV* までのエネルギーの光子については、自由空気中の空気カーマK_aあたりの実効線量の換算 係数も Sv/Gyの単位で表にまとめられている。

(J5) "Photons", "Electrons", "Positrons", "Neutrons", "Protons", "Negative pions", "Positive pions", "Negative muons", "Positive muons", および "He_ions" のフォルダのデ

^{*(}訳注) 本文と CD-ROM の表には 20 MeV までのデータが記載されており, 20 MeV までのエネ ルギーについて利用可能である。本書の (117), (124), (A3) の各項においても同様。

234 付属書 J CD-ROM ユーザーガイド

ータは、それぞれの粒子と考慮した個々の照射ジオメトリーに対して、以下の臓器の吸収線量 換算係数の基準値を示した表である。

- •赤色(活性)骨髄,結腸,肺,胃,乳房,卵巣,精巣,膀胱壁,食道,肝臓,甲状腺,骨内 膜,脳,唾液腺,皮膚,残りの組織,副腎,胸郭外(ET)領域,胆嚢,心臓,腎臓,リン パ節,筋肉,口腔粘膜,膵臓,前立腺,小腸,脾臓,胸腺,子宮/子宮頸部および眼の水晶 体。標的臓器とそれぞれの略号のリストについては,表4.2を参照。
- ●換算係数は、以下の全身の理想化された照射ジオメトリーについて示されている。AP、 PA、LLAT、RLAT、ROTおよびISO(ジオメトリーの説明は3.2節参照)。
- ●データは、男性と女性のファントムについて別々に示されている。
- ●臓器吸収線量は、粒子フルエンスで規格化し、pGy·cm²の単位で表されている。

(J6) フォルダ "Effective_SS_ISOandISO"のデータは、上半球半等方(SS-ISO)照射ジ オメトリーと ISO ジオメトリーにおける、光子、電子、陽電子、中性子、陽子、パイマイナ ス中間子とパイプラス中間子、並びに、ミューマイナス粒子とミュープラス粒子に対するフル エンスから実効線量への換算係数を示した表である。

●実効線量は、入射粒子フルエンスで規格化し、pSv·cm²の単位で表されている。

(**J7**) フォルダ "Skeletal fluence to dose response functions" には, 2つの Excel スプレ ッドシートがある。1つは光子 (付属書 D - 光子 DRF), もう1つは中性子 (付属書 E - 中性 子 DRF) のスプレッドシートである。さらに, 付属書 D と E の以下の表に対応する 5 つの ASCII ファイルが与えられている。

- 表 D.1 光子 DRF: ICRP Publication 110の標準ファントムの骨部位ごとに光子エネルギーの関数として表した,活性骨髄(AM)と骨内膜(TM₅₀)の光子フルエンスあたりの骨部位別吸収線量(Gy·m²)
- 表 D.2 MEAC 比,男性:ICRP の標準男性ファントム(成人)の骨部位ごとに光子エネルギーの関数として表した,活性骨髄(AM)の海綿質(SP)に対する質量エネルギー吸収係数の比,および骨髄全体(TM)の海綿質または骨髄髄質(MM)のいずれかに対する質量エネルギー吸収係数の比
- 表 D.3 MEAC 比,女性:ICRPの標準女性ファントム(成人)の骨部位ごとに光子エネルギーの関数として表した,活性骨髄(AM)の海綿質(SP)に対する質量エネルギー吸収係数の比,および骨髄全体(TM)の海綿質または骨髄髄質(MM)のいずれかに対する質量エネルギー吸収係数の比
- 表 D.4 DEF: 骨部位ごとに光子エネルギーの関数として表した,活性骨髄(AM)と骨内 膜(TM₅₀)の線量増加ファクターS
- 表 E.1 中性子 DRF: ICRP Publication 110の標準コンピュータファントムの骨部位ごと
 に中性子エネルギーの関数として表した,活性骨髄(AM)と骨内膜(TM₅₀)の中性子フ

ルエンスあたりの骨部位別吸収線量 (Gy·m²)

(**J8**) その他の Excel スプレッドシート(表 3.1 &表 3.2)と,このシートに対応する 2 つの ASCII ファイル(表 3.1,表 3.2)は、以下の情報を含んでいる。

- ●ICRPの標準男性と標準女性コンピュータファントム(成人)の,血液成分を含めた活性骨 髄,不活性骨髄および骨梁の元素組成
- ICRP の標準男性と標準女性コンピュータファントム (成人) の骨格組織質量

(**J9**) 最後に, CD-ROM には、上述のフォルダに収録されている基準臓器線量と実効線 量の換算係数を、表とグラフの形式で簡単に呼び出すことができる Excel スプレッドシート (ICRP116-DB) が含まれている。

* 注意 CD-ROM 収載のファイルは、次の番号で利用可能となる。 → 9e85827554

J.1 参考文献

- ICRP, 2002. Basic anatomical and physiological data for use in radiological protection: reference values. ICRP Publication 89. *Ann. ICRP* **32**(3/4).
- ICRP, 2007. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. *Ann. ICRP* **37** (2-4).
- ICRP, 2009. Adult reference computational phantoms. ICRP Publication 110. Ann. ICRP 39(2).

ICRP Publication 116 外部被ばくに対する放射線防護量 のための換算係数

2015 年 3 月 27 日 初版第 1 刷発行

翻訳 遠 藤 章

編集 ICRP勧告翻訳検討委員会

発行 公益社団法人日本アイソトープ協会
 〒113-8941 東京都文京区本駒込二丁目 28 番 45 号
 電 話 学術・出版 (03)5395-8082
 URL http://www.jrias.or.jp

発売所 丸善出版株式会社

© The Japan Radioisotope Association, 2015 Printed in Japan

印刷·製本 中央印刷株式会社

ISBN 978-4-89073-247-0 C3340

Corrigenda

Corrigenda to ICRP *Publication 116*: Conversion Coefficients for Radiological Protection Quantities for External Radiation Exposures [Ann. ICRP 40(2–5) 2010]

The following errors were introduced into some of the data in Tables A.1, A.2, B.7, B.10, and G.2. Asterisks in the tables below highlight changes in the numerical values from the original values. Supplementary data files v2 available at the publisher's website reflect these corrections.

Energy (MeV)	AP	PA	LLAT	RLAT	ROT	ISO
0.01	0.0685	0.0184	0.0189	0.0182	0.0337	0.0288
0.015	0.156	0.0155	0.0416	0.0390	0.0665^{*}	0.0560
0.02	0.225	0.0261*	0.0654*	0.0573	0.0988^{*}	0.0813*
0.03	0.312*	0.0946^{*}	0.109^{*}	0.0886^*	0.159^{*}	0.127
0.04	0.350^{*}	0.163*	0.138*	0.113^{*}	0.199	0.158
0.05	0.369^{*}	0.209^{*}	0.158^{*}	0.132*	0.226	0.180
0.06	0.389^{*}	0.243*	0.174^{*}	0.149^{*}	0.248	0.198^{*}
0.07	0.411*	0.273^{*}	0.191*	0.165*	0.273	0.218
0.08	0.443*	0.302^{*}	0.211*	0.183^{*}	0.297	0.238^{*}
0.1	0.518^{*}	0.363*	0.255^{*}	0.224^{*}	0.356^{*}	0.286^{*}
0.15	0.747^{*}	0.543*	0.391*	0.346*	0.529^{*}	0.429
0.2	1.00	0.745^{*}	0.546^{*}	0.489^{*}	0.722^{*}	0.589
0.3	1.51	1.16	0.880^{*}	0.797^*	1.12	0.932

Table A.1. Photons: effective dose per fluence, in units of $pSv cm^2$, for monoenergetic particles incident in various geometries.

Energy (MeV)	AP	PA	LLAT	RLAT	ROT	ISO
0.4	2.00	1.58*	1.23*	1.12*	1.53*	1.28
0.5	2.47	1.99^{*}	1.57*	1.45	1.92	1.63
0.511	2.52	2.03	1.61*	1.48^{*}	1.97^{*}	1.66^{*}
0.6	2.91	2.39*	1.91*	1.77^{*}	2.31*	1.97
0.662	3.17	2.63*	2.12*	1.97^{*}	2.54	2.17
0.8	3.73	3.14*	2.57*	2.40^{*}	3.04	2.62
1.0	4.49	3.84*	3.21*	3.02*	3.73*	3.25
1.117	4.90	4.23*	3.56*	3.36*	4.10	3.60
1.33	5.60*	4.90^{*}	4.18*	3.97^{*}	4.75	4.21*
1.5	6.12	5.41*	4.66*	4.43*	5.24	4.67^{*}
2.0	7.48	6.77*	5.94*	5.68*	6.56*	5.91*
3.0	9.75	9.13*	8.18*	7.88^{*}	8.85*	8.08
4.0	11.7	11.2	10.2	9.84*	10.9^{*}	10.0
5.0	13.4	13.2*	12.0	11.6*	12.7	11.8
6.0	15.0	15.0	13.7	13.3*	14.4	13.5
6.129	15.1	15.2	13.9	13.5*	14.6	13.7
8.0	17.8	18.6	16.9*	16.6	17.6	16.6
10.0	20.5	22.1*	20.0^{*}	19.7	20.7^{*}	19.7^{*}
15.0	26.1	30.4*	27.3*	27.1	27.7	26.8
20.0	30.8	38.2	34.4	34.3*	34.4	33.8
30.0	37.9	51.3*	47.4	48.0^{*}	46.0*	46.1
40.0	43.2*	61.8*	59.3 [*]	60.9	56.0	56.9
50.0	47.1	70.1*	69.7*	72.3*	64.3*	66.1*
60.0	50.1	76.5 [*]	78.6^{*}	82.1*	71.1*	74.1
80.0	54.5	86.2*	92.9*	98.1*	81.8*	87.1*
100	57.8	92.7*	103	110	89.5*	97.5
150	63.2*	103*	122*	130	102	116
200	67.2*	110^{*}	134*	144*	110^{*}	129*
300	72.3	118*	149*	161	121	147
400	75.4*	123*	159*	173*	128	159
500	77.4*	127*	166*	181*	132*	167^{*}
600	78.7^{*}	130*	171*	187^{*}	136	174
800	80.4^{*}	134*	179*	195	141*	185
1000	81.6*	137*	184*	202*	145	193
1500	83.7*	141*	194*	213*	151*	208
2000	85.0*	144*	200^{*}	220	156	218
3000	86.6*	147*	208^{*}	230^{*}	161	232

Table A.1. (continued)

Energy (MeV)	AP	PA	LLAT	RLAT	ROT	ISO
4000	87.8*	149*	213*	236*	164*	242*
5000	88.6^*	151*	217^{*}	241*	167^{*}	251
6000	89.1*	152*	221*	245^{*}	169*	258
8000	89.9^*	153*	226^{*}	251	172	268
10,000	90.4^{*}	154*	230^{*}	256^{*}	174^{*}	276

Table A.1. (continued)

AP, antero-posterior; PA, postero-anterior; LLAT, left lateral; RLAT, right lateral; ROT, rotational; ISO, isotropic.

Table A.2. Photons: effective dose per air kerma free-in-air, in units of Sv Gy⁻¹, for monoenergetic particles incident in various geometries.

Energy (MeV)	AP	PA	LLAT	RLAT	ROT	ISO
0.01	0.0090	0.0024	0.0025	0.0024	0.0044	0.0038
0.015	0.0486^{*}	0.0048	0.0130	0.0122	0.0207	0.0175
0.02	0.131*	0.0151	0.0379	0.0332	0.0572^{*}	0.0471^{*}
0.03	0.422^{*}	0.128^{*}	0.148^{*}	0.120*	0.215^{*}	0.171
0.04	0.798^{*}	0.371^{*}	0.315*	0.258^{*}	0.455	0.360^{*}
0.05	1.12*	0.638^{*}	0.480^{*}	0.402*	0.688	0.547^{*}
0.06	1.33	0.832^{*}	0.595^{*}	0.508^{*}	0.850	0.679^*
0.07	1.42	0.940^{*}	0.659^{*}	0.569^{*}	0.939	0.751
0.08	1.43*	0.980^{*}	0.684^*	0.594^{*}	0.964^{*}	0.773
0.1	1.39	0.975^{*}	0.685^{*}	0.601^{*}	0.954^{*}	0.768^{*}
0.15	1.25	0.906^{*}	0.651*	0.577^{*}	0.882^*	0.715
0.2	1.17	0.869^*	0.637^{*}	0.570^{*}	0.843*	0.687
0.3	1.09	0.840^{*}	0.637^{*}	0.577^{*}	0.814^*	0.674^*
0.4	1.06	0.834^{*}	0.648^*	0.592^{*}	0.807^*	0.678
0.5	1.04	0.836^{*}	0.660^{*}	0.608^*	0.808^{\ast}	0.684
0.511	1.03	0.836^{*}	0.661*	0.610^{*}	0.808^{*}	0.685
0.6	1.02	0.839^{*}	0.673^{*}	0.623*	0.811^{*}	0.692
0.662	1.02	0.841^{*}	0.680^{*}	0.632*	0.814^*	0.697
0.8	1.01	0.848^{*}	0.695^{*}	0.649^{*}	0.822^{*}	0.708
1.0	1.00	0.857^{*}	0.716^{*}	0.673*	0.831*	0.725
1.117	0.999	0.863^{*}	0.726^{*}	0.686^{*}	0.837^{*}	0.734
1.33	0.996	0.872^{*}	0.745^{*}	0.706^{*}	0.846	0.749^{*}
1.5	0.996	0.880^{*}	0.758^{*}	0.721*	0.853	0.760^{*}

Energy (MeV)	AP	PA	LLAT	RLAT	ROT	ISO
2.0	0.990	0.895^{*}	0.785^{*}	0.752*	0.868^{*}	0.782^{*}
3.0	0.977	0.915^{*}	0.820^{*}	0.790^{*}	0.887^{*}	0.810
4.0	0.960	0.924^{*}	0.837^{*}	0.810^{*}	0.894^*	0.824
5.0	0.943	0.928^{*}	0.844^*	0.821^{*}	0.894^*	0.832^{*}
6.0	0.924	0.928^{*}	0.846^{*}	0.824^*	0.890^{*}	0.832
6.129	0.922^{*}	0.928^{*}	0.845^{*}	0.824^*	0.889^*	0.832
8.0	0.886	0.923^{*}	0.841^{*}	0.823^{*}	0.875^{*}	0.826^{*}
10.0	0.848	0.914^{*}	0.830^{*}	0.815^{*}	0.856	0.814
15.0	0.756	0.881^*	0.793^{*}	0.785^{*}	0.804	0.779^{*}
20.0	0.679	0.843	0.758^{*}	0.757^{*}	0.759	0.745^{*}

Table A.2. (continued)

AP, antero-posterior; PA, postero-anterior; LLAT, left lateral; RLAT, right lateral; ROT rotational; ISO, isotropic.

Table B.7. Photons, female: oesophagus absorbed dose per fluence, in units of $pGy \text{ cm}^2$, for monoenergetic particles incident in various geometries.

Energy (MeV)	AP	PA	LLAT	RLAT	ROT	ISO
0.01	4.6E-5*	4.7E-8*	1.4E-6*	1.7E-6*	2.7E-6*	4.0E-5*
0.015	0.0141^{*}	4.1E-6*	1.1E-4 [*]	1.2E-4 [*]	0.0025^{*}	0.0013*
0.02	0.0754^{*}	0.0021^{*}	0.0025^{*}	0.0040^{*}	0.0204^{*}	0.0129*
0.03	0.201^{*}	0.0510^{*}	0.0257^{*}	0.0297^{*}	0.0865^{*}	0.0545^{*}
0.04	0.261*	0.140^{*}	0.0602^{*}	0.0570^{*}	0.149^{*}	0.102^{*}
0.05	0.300^{*}	0.211*	0.0890^{*}	0.0827^*	0.189^{*}	0.136*
0.06	0.331*	0.260^{*}	0.110^{*}	0.101^{*}	0.222^*	0.164^{*}
0.07	0.360^{*}	0.289^*	0.130^{*}	0.120^{*}	0.249^{*}	0.199^{*}
0.08	0.393^{*}	0.330^{*}	0.149^{*}	0.139*	0.283^*	0.217^{*}
0.1	0.470^{*}	0.410^{*}	0.189^{*}	0.178^*	0.347^{*}	0.268^*
0.15	0.702^{*}	0.621*	0.302^*	0.288^{*}	0.530	0.408^{*}
0.2	0.948^{*}	0.844^*	0.437^{*}	0.411^{*}	0.725^{*}	0.565^{*}
0.3	1.44^{*}	1.30^{*}	0.731*	0.690^{*}	1.15*	0.898^{*}
0.4	1.94^{*}	1.75^{*}	1.03^{*}	0.987^{*}	1.57^{*}	1.23^{*}
0.5	2.41*	2.19^{*}	1.35*	1.28^{*}	1.98^{*}	1.58^{*}
0.511	2.44^{*}	2.23^{*}	1.38^{*}	1.32^{*}	2.03^{*}	1.60^{*}
0.6	2.82^{*}	2.61*	1.67^{*}	1.59^{*}	2.41*	1.91^{*}
0.662	3.07^{*}	2.84^{*}	1.89^{*}	1.78^{*}	2.64*	2.12^{*}
0.8	3.66*	3.35*	2.33*	2.21*	3.16*	2.60^{*}

Energy (MeV)	AP	PA	LLAT	RLAT	ROT	ISO
1.0	4.41*	4.09^{*}	2.95*	2.78^{*}	3.84*	3.27*
1.117	4.84^{*}	4.51*	3.28^{*}	3.11*	4.24*	3.67*
1.33	5.54*	5.23*	3.85*	3.67^{*}	4.90^{*}	4.26^{*}
1.5	6.05^{*}	5.75^{*}	4.28^{*}	4.14*	5.40*	4.72^{*}
2.0	7.46^{*}	7.08^{*}	5.53*	5.40*	6.84^{*}	5.99^{*}
3.0	9.95*	9.34*	7.73*	7.68^{*}	9.35*	8.13*
4.0	12.1*	11.4*	9.79^{*}	9.63*	11.5^{*}	10.2^{*}
5.0	14.2	13.4*	11.6*	11.6*	13.3*	12.1*
6.0	16.1	15.4*	13.5*	13.5*	15.1*	13.9^{*}
6.129	16.4	15.7^{*}	13.6*	13.8*	15.4^{*}	14.1^{*}
8.0	19.9	19.4*	17.3*	17.0^{*}	18.9^{*}	17.5^{*}
10.0	23.3^{*}	23.1*	20.8^{*}	20.3*	22.5^{*}	20.9^{*}
15.0	30.6*	32.3*	28.8^{*}	28.5^{*}	31.0*	29.7^{*}
20.0	36.5*	41.0^{*}	37.1*	37.2^{*}	38.9*	38.1*
30.0	45.5^{*}	53.4*	54.3*	53.5*	52.1*	51.8*
40.0	51.5*	61.7^{*}	69.2^{*}	68.5^{*}	62.2^{*}	63.7^{*}
50.0	55.6*	67.9^{*}	81.2*	81.6*	70.3^{*}	73.1*
60.0	58.6^*	72.4^{*}	91.2*	92.6*	76.6^{*}	81.6*
80.0	63.1*	80.4^*	107^{*}	110^{*}	86.3*	94.9*
100	66.4*	84.7^{*}	119*	121*	93.3*	105^{*}
150	71.8^*	93.2*	139*	141^{*}	105^{*}	123*
200	76.3 [*]	97.6^{*}	151*	155^{*}	112^{*}	135*
300	82.2^{*}	103^{*}	166*	173*	120^{*}	150^{*}
400	85.2*	108^{*}	175*	184^{*}	126*	160^{*}
500	86.9*	111*	183*	192*	129^{*}	167^{*}
600	87.8^*	114*	188^{*}	198^{*}	132*	174^{*}
800	89.4^{*}	116*	196*	206^{*}	136*	184^{*}
1000	90.7^{*}	118^{*}	201^{*}	211*	138^{*}	192*
1500	93.1*	120^{*}	211*	220^{*}	143*	204^{*}
2000	94.2^{*}	122*	218^{*}	226^{*}	147^{*}	213*
3000	95.7^{*}	124*	226^{*}	235*	149^{*}	225^{*}
4000	97.5^{*}	126*	229^{*}	241*	152^{*}	234*
5000	98.7^{*}	127*	232*	245^{*}	154*	243*
6000	99.4 [*]	128*	235^{*}	247*	155^{*}	250^{*}
8000	100^{*}	129*	241*	248*	158^{*}	262*
10,000	100^{*}	129*	247^{*}	248*	159^{*}	272^{*}

Table B.7. (continued)

AP, antero-posterior; PA, postero-anterior; LLAT, left lateral; RLAT, right lateral; ROT rotational; ISO, isotropic.

Energy (MeV)	AP	PA	LLAT	RLAT	ROT	ISO
0.01	0.0023	8.0E-4	0.0011	0.0012	0.0014	0.0017
0.015	0.0370	0.0114^{*}	0.0130^{*}	0.0119	0.0177	0.0135
0.02	0.0966^{*}	0.0361*	0.0347^{*}	0.0271	0.0469^{*}	0.0346
0.03	0.210^{*}	0.120^{*}	0.0888^*	0.0676^{*}	0.122^{*}	0.0883^*
0.04	0.273^{*}	0.187^{*}	0.129*	0.105^{*}	0.178^{*}	0.131*
0.05	0.308^{*}	0.231*	0.156*	0.130*	0.215^{*}	0.159^{*}
0.06	0.335^{*}	0.265^{*}	0.176^{*}	0.150*	0.239*	0.182^{*}
0.07	0.368*	0.296^{*}	0.197^{*}	0.171^{*}	0.266^{*}	0.203^{*}
0.08	0.395*	0.328^{*}	0.219*	0.191*	0.292^{*}	0.225^{*}
0.1	0.470^{*}	0.399^{*}	0.267^{*}	0.235^{*}	0.355^{*}	0.273^{*}
0.15	0.687^{*}	0.596^{*}	0.414^{*}	0.370^{*}	0.533^{*}	0.414^{*}
0.2	0.925^{*}	0.813*	0.580^{*}	0.524^{*}	0.733^{*}	0.572^{*}
0.3	1.41*	1.26*	0.939^{*}	0.855^{*}	1.15*	0.910^{*}
0.4	1.88^{*}	1.70^{*}	1.31*	1.20^{*}	1.56*	1.25*
0.5	2.33*	2.12*	1.68^{*}	1.54*	1.96*	1.60^{*}
0.511	2.38^{*}	2.17^{*}	1.72^{*}	1.57^{*}	2.00^{*}	1.63*
0.6	2.76^{*}	2.53*	2.04^{*}	1.87^{*}	2.35*	1.93*
0.662	3.01*	2.78^{*}	2.26^{*}	2.08^{*}	2.59*	2.14*
0.8	3.56*	3.31*	2.73*	2.53*	3.10*	2.59^{*}
1.0	4.30*	4.03*	3.39*	3.17*	3.80*	3.21*
1.117	4.71*	4.42*	3.76*	3.53*	4.19*	3.57*
1.33	5.40*	5.11*	4.40^{*}	4.16*	4.86*	4.19*
1.5	5.93*	5.63*	4.90^{*}	4.63*	5.36*	4.65*
2.0	7.33*	7.02^{*}	6.23*	5.92*	6.72*	5.93*
3.0	9.75*	9.40^{*}	8.56^{*}	8.20^{*}	9.09*	8.22*
4.0	11.9*	11.5	10.6^{*}	10.2	11.2*	10.3
5.0	13.8	13.5*	12.6*	12.1	13.1	12.1*
6.0	15.7^{*}	15.3*	14.4^{*}	13.9	15.0^{*}	13.9*
6.129	15.9*	15.6*	14.6*	14.1	15.2	14.1*
8.0	19.1*	18.9^{*}	17.9^{*}	17.4*	18.5	17.2^{*}
10.0	22.4*	22.4*	21.3*	20.7^{*}	21.9	20.5^{*}
15.0	29.4*	30.6*	29.2^{*}	28.7	29.9*	28.2^{*}
20.0	35.6*	38.6	36.8	36.4	37.2*	35.9*
30.0	44.7*	50.7*	50.2*	50.6	49.2*	49.4*
40.0	51.0	59.8*	62.0*	63.4*	59.0 [*]	60.6

Table B.10. Photons, female: remainder absorbed dose per fluence, in units of pGy cm^2 , for monoenergetic particles incident in various geometries.

Energy (MeV)	AP	PA	LLAT	RLAT	ROT	ISO
50.0	55.6*	66.7^{*}	72.0*	74.3	67.0^{*}	70.1*
60.0	59.3 [*]	71.8^*	80.3*	83.5*	73.3*	78.2^*
80.0	64.6*	79.8^{*}	92.9*	98.2^{*}	83.3*	91.5*
100	68.5^{*}	85.2^{*}	102^{*}	109^{*}	90.3*	102^{*}
150	75.2^{*}	94.1*	117^{*}	128	102^{*}	120^{*}
200	79.8^*	100^{*}	128^{*}	140^{*}	109^{*}	133*
300	85.8^{*}	107^{*}	141*	155*	118^{*}	150^{*}
400	89.6*	111*	149*	166*	124*	161*
500	92.0*	114*	154*	173*	128^{*}	169*
600	93.6*	117^{*}	159*	178^{*}	132*	175^{*}
800	95.4^{*}	120*	165*	186^{*}	136*	185^{*}
1000	97.1*	123*	169*	192*	139*	193*
1500	99.6 [*]	126*	177^{*}	201*	144^{*}	206^{*}
2000	101^{*}	129*	182*	208^*	148^{*}	216*
3000	103^{*}	131*	188^{*}	216^{*}	152^{*}	230^{*}
4000	105^{*}	133*	192*	222^{*}	155^{*}	240^{*}
5000	106^{*}	134*	195*	226^{*}	157^{*}	247^{*}
6000	106^{*}	135*	197^{*}	230^{*}	159^{*}	254*
8000	107^{*}	136*	201^{*}	235*	161*	263*
10,000	107^{*}	136*	204^{*}	239^{*}	162^{*}	270^{*}

Table B.10. (continued)

AP, antero-posterior; PA, postero-anterior; LLAT, left lateral; RLAT, right lateral; ROT rotational; ISO, isotropic.

Table G.2. Local skin absorbed dose per fluence (D/Φ) , in μ Gy cm², for monoenergetic alpha particles normally incident on skin.

Energy (MeV)	D/Φ
6.5	0.00111
6.8	0.0256
7.0	0.0420
7.5	0.0752
8.0	0.103
8.5	0.128
9.0	0.150
9.5	0.172*
10.0	0.180